The Compiler Generator Coco/R

User Manual

Hanspeter Mossenbdck
Johannes Kepler University Linz
Institute of System Software

Coco/R' is a compiler generator, which takes an attributed grammar of a source language
and generates a scanner and a parser for this language. The scanner works as a
deterministic finite automaton. The parser uses recursive descent. LL(1) conflicts can be
resolved by a multi-symbol lookahead or by semantic checks. Thus the class of accepted
grammars is LL(k) for an arbitrary .

There are versions of Coco/R for Java, C#, C++, Delphi, Modula-2, Oberon and other
languages. This manual describes the versions for C# and Java implemented at the

University of Linz.

Download from: http://www.ssw.uni-linz.ac.at/Research/Projects/Coco/

Compiler Generator Coco/R,
Copyright © 1990, 2004 Hanspeter Mossenbock, University of Linz

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

As an exception, it is allowed to write an extension of Coco/R that is used as a plugin in non-free software.

If not otherwise stated, any source code generated by Coco/R (other than Coco/R itself) does not fall under the
GNU General Public License.

" Coco/R stands for compiler compiler generating recursive descent parsers.

Contents
L. OVEIVICW ..evvieetieiieeetesitesteesteeteestesteesteeseesseesseasseessasssessaansaesseessesseesseesseesseenseasseessessenssessaensaesseessesssensns 3
1.1 SampPIe PrOQUCHION.........iiiieiieiieiieieeie ettt ettt ettt et et e s saesteesteesseessesssesssesseessaessenssesssensens 3
1.2 Sample Parsing Methodcooieiiiiiiieciecieceeseese ettt ve e s seebe s e essesssessaeseas 4
1.3 SUMMATY Of FEALUIESieiieiieiicieeiieceee ettt st e st e seeseenneeneesnsesseenneas 4
2. INPUL LANGUAGEeeeetieiiieeite ettt ettt ettt ettt et e bt e bt e e bt e e bt e ebee s beeeabee s beeeabeesabeeeanee s 5
B BT o1 T 2SR 5
2.2 OVETAIL STIUCTUIE.....cecuvieiiieiie et eete et eete et et e e bt e etee e teeeteeesseeesseessseassseessseaasseessseassseessseensseenes 6
B BN 11111 Lo G 0116 U ot) APPSR 7
2.3.1 CRATACTET SEES ..uvieeurieitieeitieeteeeteeeteesteesteestreesaeessseessaeesseessaeassssassaassaeasseasseeenseesssesssseensses 7
2.3.2 TOKEIS . .teeetee ettt ette ettt tte et e et e et e et e e teeestee e taeenseessbaeenseeanseeenseeanseeenseeenseeanbaeanseennses 8
B I B o ¢ 1o o 2 OO U TP PRUPTOT 9
2.3.4 COMIMENLS ..eeetrieriiteeiieeeteeeiteeettesteeeteesbeesbeeeateeesseesnteeesseesnsaeesaesnsseesseensseenssesnsseenseesnseenn 10
2.3.5 WHITE SPACEcvievieitieiiieiieetiesteeteetesteseeestee s st e bt esseesseessesseessaesseassesssesssesssenseesseessenseensenssenns 10
2.3.60 CaSE SCNSILIVILY 1eeuvievvieuiietieriieteeteetestesteesseesseetesseesseesseesseesseessasssesseesseessesssesssesssesseenseesenns 10
2.4 Parser SPECITICALIONeevieiieieeiieeiesiteete ettt et ettt e etaessee s bt e seensesnaesseesseenseenseensesseanseensenns 11
2.4.1 PTOAUCHIONSouviiniieniieiieiieeitestteie et ste st e s etesteeteenteenseeseeseenseensesssesnsesseesseenseensesssesseenseensenns 11
2.4.2 SEMANLIC ACHIONS ...euvieiieiieeiieiiesieerteesteeteeteeetesttesteenseessesseesseesseensesnsesnsesseesseanseensesssenseenseans 12
2.4.3 ATTIDULES ..eevvieiiieeiieeiieeette e ite et te et e et e et e eteeeateeesbeeesseeessaeessaeensaeenseeensaeassesanssaanseesnseennsenan 12
2.4.4 The SYMDOI ANY ...oiiiiiiieieee ettt ettt et sttt st e eneesaeeseeseeneeneensenseneas 14
2.4.5 LL(1) CONTICLS .veeevieiiieeiieeiieeiteeiee et e et e et e et e sveeseveesbeessseessbeessseesssaassseessseassseessseennsenan 14
2.4.6 LL(1) CONflICt RESOIVETSvveiviiiiiiieiieiiie sttt ettt et ete e e e eaeeaesrnesreesseenneenneens 17
2.4.7 Syntax Error Handlingccooiiiiiiiiee et 20
2. 4.8 FTaME FIlES.....ccuiioiieiiiciiieiiecieeteee ettt ettt ettt et e et e etbesesesta e aeesbeenseessesreesseesseenseans 22
3L USEE GUIAC.....eeeeieiieie ettt ettt ettt st e e bt e b e e sa e e st e baesbeesbesssesssesseesseenseesseesseassanseesaesseensenssennns 23
T B 60T 721 0 1o s USSP 23
3.2 INVOCALION 1..vtietieeiectieie ettt e vt e bt et e et e e ta e tee b e esbessaesseessaesseenseesseessensaessaenseessesssensaesseessennsensns 23
3.3 Interfaces of the Generated CIASSESccvvuerieriieriieie e rte st eit ettt et e e seaeseaesseesseeneeses 24
3311 SCANMET...ccutieeiiieitie ettt ettt ettt et ettt bt e s bt e e bt e s bt e e bt e s beeebte e bbeebte e baeebteebaeenateenes 24
TG TR o) G o USSR 25
T 211 i (<) TR PRRUSPRUPPRRRPRRNt 25
3314 PAISCI c.uviieiiieeiee et eee ettt ettt e et e et e e tt e ettt e tae e tbeeataeeatbeeatbeeatbaeatbeeebeeanbeesbaeanaeesaaensaaenns 25
B35 BITOTS 1utieiiiieetee ettt eiee ettt e et e et e et e ette e tbeetae e sbaesaeessba e sseessaensseesssaansseessseennneessaensseenes 26
3.4 Main Class of the COMPIIETccvevieiiieiieieiieceeceeee ettt be e sreesaeesbeeane e 26
3.5 GTamMMAT TESES...euvieiiieieieeitieeite ettt erte ettt este et e eseaeeteeesaaeesaeessaeensseensseesseensseesseensseenseesnseesnseenn 27
4. A SAMPIE COMPIICTuviieiieeiieiieciietieieete ettt ettt e steeste e b e esbeesbesteesseesseessesssesseesseenseessesssesseesenns 28
5. ApPlIcations OFf COCO/Rooviiiiiieiieitieit ettt ettt et teeste et e s saesaeesbeesbaesbeessessaessaesseenseensennns 31
6. ACKNOWICAGEIMENLSocviiiiiiieiieie ettt ettt ettt e e b e et eseeesaeebeesseesseessesseesseessasssesssesseensennsennns 32
AL SYNaX OF COCOI/R ...ttt ettt et ae e st e sseenseessesneasseeseenseensesssensnensees 33
B. Sources of the Sample COMPILET.........cccerieiieiieii ettt see s e e enseens 34
Bl TASTEATG ..ottt ettt et ettt st b e eb e eb ettt st besae bt et ebe e 34
B.2 TL.CS (SYMDOI tADIE)eueieiiieiieeiieetiete ettt ettt ettt ettt st se e e ee e sneenaeeeeens 37
B.3 TC.CS (COAE ZENEIALOT) ... eeueiitieuiieniieiieeiteetee et et et ettt eeae et e bt e bt enteeseesseesseeseenseeneesneesneenseenseans 39

B.4 Taste.Cs (INAIN PrOZIAIN)....cc.eeueeueeruieiteerteerteeteenteeteesteeeeenteeseasseenseeseansesseesseesseenseensesneesseenseenseans 41

1. Overview

Coco/R is a compiler generator, which takes an attributed grammar of a source
language and generates a scanner and a recursive descent parser for this language. The
user has to supply a main class that calls the parser as well as semantic classes (e.g. a
symbol table handler or a code generator) that are used by semantic actions in the
parser. This is shown in Figure 1.

Coco/R Parser

compiler | Scanner | | | | |
description

semantic classes

Figure 1 Input and output of Coco/R

1.1 Sample Production

In order to give you an idea of how attributed grammars look like in Coco/R, let us
look at a sample production for variable declarations in a Pascal-like language.

VarDeclaration<ref int adr> (. string name; TypeDesc typ; .)
= Ident<out name> (. Obj x = SymTab.Enter (name) ;
intn = 1; .)
{ ',' Ident<out name> (. Obj y = SymTab.Enter (name) ;
xXx.next = y; x = Yy;
n++;)
}
': ' Type<out typ> (. adr += n * typ.size;
for (int a = adr; x != null; x = x.next) {
a -= typ.size;
x.adr = a;

}oo)

The core of this specification is the EBNF production

VarDeclaration = Ident {',' Ident} ':' Type ';'.

It is augmented with attributes and semantic actions. The attributes (e.g. <out name>)
specify the parameters of the symbols. There are input attributes (e.g. <x, y>) and
output attributes (e.g. <out z> Or <ref z>). A semantic action is a piece of code that
is written in the target language of Coco/R (e.g. in C# or Java) and is executed by the
generated parser at its position in the production.

1.2 Sample Parsing Method

Every production is translated into a parsing method. The method for varbeciaration,
for example, looks like this in C# (code parts originating from attributes or semantic
actions are shown in gray):

static void VarDeclaration(ref int adr) {
string name; TypeDesc typ;
Ident (out name) ;
Obj x = SymTab.Enter (name) ;

int n = 1;
while (la.kind == comma) {
Get () ;

Ident (out name) ;
Obj y = SymTab.Enter (name) ;
xX.next = vy; x = vy;
n++;
}
Expect (colon) ;
Type (out typ);
adr += n * typ.size;

for (int a = adr; x != null; x = x.next) {
a -= typ.size;
x.adr = a;

}

Expect (semicolon) ;

Coco/R also generates a scanner that reads the input stream and returns a stream of
tokens to the parser.

1.3 Summary of Features

Scanner

The scanner is specified by a list of token declarations. Literals (e.g. "if" or
"while") do not have to be declared as tokens but can be used directly in the
productions of the grammar.

The scanner is implemented as a deterministic finite automaton (DFA). Therefore
the terminal symbols (or tokens) have to be described by a regular EBNF grammar.
Comments may be nested. One can specify multiple kinds of comments for a
language.

Tokens must be made up of characters from the extended ASCII set (i.e. 256
values).

The scanner can be made case-sensitive or case-insensitive.

The scanner can recognize tokens depending on their context in the input stream.
The scanner can read from any input stream (not just from a file). However, all
input must come from a single stream (no includes).

The scanner can handle so-called pragmas, which are tokens that are not part of the
syntax but can occur anywhere in the input stream (e.g. compiler directives or end-
of-line characters).

The user can suppress the generation of a scanner and can provide a hand-written
scanner instead.

Parser

= The parser is specified by a set of EBNF productions with attributes and semantic
actions. The productions allow for alternatives, repetition and optional parts.
Coco/R translates the productions into a recursive descent parser which is small and
efficient.

= Nonterminal symbols can have any number of input and output attributes (the Java
version allows just one output attribute, which may, however, be an object of a
suitable composite class). Terminal symbols do not have explicit attributes, but the
tokens returned by the scanner contain information that can be viewed as attributes.
All attributes are evaluated during parsing (i.e. the grammar is processed as an L-
attributed grammar).

= Semantic actions can be placed anywhere in the grammar (not just at the end of
productions). They may contain arbitrary statements or declarations written in the
language of the generated parser (e.g. C# or Java).

= The special symbol ANY can be used to denote a set of complementary tokens.

= In principle, the grammar must be LL(1). However, Coco/R can also handle non-
LL(1) grammars by using so-called resolvers that make a parsing decision based on
a multi-symbol lookahead or on semantic information.

= Every production can have its own local variables. In addition to these, one can
declare global variables or methods, which are translated into fields and methods of
the parser. Semantic actions can also access other objects or methods from user-
written classes or from library classes.

= Coco/R checks the grammar for completeness, consistency and non-redundancy. It
also reports LL(1) conflicts.

= The error messages printed by the generated parser can be configured to conform to
a user-specific format.

= The generated parser and scanner can be specified to belong to a certain namespace
(or package).

2. Input Language

This section specifies the compiler description language Cocol/R that is used as the
input language for Coco/R . A compiler description consists of a set of grammar rules
that describe the lexical and syntactical structure of a language as well as its
translation to a target language.

2.1 Vocabulary

The basic elements of Cocol/R are identifiers, numbers, strings and character
constants, which are defined as follows:

ident = letter {letter | digit}.
number = digit {digit}.

string = {anyButQuote}

char = '\'' anyButApostrophe '\''

Upper case letters are distinct from lower case letters. Strings must not extend across
multiple lines. Both strings and character constants may contain the following escape
sequences:

N\ backslash \r carriage return \f form feed

\! apostrophe \n new line \a bell

\" quote \t horizontal tab \b backspace

\O null character \v vertical tab \uxxxx hex char value

The following identifiers are reserved keywords (in the C# version of Cocol/R the
identifier using is also a keyword, in the Java version the identifier import):

ANY CONTEXT IGNORE PRAGMAS TOKENS
CHARACTERS END IGNORECASE PRODUCTIONS WEAK
COMMENTS FROM NESTED SYNC

COMPILER IF out TO

Comments are enclosed in /* and */ and may be nested.

EBNF

All syntax descriptions in Cocol/R are written in Extended Backus-Naur Form
(EBNF) [Wirth77]. By convention, identifiers starting with a lower case letter denote
terminal symbols, identifiers starting with an upper case letter denote nonterminal
symbols. Strings denote themselves. The following meta-characters are used:

symbol meaning example

= separates the sides of a production A =abc.

. terminates a production A=abc.

| separates alternatives ablc|de meansab or c or de

) groups alternatives (alb)ec meansac or bc

[] option [a] b meansab or b

{} iteration (0 or more times) {a} b meansb or ab or aab or...

Attributes are written between < and >. Semantic actions are enclosed in (. and .).
The operators + and - are used to form character sets.

2.2 Overall Structure

A Cocol/R compiler description has the following structure:

Cocol =
[Imports]
"COMPILER" ident
[GlobalFieldsAndMethods]
ScannerSpecification
ParserSpecification
"END" ident '.'

The name after the keyword covp1rER is the grammar name and must match the name
after the keyword enp. The grammar name also denotes the topmost nonterminal
symbol (the start symbol). The parser specification must contain a production for this
symbol.

Imports. In front of the keyword compiLER One can import namespaces (in C#) or
packages (in Java), for example:

using System;
using System.Collections;

GlobalFieldsAndMethods. After the grammar name one may declare arbitrary fields
and methods of the generated parser, for example:

static int sum;

static void Add(int x) {
sum = sum + X;

}

These declarations are written in the language of the generated parser (i.e. in C# or in
Java) and are not checked by Coco/R. Since all methods of the parser are static, the
declared fields and methods should also be static. They can be used in the semantic
actions of the parser specification.

The remaining parts of the compiler description specify the scanner and the parser
that are to be generated. They are now described in more detail.

2.3 Scanner Specification

A scanner has to read source text, skip meaningless characters, recognize tokens and
pass them to the parser. This is described in a scanner specification, which consists of
five optional parts:
ScannerSpecification =

[" IGNORECASE"]

["CHARACTERS" {SetDecl}]

["TOKENS" {TokenDecl}]

["PRAGMAS" {PragmaDecl}]

{CommentDecl}
{WhiteSpaceDecl}.

2.3.1 Character sets

This section allows the user to declare character sets such as letters or digits. Their
names can then be used in the other sections of the scanner specification. Coco/R
grammars are expressed in an extended ASCII character set (256 characters).

SetDecl = ident '=' Set '.'.
Set = BasicSet {('+'|'-') BasicSet}.
BasicSet = string | ident | char [".." char] | "ANY".

SetDecl associates a name with a character set. Basic character sets are denoted as:

string a set consisting of all the characters in the string
ident a previously declared character set with this name
char a set containing the character char

charl..char2 the set of all characters from char1 to char2

ANY the set of all characters in the range O .. 255

Character sets may be formed from basic sets using the operators

+ set union
- set difference

Examples
digit = "0123456789". /* the set of all digits */
hexDigit = digit + "ABCDEF". /* the set of all hexadecimal digits */
letter = 'A' .. 'Z'. /* the set of all upper case letters */
eol = '"\r'. /* the end-of-line character */
noDigit = ANY - digit. /* any character that is not a digit */

2.3.2 Tokens

This is the main section of the scanner specification, in which the tokens (or terminal
symbols) of the language are declared. Tokens may be divided into literals and token
classes.

= Literals (such as while or >=) have a fixed representation in the source language. In
the grammar they are written as strings (e.g. "while" or ">=v) and denote
themselves. They don't have to be declared in the tokens section but are implicitly
declared at their first use in the productions of the grammar.

= Token classes (such as identifiers or numbers) have a certain structure that must be
explicitly declared by a regular expression in EBNF. There are usually many
instances of a token class (e.g. many different identifiers), which have the same
token code, but different lexeme values.

The syntax of token declarations is as follows:

TokenDecl = Symbol ['=' TokenExpr '.'].
TokenExpr = TokenTerm {'|' TokenTerm} .
TokenTerm = TokenFactor {TokenFactor} ["CONTEXT" '(' TokenExpr ')'].
TokenFactor = Symbol
| ' (' TokenExpr ')
| '[' TokenExpr ']’
| '{' TokenExpr '}'.
Symbol = ident | string | char.

A token declaration defines the syntax of a terminal symbol by a regular EBNF ex-
pression. This expression may contain strings or character constants denoting
themselves (e.g. ">=" or '; ') as well as names of character sets (e.g. 1etter) denoting
an arbitrary character from this set. It must not contain other token names, which
implies that EBNF expressions in token declarations cannot be recursive.

Examples
ident = letter {letter | digit | '_'}.
number = digit {digit}
| "0x" hexDigit hexDigit hexDigit hexDigit.
float = digit {digit} '.' {digit} ['E"’ ['+'|'—'] digit {digit}].

The token declarations need not be LL(1) as can be seen in the declaration of number,
where both alternatives can start with a '0'. Coco/R automatically resolves any
ambiguities and generates a deterministic finite scanner automaton.

Tokens may be declared in any order. However, if a token is declared as a literal that
matches an instance of a more general token, the literal has to be declared affer the
more general token.

Example
ident = letter {letter | digit}.
while = "while".

Since the string "while" matches both the tokens while and ident, the declaration of
while must come after the declaration of ident. In principle, literal tokens don't have
to be declared in the token declarations at all, but can simply be introduced directly in
the productions of the grammar. In some situations, however, it makes sense to
declare them explicitly, for example, in order to get a token name for them that can be
used in resolver methods (see Section 2.4.6).

Context-dependent tokens. The contexT phrase in a TokenTerm means that the term is
only recognized if its context (i.e. the characters that follow the term in the input
stream) matches the Tokenexpr specified in brackets. Note that the Tokenexpr is not
part of the token.

Example
number = digit {digit}
| digit {digit} CONTEXT ("..").
float = digit {digit} '.' {digit} ['E’' ['+'|'—'] digit {digit}].

The contexT phrase in this example allows the scanner to distinguish between fioat
tokens (e.g. 1.23) and integer ranges (e.g. 1..2) that could otherwise not be scanned
with a single character lookahead. This works as follows: after having read "1." the
scanner still works on both tokens. If the next character is a ' . the characters . .-
are pushed back to the input stream and a number token with the value 1 is returned to
the parser. If the next character is not a ' . the scanner continues with the recognition
of a f1oat token.

Hand-written scanners. If the right-hand sides of the token declarations are missing
no scanner is generated. This gives the user the chance to provide a hand-written
scanner, which must conform to the interface described in Section 3.3.1.

Example

TOKENS
ident
number
" if n
"while"

Tokens are assigned numbers in the order of their declaration. The first token gets the
number 1, the second the number 2, and so on. The number o is reserved for the end-
of-file token. The hand-written scanner must return the token numbers according to
these conventions. In particular, it must return an end-of-file token if no more input is
available.

It is hardly ever necessary to supply a hand-written scanner, because the scanner
generated by Coco/R is highly optimized. A user-supplied scanner would be needed,
for example, if the scanner were required to process include directives.

2.3.3 Pragmas

Pragmas are tokens that may occur anywhere in the input stream (for example, end-
of-line symbols or compiler directives). It would be too tedious to handle all their
possible occurrences in the grammar. Therefore they are excluded from the token
stream that is passed to the parser. Pragmas are declared like tokens, but they may
have a semantic action associated with them that is executed whenever they are
recognized by the scanner.

TokenDecl [SemAction].
"(." ArbitraryStatements ".)".

PragmaDecl
SemAction

10

Example
PRAGMAS
option = '$' {letter}. (. foreach (char ch in la.val)
if (ch == 'A') ...
else if (ch == 'B')

)

This pragma defines a compiler option that can be written, for example, as sa.
Whenever it occurs in the input stream it is not forwarded to the parser but
immediately processed by executing its associated semantic action. Note that 1a.val
accesses the value of the lookahead token 1a, which is in this case the pragma that
was just read (see Section 3.3.4).

2.3.4 Comments

Comments are difficult to specify with regular expressions; nested comments are even
impossible to specify that way. This makes it necessary to have a special construct to
define their structure.

Comments are declared by specifying their opening and closing brackets. The
keyword nestED denotes that they can be nested.

CommentDecl = "COMMENTS" "FROM" TokenExpr "TO" TokenExpr ["NESTED"].
Comment delimiters must be sequences of 1 or 2 characters, which can be specified as
literals or as single-element character sets. They must not be structured (for example
with alternatives). It is possible to declare multiple kinds of comments.

Example

COMMENTS FROM "/*" TO "*/" NESTED
COMMENTS FROM "//" TO eol

Alternatively, if comments cannot be nested one can define them as pragmas. This has
the advantage that such comments can be processed semantically, for example, by
counting them or by processing compiler options within them.

2.3.5 White space

Characters such as blanks, tabulators or end-of-line symbols are usually considered as
white space that should be ignored by the scanner. Blanks are ignored by default. If
other characters should be ignored as well the user has to specify them in the
following way:

WhiteSpaceDecl = "IGNORE" Set.

Example

IGNORE '\t' + '\r' + '\n'

2.3.6 Case sensitivity

Some languages such as Pascal or XML are case insensitive. In Pascal, for example,
one can write the keyword while also as while or weiLe. By default, Coco/R generates
scanners that are case sensitive. If this is not desired, one has to write 1GNORECASE at
the beginning of the scanner specification.

The effect of tenorecask is that all input to the scanner is treated in a case-insensitive
way. The production

11

WhileStatement = "while" '(' Expr ')' Statement.

will therefore also recognize while statements that start with while or wxHILE.
Similarly, the declaration:

TOKENS
float = digit {digit} '.' ['E’ ('+'|'—') digit {digit}].

will cause the scanner to recognize not only 1.2r2 but also 1.2e2 as a float token.

However, the original casing of tokens is preserved in the va1 field of every token

(see Section 3.3.2) so that the lexical value of tokens such as identifiers and strings is

delivered exactly as it was written in the input text.

2.4 Parser Specification

The parser specification is the main part of a compiler description. It contains the
productions of an attributed grammar, which specify the syntax of the language to be
parsed as well as its translation.

ParserSpecification = "PRODUCTIONS" {Production}.
Production = ident [FormalAttributes] [LocalDecl] '=' Expression '.'.
Expression = Term {'|' Term} .
Term = [[Resolver] Factor {Factor}].
Factor = ["WEAK"] Symbol [ActualAttributes]

| '(' Expression ')

| '[' Expression ']’

| '{' Expression '}

| "any"

| "sync"

| SemAction.
Symbol = ident | string | char.
SemAction = "(." ArbitraryStatements ".)".
LocalDecl = SemAction.
FormalAttributes = '<' ArbitraryText '>'.
ActualAttributes = '<' ArbitraryText '>'.
Resolver = "IF" ' (' {ANY} ')"'.

2.4.1 Productions

A production specifies the syntactical structure of a nonterminal symbol. It consists of
a left-hand side and a right-hand side which are separated by an equal sign. The left-
hand side specifies the name of the nonterminal together with its formal attributes and
the local variables of the production. The right-hand side consists of an EBNF
expression that specifies the structure of the nonterminal as well as its translation in
form of attributes and semantic actions.

The productions may be given in any order. References to as yet undeclared
nonterminals are allowed (any name that was not declared so far is considered to be a
forward reference to a nonterminal symbol). For every nonterminal there must be
exactly one production. In particular, there must be a production for the grammar
name, which is the start symbol of the grammar.

12

2.4.2 Semantic Actions

A semantic action is a piece of code written in the target language of Coco/R (i.e. in
C# or in Java). It is executed by the generated parser at the position where it has been
specified in the grammar. Semantic actions are simply copied to the generated parser
without being checked by Coco/R.

A semantic action can also contain the declarations of local variables. Every
production has its own set of local variables, which are retained in recursive
productions. The optional semantic action on the left-hand side of a production
(Localpecl) is intended for such declarations, but variables can also be declared in any
other semantic action.

Here is an example that counts the number of identifiers in an identifier list:

IdentList =
ident (. int n = 1; .)
{'," ident (. n++;)
} (. Console.WriteLine("n = " + n); .)

As a matter of style, it is good practice to write all syntax parts on the left side and all
semantic actions on the right side of a page. This makes a production better readable
because the syntax is separated from its processing.

Semantic actions cannot only access local variables but also fields and methods
declared at the beginning of the attributed grammar (see Section 2.2) as well as fields
and methods of other classes.

2.4.3 Attributes

Productions are considered as (and are actually translated to) parsing methods. The
occurrence of a nonterminal on the right-hand side of a production can be viewed as a
call of that nonterminal's parsing method.

Nonterminals may have attributes, which correspond to parameters of the nontermi-
nal's parsing method. There are input attributes, which are used to pass values to the
production of a nonterminal, and output attributes, which are used to return values
from the production of a nonterminal to its caller (i.e. to the place where this
nonterminal occurs in some other production).

As with parameters, we distinguish between formal attributes, which are specified at
the nonterminal's declaration on the left-hand side of a production, and actual
attributes, which are specified at the nonterminal's occurrence on the right-hand side
of a production.

Attributes in C#. A formal attribute looks like a parameter declaration. In C#, output
attributes must be preceded by the keyword out or ref. The following example
declares a nonterminal s with an input attribute x and two output attributes y and z:

S <int x, out int y, ref string z> = ...
An actual attribute looks like an actual parameter. Actual input attributes may be

expressions, which are evaluated and assigned to the corresponding formal attributes.
In C#, actual output attributes must be preceded by the keywords out or ref. They are

13

passed by reference like output parameters in C#. Here is an example (a and b are
assumed to be of type int, c is assumed to be of type string):

. S <3*%a + 1, out b, ref c> ...

The production of the nonterminal s is translated to the following parsing method:

static void S(int x, out int y, ref string z) {

}

Attributes in Java. Since Java does not support output parameters, the Java version
of Coco/R allows only a single output attribute which is passed to the caller as a
return value. However, the return value can be an object of a class that contains
multiple values.

If a nonterminal has an output attribute it must be the first attribute. It is denoted by
the keyword out both in its declaration and in its use. The following example shows a
nonterminal T with an output attribute x and two input attributes y and z (for
compatibility with older versions of Coco/R the symbol '~ can be substituted for the
keyword out):

T<out int x, char y, int z> = ...

This nonterminal is used as follows:

. T<out a, 'b', c+3> ...

The production of the nonterminal T is translated to the following parsing method:

static int T(char vy, int z) {
int x;
return x;
}
Note that expressions that are passed as actual input attributes (both in C# and in
Java) must not contain the operator ‘>, which is the closing attribute bracket. Such
expressions must be assigned to a temporary variable, which can then be passed as an
attribute.

Coco/R checks that nonterminals with attributes are always used with attributes and
that nonterminals without attributes are always used without attributes. However, it
does not check the correspondence between formal and actual attributes, which is left
to the compiler of the target language.

Attributes of terminal symbols. Terminal symbols do not have attributes in Cocol/R.
For every token, however, the scanner returns the token value (i.e. the token's string
representation) as well as the line and column number of the token (see Section 3.3.4).
This information can be viewed as output attributes of that token. If users want to
access this data they can wrap a token into a nonterminal with the desired attributes,
for example:

Ident <out string name> =
ident (. name = t.val; .)

Number <out int value> =
number (. value = Convert.ToInt32(t.val); .)

The variable t is the most recently recognized token. Its field t.va1 holds the textual
representation of the token (see Section 3.3.4).

14

2.4.4 The Symbol ANY

In the productions of the grammar the symbol anv denotes any token that is not an
alternative to that any symbol. It can be used to conveniently parse structures that
contain arbitrary text. The following production, for example, processes an attribute
list in Cocol/R and returns the number of characters between the angle brackets:

Attributes < out int len> =

<! (. int beg = t.pos + 1; .)
{ANY}
> (. len = t.pos - beg; .)

In this example the token '>' is an implicit alternative of the any symbol in curly
braces. The meaning is that this any matches any token except '>'. t.pos is the source
text position of the most recently recognized token (see Section 3.3.4).

Here is another example that counts the number of statements in a block:

Block <out int stmts> = (. int n; .)
e (. stmts = 0; .)
! (. stmts++; .)
| Block<out n> (. stmts += n; .)
| ANY
}
' } ' .
In this example the any matches any token except ';', '{' and '}' which are

alternatives of it (" {' is a terminal start symbol of B1ock).

2.4.5 LL(1) Conflicts

Recursive descent parsing requires that the grammar of the parsed language is LL(1)
(i.e. parsable from Left to right with Left-canonical derivations and 1 lookahead
symbol). This means that at any point in the grammar the parser must be able to
decide on the basis of a single lookahead symbol which of several possible
alternatives have to be selected. The following production, for example, is not LL(1):

Statement ident '=' Expression '

| ident ' (' [ActualParameters] ')'
|

Both alternatives start with the symbol ident. When the parser comes to the beginning
of a statement and ident is the next input token, it cannot distinguish between the two
alternatives. However, this production can easily be transformed to
Statement = ident ('=' Expression '
| '(' [ActualParameters] ')’

)
|

where all alternatives start with distinct symbols and the LL(1) conflict has dis-
appeared.

LL(1) conflicts can arise not only from explicit alternatives like those in the example
above but also from implicit alternatives that are hidden in optional or iterative EBNF
expressions. The following list shows how to check for LL(1) conflicts in these
situations (Greek symbols denote arbitrary EBNF expressions such as a[bic; first(o)
denotes the set of terminal start symbols of the EBNF expression o; follow(a) denotes
the set of terminal symbols that can follow the nonterminal a in any other production):

15

= Explicit alternatives
A = o|B|y. check thatfirst(o) N first(B) = {} A first(o) N first(y) = {} A first(B) N first(y) = {}.

A =(a])P. check that first(o) M first(B) = {}

A =(0) . check that first(o) M follow(2) = {}
= Options

A = [o] B. check that first(or) N first(B) = {}

A = [0]. check that first(o) N follow(n) = {}

= Jterations
A = {a} P. check that first(ar) N first(B) = {}
A = {0}. check that first(ct) N follow(n) = {}

It would be very tedious and error-prone to check all these conditions manually for a
grammar of a realistic size. Fortunately, Coco/R does that automatically. For example,
the grammar

A= (a| BCAd.
B = [b] a.
C = c {d}.

will result in the following LL(1) warnings:

LL1 warning in A: a is start of several alternatives
LL1 warning in C: d is start & successor of deletable structure

The first conflict arises because B can start with an a. The second conflict comes from
the fact that ¢ may be followed by a 4, and so the parser does not know whether it
should do another iteration of {d} in ¢ or terminate ¢ and continue with the a outside.

Another situation that leads to a conflict is when an expression in curly or square
brackets is deletable, e.g.:

A
B

[B] a.
{b}.

If the parser tries to recognize a and sees an a it cannot decide whether to enter the
deletable symbol & or to skip (8]. Therefore Coco/R prints the warning:

LL1 warning in A: contents of [...] or {...} must not be deletable
Note that Coco/R reports LL(1) conflicts as warnings, not as errors. Whenever the
parser sees two or more alternatives that can start with the same token it always
chooses the first one. If this is what the user intends then everything is fine, like in the
well-known example of the dangling else that occurs in many programming
languages:

Statement = "if" ' (' ExXpression ')' Statement ["else" Statement]

Input for this grammar like

if (a > b) if (a > ¢) max = a; else max = b;

is ambiguous: does the "e1se" belongs to the inner or to the outer if statement? The
LL(1) conflict arises because

fhﬂt("else" Statement)(ijlkﬂﬁ(statement)::{"else"

However, this is not a big problem, because the parser chooses the first matching
alternative, which is the "eise" of the inner if statement. This is exactly what we
want.

16

Resolving LL(1) conflicts by grammar transformations

If Coco/R reports an LL(1) conflict the user should try to eliminate it by transforming
the grammar as it is shown in the following examples.

Factorization. Most LL(1) conflicts can be resolved by factorization, i.e. by extract-
ing the common parts of conflicting alternatives and moving them to the front. For
example, the production

A=abc | abad.
can be transformed to
A=ab (c| d.
Left recursion. Left recursion always represents an LL(1) conflict. In the production
A=ADb | c.
both alternatives start with < (because first(a) = {c}). However, left recursion can
always be transformed into an iteration, e.g. the previous production becomes
A =c {b}.

Hard conflicts. Some LL(1) conflicts cannot be resolved by grammar transfor-
mations. Consider the following (simplified) productions from the C# grammar:

Expr = Factor {'+' Factor}.
Factor = '(' ident ')' Factor /* type cast */
| '(' Expr ')’ /* nested expression */
| ident | number.
The conflict arises, because two alternatives of rFactor start with ' (*. Even worse,

Expr can also be derived to an ident. There is no way to get rid of this conflict by
transforming the grammar. The only way to resolve it is to look at the idgent following
the ' (: if it denotes a type the parser has to select the first alternative otherwise the
second one. We will deal with this kind of conflict resolution in Section 2.4.6.

Readability issues. Some grammar transformations can degrade the readability of the
grammar. Consider the following example (again taken from a simplified form of the
C# grammar):

UsingClause = "using" [ident '='] Qualident '
Qualident = ident {'.' ident}.
The conflict is in usingclause where both [ident '='] and gualident start with
ident. Although this conflict could be eliminated by transforming the production to
UsingClause = "using" ident ({'.' ident}

| '=' Qualident

) rat

the readability would clearly deteriorate. It is better to resolve this conflict as shown
in Section 2.4.6.

Semantic issues. Finally, factorization is sometimes inhibited by the fact that the se-
mantic processing of conflicting alternatives differs, e.g.:
A = ident (. x = 1; .) {',' ident (. x++; .) }
| ident (. Foo(); .) {',' ident (. Bar(); .) }
The common parts of these two alternatives cannot be factored out, because each
alternative has its own way to be processed semantically. Again this problem can be
solved with the technique explained in Section 2.4.6.

17

2.4.6 LL(1) Conflict Resolvers

A conflict resolver is a boolean expression that is inserted into the grammar at the
beginning of the first of two conflicting alternatives and decides, using a multi-
symbol lookahead or a semantic check, whether this alternative matches the actual
input. If the resolver yields true, the alternative prefixed by the resolver is selected,
otherwise the next alternative will be checked. A conflict resolver is written as

Resolver = "IF" '(' ... any expression ... ')'
where any boolean expression can be written between the parentheses. In most cases
this will be a function call that returns true or false.
Thus we can resolve the LL(1) conflict from Section 2.4.5 in the following way:
UsingClause = "using" [IF(IsAlias()) ident '='] Qualident ';'.

Isalias 1S a user-defined method that reads two tokens ahead. It returns true, if ident
is followed by ‘=, otherwise it returns false.

Conflict resolution by a multi-symbol lookahead

The generated parser remembers the most recently recognized token as well as the
current lookahead token in two global variables (see also Section 3.3.4):

Token t; // most recently recognized token
Token la; // lookahead token

The generated scanner offers a method peek () that can be used to read ahead beyond

the lookahead token without removing any tokens from the input stream. When
normal parsing resumes the scanner will return these tokens again.

With peek () we can implement 1salias () in the following way:

static bool IsAlias() {
Token next = Scanner.Peek();
return la.kind == _ident && next.kind == _eql;

}

The conflict mentioned at the end of Section 2.4.5 can be resolved by the production

A = IF(FollowedByColon())
ident (. x = 1; .) {',' ddent (. x++; .) } ':!'
| ident (. Foo(); .) {',' ident (. Bar(); .) } ';'.

and the following implementation of the function Fo11lowedBycolon():

static bool FollowedByColon () {
Token x = la;

while (x.kind == _comma || x.kind == _ident)
x = Scanner.Peek();
return x.kind == _colon;

}

Token names. For peeking it is convenient to be able to refer to the token numbers by
names such as _ident or _comma. Coco/R generates such names for all tokens declared
in the mokens section of the scanner specification. For example, if the tokens are
declared like this:

’

TOKENS
ident = letter {letter | digit}.
number = digit {digit}.
eql = '=s';
comma = ',

[P

colon

18

Coco/R will generate the following constant declarations in the parser:

const int _EOF = 0;

const int _ident = 1;
const int _number = 2;
const int _eqgl =
const int _comma
const int _colon

n 1 w

4;
5;

The token names are preceded by an underscore in order to avoid conflicts with
reserved keywords and other identifiers.

Normally the Toxens section will only contain declarations for token classes like
ident or number. However, if the name of a literal token is needed for peeking, it has
to be declared there as well. In the productions of the grammar this token can then be
referred to either by its name (e.g. _comma) or by its literal value (e.g. ', *).

Resetting the peek position. The scanner makes sure that a sequence of peek () calls
will return the tokens following the lookahead token 1a. In rare situations, however,
the user has to reset the peek position manually. Consider the following grammar:

A = F (IsFirstAlternative()

(I)
| IF (IsSecondAlternative())
| ...
) -

Assume that the function 1srirstalternative() starts peeking and finds out that the
input does not match the first alternative. So it returns fa1se and the parser checks the
second alternative. The function Tssecondalternative() starts peeking again, but
before that, it should reset the peek position to the first symbol after the lookahead
token 1a. This can be done by calling scanner.resetPeek ().

static bool IsSecondAlternative() {
Scanner .ResetPeek () ;
Token x = Scanner.Peek(); // returns the first token after the

// lookahead token again
}

The peek position is reset automatically every time a regular token is recognized by
Scanner.Scan()(See Sectknl3.3.1)

Translation of conflict resolvers. Coco/R treats resolvers like semantic actions and
simply copies them into the generated parser at the position where they appear in the
grammar. For example, the production

UsingClause = "using" [IF(IsAlias()) ident '='] Qualident ';'.

is translated into the following parsing method:

static void UsingClause() {
Expect (_using) ;
if (IsAlias()) {

Expect (_ident) ;
Expect (_eql) ;

}

Qualident () ;

Expect (_semicolon) ;

}

19

Conflict resolution by exploiting semantic information

A conflict resolver can base its decision not only on lookahead tokens but also on any
other information. For example it could access a symbol table to find out semantic
properties about a token. Consider the following LL(1) conflict between type casts
and nested expressions, which can be found in many programming languages:

Expr = Factor {'+' Factor}.
Factor = '(' ident ')' Factor /* type cast */
| '(' Expr ') /* nested expression */

ident | number.

Since expr can start with an ident as well the conflict can be resolved by checking
whether this ident denotes a type or some other object:

Factor = IF (IsCast())
'(' ident ')' Factor /* type cast */
| '(' Expr ')’ /* nested expression */
| ident | number.

Iscast () looks up ident in the symbol table and returns true, if it is a type name:

static bool IsCast() {
Token x = Scanner.Peek () ;

if (la.kind == _lpar && x.kind == _ident) {
object obj = SymTab.Find(x.val);
return obj != null && obj.kind == Type;

} else return false;

}

Placing resolvers correctly

Coco/R checks if resolvers are placed correctly. The following rules must be obeyed:

1.

If two alternatives start with the same token, the resolver must be placed in front
of the first one. Otherwise it would never be executed because the parser would
always choose the first matching alternative. More precisely, a resolver must be
placed at the earliest possible point where an LL(1) conflict arises.

A resolver may only be placed in front of an alternative that is in conflict with
some other alternative. Otherwise it would be illegal.

Here is an example of incorrectly placed resolvers:

A =

(a (IF (...) b) ¢ // misplaced resolver. No LL(1l) conflict.

| IF (...) a b // resolver not evaluated. Place it at first alt.
| IF (...) b // misplaced resolver. No LL(1) conflict

) .

Here is how the resolvers should have been placed in this example:

H

F (...) ab // resolves conflict betw. the first two alternatives
c

oo

a
(
|
|
).

The following example is also interesting:

A
{
| F (...) bc // resolver placed incorrectly.
}

o H I

20

Although the b in the second alternative constitutes an LL(1) conflict with the » after
the iteration, the resolver is placed incorrectly. It should rather be placed at the
beginning of the iteration like this:

A

{ IF (AnotherIteration())

I
(a
| b c
)

} b.

The function anothertteration() could then be implemented as follows:

static bool AnotherIteration() {
Token next = Scanner.Peek();
return la.kind == _a ||
la.kind == _b && next.kind == _c;

}

The reason why this resolver is placed incorrectly is that it should be called only once
in the parser (namely in the header of the while loop):
static void A() {

while (AnotherIteration()) {
if (la.kind == _a)

Expect (_a); B
else if (la.kind == _b) {
Expect (_b); Expect(_c);
}
}
Expect (_b) ;
}
and not both in the while header and at the beginning of the second alternative.
Remember, that the resolver must be placed at the earliest possible point where the

LL(1) conflict arises.

2.4.7 Syntax Error Handling

If a syntax error is detected during parsing the generated parser reports the error and
tries to recover by synchronizing the erroneous input with the grammar. While error
messages are generated automatically, the user has to give certain hints in the
grammar in order to enable the parser to recover from errors.

Invalid terminal symbols. If a certain terminal symbol was expected but not found in
the input the parser just reports that this symbol was expected. For example, if we had
a production

A =a b c.
for which the input was
a X cC

the parser reports

-- line ... col ...: b expected

Invalid alternative lists. If the lookahead symbol does not match any alternative
from a list of expected alternatives in a nonterminal a the parser just reports that a was
invalid. For example, if we had a production

A = a (bl|c|d) e.

21

for which the input was
a x e
the parser reports
-- line ... col ...: invalid A
Obviously, this error message can be improved if we turn the alternative list into a
separate nonterminal symbol, i.e.:

A = a B e.
B = b|c]|d.

In this case the error message would be

-- line ... col ...: invalid B

which is more precise.

Synchronization. After an error was reported the parser continues until it gets to a so-
called synchronization point where it tries to synchronize the input with the grammar
again. Synchronization points have to be specified by the keyword sync . They are
points in the grammar where particularly safe tokens are expected, i.e. tokens that
hardly occur anywhere else and are unlikely to be mistyped. When the parser reaches
a synchronization point it skips all input until a token occurs that is expected at this
point.

In many languages good candidates for synchronization points are the beginning of a
statement (where keywords like if, while or for are expected) or the beginning of a
declaration sequence (where keywords like public, private Or void are expected). A
semicolon is also a good synchronization point in a statement sequence.

The following production, for example, specifies the beginning of a statement as well
as the semicolon after an assignment as synchronization points:

Statement =

SYNC

(Designator '=' Expression SYNC ';'

| "if" ' (' Expression ')' Statement ["else" Statement]
"while" '(' Expression ')' Statement

|

| '{' {Statement} '}’

...

) .
In the generated parser, these synchronization points look as follows (written in
pseudo code here):

static void Statement () {
while (la.kind ¢ {_EOF, _ident, _if, _while, _1lbrace, ...}) {
Report an error;
Get next token;
}
if (la.kind == _ident) {
Designator(); Expect(_eql); Expression();
while (la.kind ¢ {_EOF, _semicolon}) {
Report an error;
Get next token;
}
} else if (la.kind == _if) {
}

22

Note that the end-of-file symbol is always included in the set of synchronization
symbols. This guarantees that the synchronization loop terminates at least at the end
of the input.

In order to avoid a proliferation of error messages during synchronization, an error is
only reported if at least two tokens have been recognized correctly since the last error.

Normally there are only a handful of synchronization points in a grammar for a real
programming language. This makes error recovery cheap in Coco/R and does not
slow down error-free parsing.

Weak tokens. Error recovery can further be improved by specifying tokens that are
"weak" in a certain context. A weak token is a symbol that is often mistyped or
missing such as a comma in a parameter list, which is often mistyped as a semicolon.
A weak token is preceded by the keyword weak. When the parser expects a weak
token but does not find it in the input stream it adjusts the input to the next token that
is either a legal successor of the weak token or a token expected at any synchroni-
zation point (symbols expected at synchronization points are considered to be
particularly "strong" so that it makes sense to never skip them).

Weak tokens are often separator symbols that occur at the beginning of an iteration.
For example, if we have the productions

ParameterList = ' (' Parameter {WEAK ', ' Parameter} ')'
Parameter = ["ref" | "out"] Type ident.
and the parser does not find a ', or a ') after the first parameter it reports an error

and skips the input until it finds either a legal successor of the weak token (i.e., a legal
start of parameter), or a successor of the iteration (i.e. ') '), or any symbol expected at
a synchronization point (including the end-of-file symbol). The effect is that the
parsing of the parameter list would not be terminated prematurely but would get a
chance to synchronize with the start of the next parameter after a possibly mistyped
separator symbol.

In order to get good error recovery the user of Coco/R should perform some
experiments with erroneous inputs and place svnc and weak keywords appropriately to
recover from the most likely errors.

2.4.8 Frame Files

The scanner and the parser are generated from template files with the names
Scanner. frame and parser.frame. Those files contain fixed code parts as well as
textual markers that denote positions at which grammar-specific parts are inserted by
Coco/R. In rare situations advanced users may want to modify the fixed parts of the
frame files by which they can influence the behavior of the scanner and the parser to a
certain degree.

23

3. User Guide

3.1 Installation

Both the Java version and the C# version of Coco/R can be downloaded from
http://www.ssw.uni-linz.ac.at/Research/Projects/Coco/.

C# version. Copy the following files to a new directory:

Coco.exe the executable
Scanner. frame the frame file from which the scanner is generated
parser.frame the frame file from which the parser is generated

Java version. Copy the following files to a new directory:

Coco.jar an archive containing all classes of Coco/R
Scanner. frame the frame file from which the scanner is generated
parser frame the frame file from which the parser is generated

3.2 Invocation

Coco/R can be invoked from the command line as follows:

Under C#: Coco fileName [Options]
Under Java: java -jar Coco.jar fileName [Options]

fileName 1S the name of the file containing the Cocol/R compiler description. As a
convention, compiler descriptions have the extension .arc (for attributed grammar).

Options. The following options may be specified:

Options =
{ "-namespace" namespaceName /* in Java: "-package" packageName */
| "-frames" framesDirectory
| "-trace" traceString
.
The user can specify a namespace (or package) to which the generated scanner and
parser should belong (e.g. at.jku.ssw.coco). If no namespace is specified the
generated classes belong to the default namespace.

The -frames option can be used to specify the directory that contains the frame files
Scanner. frame and Parser. frame (see Section 2.4.8). If this option is missing Coco/R
expects the frame files to be in the same directory as the attributed grammar.

The -trace option allows the user to specify a string of switches (e.g. asx) that cause
internal data structures of Coco/R to be dumped to the file trace.txt. The switches
are denoted by the following characters:

print the states of the scanner automaton

print the first sets and follow sets of all nonterminals

print the syntax graph of all productions

trace the computation of first sets

print statistics about the run of Coco/R

print the symbol table and the list of declared literals

print a cross reference list of all terminals and nonterminals

Xt Y OH Q@ W™

http://www.ssw.uni-linz.ac.at/Research/Projects/Coco/

24

Instead of in the command line these switches can also be specified in the attributed
grammar in the form

S{letter}

For example, the option $asx will cause the states of the automaton, the symbol table
and a cross reference list to be printed to the file trace. txt.

Output files. Coco/R translates an attributed grammar into the following files:

" Scanner.cs (OI‘ Scanner. java) containing the classes scanner, Token and Buffer .
" parser.cs (Or Parser.java) containing the classes parser and Errors.
" trace.txt containing trace output (if any).

All files are generated in the directory that contains the attributed grammar.

3.3 Interfaces of the Generated Classes

3.3.1 Scanner

The generated scanner has the following interface:

public class Scanner
public static void Imnit(string sourceFile);
public static void Init(Stream s);
public static Token Scan();
public static Token Peek() ;
public static void ResetPeek();
}

Init () initializes the scanner. Its parameter is either a stream or the name of a file
from where the tokens should be read. It has to be called from the main class of the
compiler (see Section 3.4) before scanning and parsing starts.

The method scan() is the actual scanner. The parser calls it whenever it needs the
next token. Once the input is exhausted scan() returns the end-of-file token, which
has the token number o. For invalid tokens (caused by illegal token syntax or by
invalid characters) scan() returns a special token kind, which normally causes the
parser to report an error.

peek () can be used to read one or several tokens ahead without removing them from
the input stream. With every call of scan() (i.e. every time a token has been
recognized) the peek position is set to the scan position so that the first peek () after a
scan () returns the first yet unscanned token. The method resetpeek () can be used to
reset the peek position to the scan position after several calls of peek ().

25

3.3.2 Token

Every token returned by the scanner is an object of the following class:

public class Token {

public int kind; // token code (EOF has the code 0)

public string wval; // token value

public int pos; // position in the source stream (starting at 0)
public int line; // line number (starting at 1)

public int col; // column number (starting at 0)

3.3.3 Buffer
This is an auxiliary class that is used by the scanner (and possibly by other classes) to
read the source stream into a buffer and retrieve portions of it:

public class Buffer {
public static void Fill (Stream s);

public static int Read () ;
public static int Peek () ;
public static int Pos {get; set;}

public static string GetString(int beg, int end);
public static void Close() ;

}

rill(s) fills the buffer with the source stream s. read () returns the next character or o
if the input is exhausted. peek () allows the scanner to read characters ahead without
consuming them. pos allows the scanner to get or set the reading position, which is
initially 0. getstring(a,b) can be used to retrieve the text interval (a..b[from the
input stream. If a stream was passed to scanner.Init (instead of a file name) the
parser will close it by calling c1ose () at the end of parsing.

3.3.4 Parser

The generated parser has the following interface:

public class Parser {
public static Token t; // most recently recognized token
public static Token 1la; // lookahead token
public static void Parse();
public static void SemErr (string msg) ;
}

The variable t holds the most recently recognized token. It can be used in semantic
actions to access the token value or the token position. The variable 1a holds the
lookahead token, i.e. the first token after t, which has not yet been recognized by the
parser.

The method parse is the actual parser. It has to be called by the main class of the
compiler (see Section 3.4) after initializing the scanner.

The method semerr (msg) can be used to report semantic errors during parsing. It calls
Errors.Error (see Section 3.3.5) and suppresses error messages that are too close to
the position of the previous error, thus avoiding spurious error messages (see Section
2.4.7).

26

3.3.5 Errors

This class is used to print error messages. Coco/R distinguishes three kinds of errors:
syntax errors, semantic errors and runtime exceptions. Here is the interface of errors:
public class Errors {
public static int count = 0;
public static string errMsgFormat = "-- line {0} col {1}: {2}";
public static void SynErr (int line, int col, int n);
public static void SemErr (int line, int col, int n);
public static void Error (int line, int col, string msg);
public static void Exception(string msg) ;
}

The variable count holds the number of errors reported by syntrr, semerr and Error.

Errors can either be reported with an error number or with an error message. Syntax
errors are automatically reported by the generated parser, which calls the method
synErr. Semantic errors should be reported by the user by calling either semerr or
error from the semantic actions of the attributed grammar.

The methods synerr, semerr and Error simply print error messages to the console
using the format errmvsgrormat that can be changed by the user to obtain some custom
format of error messages. The placeholder (o} is filled with the line number, (1} is
filled with the column number, and (2} is filled with the error message.

The user can modify the methods synkrr, semerr and Error in the file parser. frame,
for example, to collect all error messages and insert them into the compiled source
code, if an Integrated Development Environment (IDE) is used.

The method exception is called for errors from which the compiler cannot recover. In
Coco/R it is called, for example, if the frame files cannot be found or are corrupt. It
prints an error message to the console and terminates the compiler.

3.4 Main Class of the Compiler

The main class of a compiler that is generated with Coco/R has to be provided by the
user. It has to initialize the scanner, call the parser and possibly print a message about
the success of the compilation. In its simplest form it has to look like this:

public class Compiler {
public static void Main(string[] arg) {
Scanner.Init (argl0]);
Parser.Parse() ;
Console.WriteLine (Errors.count + " errors detected");
}
}

27

3.5 Grammar Tests

Coco/R checks if the grammar in the compiler specification is well-formed. This
includes the following tests:

Completeness
For every nonterminal symbol there must be a production. If a nonterminal x does
not have a production Coco/R prints the message

No production for X

Lack of redundancy
If the grammar contains productions for a nonterminal x that does not occur in any
other productions derived from the start symbol Coco/R prints the message

X cannot be reached
Derivability

If the grammar contains nonterminals that cannot be derived into a sequence of
terminals, such as in

X
Y

Y o't
(X).

Coco/R prints the messages
X cannot be derived to terminals
Y cannot be derived to terminals
Lack of circularity
If the grammar contains circular productions, i.e. if nonterminals can be derived
into themselves (directly or indirectly) such as in

A = [a] B.
B = (C| b).
C = A {c}.

Coco/R prints the messages

A --> B
B --> C
C --—> A
Lack of ambiguity

If two or more tokens are declared so that they can have the same structure and thus
cannot be distinguished by the scanner, as in the following example where the input
123 could either be recognized as an integer Or as a float:

TOKENS
integer = digit {digit}.
float = digit {digit}['.' {digit}].

Coco/R prints the message

Tokens integer and float cannot be distinguished

In all these cases the compiler specification is erroneous and no scanner and parser is
generated.

28

Warnings

There are also situations in grammars that—although legal—might lead to problems.
In such cases Coco/R prints a warning but generates a scanner and a parser. The user
should carefully check if these situations are acceptable and, if not, repair the
grammar.

= Deletable symbols
Sometimes, nonterminals can be derived into the empty string such as in the
following grammar:

A
B

B [a].
{b}.

In such cases Coco/R prints the warnings

A deletable
B deletable

= LL(1) conflicts
If two or more alternatives start with the same token such as in

Statement = ident '=' Expression ';'
| ident '(' Parameters ')' ';'.

Coco/R prints the warning

LL(1) warning in Statement: ident is start of several alternatives
If the start symbols and the successors of a deletable EBNF expression {...} or
[...] are not disjoint such as in

QualId
IdList

[id '.'] id.
id {*," id} [','].

Coco/R prints the warnings

LL1 warning in QualId: id is start & successor of deletable structure
LLl1 warning in IdList: ',' is start & successor of deletable structure

The resolution of LL(1) conflicts is discussed in Section 2.4.5.

4. A Sample Compiler

This section shows how to use Coco/R for building a compiler for a tiny programming
language called 7aste. Taste bears some similarities with C# or Java. It has variables
of type int and poo1 as well as methods without parameters. It allows assignments,
procedure calls, if and while statements. Integers may be read from a file and written
to the console, each of them in a single line. It has arithmetic expressions (+,-,*,/) and
relational expressions (==,<,>). Here is an example of a Taste program:

program Test {
int i; // global variable

// compute the sum of 1..1
void SumUp () {
int sum;
sum = 0;
while (1 > 0) { sum = sum + i; i =1 - 1; }
write sum;

29

// the program starts here
void Main () {
read 1;
while (1 > 0) {
SumUp () ;
read 1i;

Of course Taste is too restrictive to be used as a real programming language. Its
purpose is just to give you a taste of how to write a compiler with Coco/R.

The Taste compiler is a compile-and-go compiler, which means that it reads a source
program and translates it into a target program which is executed (i.e. interpreted)
immediately after the compilation. In order to run it type

Taste Test.TAS
The file Test.Tas holds the sample program shown above. This file is now compiled

and immediately executed. If a program requires input (like Test.Tas does) the input
file is always Taste. 1n. For our sample program Taste. 1n looks like this:

35100

Classes

Figure 2 shows the classes of the compiler.
Taste

T

Parser

Scanner TL TC

Figure 2 Classes of the Taste compiler

Taste 1S the main class. It initializes the scanner and calls the parser and the
interpreter. 71 is the symbol table with methods to handle scopes and to store and
retrieve object information. Finally, tc is the code generator with methods to emit
instructions. It also contains the interpreter and its data structures. The source code of
all classes as well as the attributed grammar taste.atc can be found in Appendix B.

Target Code

We define an abstract stack machine for the interpretation of Taste programs. The
compiler translates a source program into instructions of that machine, which are then
interpreted. The machine uses the following data structures:

char([] code; // object code (filled by the compiler)

int[] globals; // data area for global variables

int[] stack; // stack with frames for local variables

int top; // stack pointer (points to next free stack slot)
int pc; // program counter

int bp; // base pointer of current frame

The architecture of the Taste VM is shown in Figure 3.

globals stack

0

0

code

locals of the
calling method

return address

A

pc >

bp of caller

bp > locals of the

current method

expression stack

top

progStart—p

——
word-addressed

byte-addressed

Figure 3: Data structures of the Taste VM

30

Global variables are stored in the word-addressed array globals at fixed addresses.
Local variables are stored in stack frames that are linked with the stack frame of their
caller. They are addressed with a word offset relative to the base pointer (bp) of the
frame. At the end of the topmost stack frame there is the expression stack that is used
for expression evaluation. After every statement the expression stack is empty.

The machine code is stored in the byte-addressed array code. The program counter pc
points to the currently executed instruction. progstart is the address of the main
method. This is the point where the execution of the program starts.

The machine instructions are described by the following table (the initial values are:

Push(n) ;

Push (stack[bp+al) ;

Push (globals[al) ;
stack[bp+al=Pop () ;

Push (Pop () +Pop ()) ;

Push (-Pop () +Pop ()) ;
x=Pop(); Push(Pop()/x);
Push (Pop () *Pop ()) ;

Push (-Pop()) ;

stack[0] = 0; top = 1; bp = 0;):
CONST n Load constant
LOAD a Load local variable
LOADG a Load global variable
STO a Store local variable
ADD Add
SUB Subtract
DIV Divide
MUL Multiply
NEG Negate
EQU Compare if equal
LSS Compare if less
GTR Compare if greater
JMP a Jump
FOMP a Jump if false
READ Read integer
WRITE Write integer
CALL a Call method
RET Return from method
ENTER n Enter method
LEAVE Leave method

For example, the method

void Foo() {

int a, b, max;
read a; read b;
if (a > b) max = a;

write max;

}

if (Pop()==Pop()) Push(l); else Push(0);
if (Pop()>Pop()) Push(1l); else Push(0);
if (Pop()<Pop()) Push(l); else Push(0);
pc = aj;

if (Pop()==0) pc=adr;

Push (ReadInt());

WriteLine (Pop()) ;

Push(pc+2); pc=a;

pc = Pop(); 1if (pc==0) return;

Push (bp); bp=top; top+=n;

top=bp; bp=Pop () ;

else max = b;

is translated into the following code

31

1: ENTER 3
4: READ
5: STO 0
8: READ
9: STO
12: LOAD
15: LOAD 1
18: GTR

19: FJMP 31—

22: LOAD O
25: STO 2
28: JMP 37
31: LOAD 1%
34: STO 2

37: LOAD 24—

40: WRITE
41: LEAVE
42: RET

Appendix B contains the source code of the following files, which can also be
downloaded from http://www.ssw.uni-linz.ac.at/Research/Projects/Coco/:

Taste.ATG the attributed grammar

Taste.cs the main program

TL.cs the symbol table

TC.cs the code generator and interpreter

5. Applications of Coco/R

Coco/R can be used not only to write proper compilers, but also to build many kinds
of tools that process structured input data. Various people have used Coco/R for the
following applications:

An analyzer for the static complexity of programs. The analyzer evaluates the kind
of operators and statements, the nesting of statements and expressions as well as the
use of local and global variables to obtain a measure of the program complexity and
an indication if the program is well structured.

A cross reference generator which lists all occurrences of the objects in a program
according to their scope together with information where the objects have been
assigned a value and where they have been referenced.

An pretty printer which uses the structure and the length of statements for proper
indentation.

A program which generates an index for books and reports. The index is generated
from a little language that describes page numbers and the keywords occurring on
those pages.

The front end of a syntax oriented editor. A program is translated into a tree
representation which is the internal data structure of the editor.

A program that builds a repository of symbols and their relations in a program. The
repository is accessed by a case tool.

A profiler that inserts counters and timers into the source code of a program and
evaluates them after the program has been run.

http://www.ssw.uni-linz.ac.at/Research/Projects/Coco/

32

= A white-box test tool that inserts counters into the source code of a program to find
out which paths of the programs have been executed.

= Various compilers for special-purpose scripting languages.

= A log file analyzer that reads machine-generated information and evaluates it.

6. Acknowledgements

The author gratefully acknowledges the help of the following people, who contributed
ideas and improvements to Coco/R or ported it to other programming languages:

Frankie Arzu, John Gough, Markus Loberbauer, Peter Rechenberg, Josef Templ, Pat
Terry, and Albrecht WoB.

References

[M6ss90] Mossenbdck, H.: A Generator for Production Quality Compilers. 3rd Intl. Workshop on
Compiler Compilers (CC'90), Schwerin, LNCS 477, Springer-Verlag 1990

[Terry04] Terry, P.: Compiling with C# and Java. Pearson, 2004.

[Terry97] Terry, P.: Compilers and Compiler Generators — An Introduction Using C++. International
Thomson Computer Press, 1997.

[Wirth77] Wirth, N.: What Can We Do about the Unnecessary Diversity of Notation for Syntactic
Definitions? Communications of the ACM, November 1977

[WLMO03] WoB A., Loberbauer M., Mdssenbock H.: LL(1) Conflict Resolution in a Recursive Descent
Compiler Generator, Joint Modular Languages Conference (JMLC'03), Klagenfurt, 2003

A. Syntax of Cocol/R

Cocol =
{ANY} /* using clauses in C# and import clauses in Java */
"COMPILER" ident
{ANY} /* global fields and methods */

ScannerSpecification
Parserspecification
"END" ident '.'.

ScannerSpecification =
["IGNORECASE"]
["CHARACTERS" {SetDecl}]
["TOKENS" {TokenDecl}]
["PRAGMAS" {PragmaDecl}]
{CommentDecl}

{WhiteSpaceDecl}.
SetDecl = ident '=' Set.
Set = BasicSet {('+'|'-') BasicSet}.
BasicSet = string | ident | char [".." char] | "ANY".
TokenDecl = Symbol ['=' TokenExpr '.'].
TokenExpr = TokenTerm {'|' TokenTerm} .
TokenTerm = TokenFactor {TokenFactor} ["CONTEXT" ' (' TokenExpr ')'].
TokenFactor Symbol

| '(' TokenExpr ')
| '[' TokenExpr ']
| '{' TokenExpr '}'

Symbol ident | string | char.
PragmaDecl = TokenDecl [SemAction].
CommentDecl = "COMMENTS" "FROM" TokenExpr "TO" TokenExpr ["NESTED"].
WhiteSpaceDecl = "IGNORE" (Set | "CASE").
ParserSpecification = "PRODUCTIONS" {Production}.
Production = ident [Attributes] [SemAction] '=' Expression '.'.
Expression = Term {'|' Term} .
Term = [[Resolver] Factor {Factor}].
Factor = ["WEAK"] Symbol [Attributes]
| '(' Expression ')
| '[' Expression ']’
| '{' Expression '}
| "any"
| "sync"
| SemAction.
Attributes = '<' {ANY} '>"'.
SemAction = "(." {ANY} ".)".
Resolver = "IF" ' (' {ANY} ')

34

B. Sources of the Sample Compiler

B.1 Taste.ATG

COMPILER Taste

const int // operators
plus = 0, minus = 1, times = 2, slash = 3, equ = 4, 1ss = 5, gtr = 6;

const int // types
undef = 0, integer = 1, boolean = 2;

const int // dbject kinds
var = 0, proc = 1;

const int // opcodes

ADD =0, SUB=1, MUL =2, DIV =3, EQU =4, LSS =5, GIR = 6, NEG = 7,
IOAD = 8, LOADG = 9, STO = 10, STOG = 11, CONST = 12,

CALL = 13, RET = 14, ENTER = 15, LEAVE = 16,

JMP = 17, FOMP = 18, READ = 19, WRITE = 20;

static void Err(string msg) {
Errors.Error(la.line, la.col, msg);

}

CHARACTERS
letter = 'A'..'Z' + 'a'..'z".
digit = '0'..'9"'.

TOKENS
ident = letter {letter | digit}.
number = digit {digit}.

COMMENTS FROM "/*" TO "*/" NESTED
COMMENTS FROM "//" TO '\r' '\n'

IGNORE '\r' + '\n' + '"\t'
PRODUCTIONS

AddOp<out int op>

(. op=-1; .)
('+ (. op = plus; .)
| - (. op = minus; .)
).
/* */
Expr<out int type> (. int typel, op; .)

= SimExpr<out type>
[RelOp<out op>
SimExpr<out typel> (. if (type != typel) Err("incompatible types");
TC.Emit (op); type = boolean; .)
/*] . */
Factor<out int type> (. int n; Obj obj; string name; .)
= (. type = undef; .)
(Ident<out name> (. obj = TL.Find (name) ; type = obj.type;
if (obj.kind == var) {
if (cbj.level == 0) TC.Emit(LOADG, obj.adr);
else TC.Emit (LOAD, obj.adr);
} else Err("variable expected"); .)
| number (. n = Convert.ToInt32 (t.val);
TC.Emit (CONST, n); type = integer; .)

|||

Factor<out type>

. if (type != integer) {

Err ("integer type expected"); type = integer;

}
TC.Emit (NEG); .)
| "true" (. TC.Emit(CONST, 1); type = boolean; .)
| "false" (. TC.Emit(CONST, 0); type = boolean; .)
).
/* */
Ident<out string name>
= ident (. name = t.val; .).
/* */
MulOp<out int op>
= (. op=-1; .)
(O (. op = times; .)
| /e (. op = slash; .)
).
/* */
ProcDecl (. string name; Obj obj; int adr; .)
= "yvoid"

Ident<out name>

. Obj = TL.NewCbj (name, proc, undef); obj.adr = TC.pc;

if (name == "Main") TC.progStart = TC.pc;

TL.EnterScope(); .)
1 (l |) 1
e (. TC.Emit (ENTER, 0); adr = TC.pc - 2; .)
{ VarDecl | Stat }
'} (. TC.Emit (LEAVE); TC.Emit(RET);
TC.Patch(adr, TL.topScope.nextAdr) ;
TL.LeaveScope(); .).
/* */
RelOp<out int op>
= (. op=-1; .)
(n==" (. op =eq; .)
| < (. op = 1ss; .)
| > (. op =gtr; .)
/*). */
SimExpr<out int type> (. int typel, op; .)
= Term<out type>
{ AddOp<out op>
Term<out typel> (. i1f (type != integer || typel != integer)
Err ("integer type expected");
TC.Emit (op); .)
}.
/* */
Stat (. int type; string name; Obj obj;

= Ident<out name>
(=1
Expr<out type> ';'
| |(| -)v |;|
)

| uifu
' (' Expr<out type> ')’

Stat
[1else"

Stat

(.

. TC.Emit (IMP, 0); adr2

int adr, adr2, loopstart; .)

. Obj = TL.Find(name); .)
. if (obj.kind != var) Err("camnot assign to procedure");
. 1f (type != odbj.type) Err("incompatible types");

if (cbj.level == 0) TC.Emit(STOG, obj.adr);
else TC.Emit (STO, obj.adr); .)

. if (obj.kind != proc) Err("object is not a procedure");

TC.Emit (CALL, obj.adr); .)

. 1f (type != boolean) Err ("boolean type expected");

TC.Enit (FIMP, 0); adr = TC.pc - 2; .)

TC.pc - 2;
TC.Patch(adr, TC.pc);
adr = adr2; .)

TC.Patch(adr, TC.pc); .)

-)

35

| "while"
' (' Expr<out type> ')’

Stat

| "read"
Ident<out neme> ';'

| write"
Expr<out type> ';'

36

(. loopstart = TC.pc; .)

(. if (type '= boolean) Err("boolean type expected");
TC.Emit (FOMP, 0); adr = TC.pc - 2; .)

(. TC.Emit (JMP, loopstart); TC.Patch(adr, TC.pc); .)

(. obj = TL.Find (name) ;
if (obj.type != integer) Err("integer type expected");
TC.Emit (READ) ;
if (obj.level == 0) TC.Emit(STOG, obj.adr);
else TC.Emit (STO, obj.adr); .)

(. if (type !'= integer) Err("integer type expected");
TC.Emit (WRITE); .)

| '{' { Stat | VarDecl } '}
/* */
Taste (. string name; .)
= "progrem" (. TC.Init(); TL.Init(); .)

Tdent<out name> (. TL.EnterScope(); .)

I{l

{ VarDecl }

{ ProcDecl }

'} (. TL.LeaveScope(); .).
/* */
Term<out int type> (. int typel, op; .)
= Factor<out type>

{ MulOp<out op>

Factor<out typel> (. if (type != integer || typel != integer)
Err ("integer type expected");
TC.Emit(op); .)

}.
/* */
Type<out int type>
= (. type = undef; .)

("int" (. type = integer; .)

| "bool" (. type = boolean; .)

).
/* */
VarDecl (. string name; int type; .)

= Type<out type>
Ident<out name>
{ ',"' Ident<out name>
}] ’. 1 .

END Taste.

(. TL.NewObj (name, var, type); .)
(. TL.NewObj (name, var, type); .)

37

B.2 TL.cs (symbol table)

using System;

namespace Taste {

public class Obj { // cbject decribing a declared name

}

public string name; // name of the object

public int type; // type of the object (undef for procs)
public Cbj next; // to next cbject in same scope

public int kind; // var, proc, scope

public int adr; // address in memory or start of proc
public int level; // nesting level; O=glabal, l1=local
public Cbj locals; // scopes: to locally declared objects
public int nextAdr; // scopes: next free address in this scope

public class TL {

const int // types
undef = 0, integer = 1, boolean = 2;

const int // cbject kinds
var = 0, proc = 1, scope = 2;

public static int curlevel; // nesting level of current scope
public static Obj undefObj; // object node for erroneous symbols
public static Obj topScope; // topmost procedure scope

static void Err (string msg) {
Errors.Error(0, 0, msg);
}

// open a new scope and meke it the current scope (topScope)
public static void EnterScope () {

Obj scop = new Obj () ;

scop.name = ""; scop.kind = scope;

scop.locals = null; scop.nextAdr = 0;

scop.next = topScope; topScope = scop;

curlevel ++;

}

// close the current scope

public static void LeaveScope () {
topScope = topScope.next; curlevel--;

}

// create a new object node in the current scope
public static Obj NewObj (string name, int kind, int type) {
Obj p, last, obj = new Obj();
obj.name = name; obj.kind = kind; obj.type = type;
obj.level = curlevel;
p = topScope.locals; last = null;
while (p != null) {
if (p.name == name) Err("name declared twice");
last = p; p = p.next;
}
if (last == null) topScope.locals = obj; else last.next = obj;
if (kind == var) obj.adr = topScope.nextAdr++;
return obj;

// search the name in all open scopes and return its cbject node
public static Obj Find (string name) {

}

Obj obj, scope;
scope = topScope;
while (scope != null) { // for all scopes
obj = scope.locals;
while (abj != rnull) { // for all objects in this scope
if (obj.name == name) return obj;
obj = obj.next;
}
sScope = scope.next;
}
Err (name + " is undeclared");
return undefObj;

public static void Imit () {

}

topScope = null; curlevel = -1;
undefObj = new Obj () ;

38

undefObj.name = "undef"; undefObj.type = undef; undefCbj.kind = var; undefObj.adr = 0;

undefObj.level = 0; undefObj.next = null;

} // end TL

} // end namespace

39

B.3 TC.cs (code generator)
using System;

using System.IO;

namespace Taste {

public class TC {

const int // opcodes

ADD =0, SUB=1, MUL =2, DIV =3, BQU =4, LSS =5, GIR = 6, NEG = 7,
LOAD = 8, LOADG = 9, STO = 10, STOG = 11, CONST = 12,

CALL = 13, RET = 14, ENIER = 15, LEAVE = 16,

JMP = 17, FOMP = 18, READ = 19, WRITE = 20;

static string[] opcode =

{ "ADD n , "SUB n , "MUL " , "DIvV " , "EQU n , "T.SS n , "QTR " , "WEG " ,
"TOAD " , "TOADG" , "STO ", "STOG ") "CONST") "CALL, " , "RET ", "ENTER",
"I FAVE" , " JMP " , "EJMP " , "READ " , "WRITE" } ;

public static int progStart; // address of first instruction of main program
public static int pe; // program counter
static byte[] code = new byte[3000];

// data for Interpret

static int[] glabals = new int[100];
static int[] stack = new int[100];
static int top; // top of stack
static int bp; // base pointer

//-———- code generation methods -—---

public static void Emit (int op) {
code[pc++] = (byte)op;

}

public static void BEmit (int op, int val) {
Emit (op); Emit(val>>8); Emit(val);

}

public static void Patch (int adr, int val) {
codeladr] = (byte) (val>>8); codeladr+l] = (byte)val;
}
public static void Decode() {
int maxPc = pc; pc = 1;
while (pc < maxPc) {
int code = Next();
Console.Write("{0,3}: {1} ", pc-1, opcodel[code]);
switch(code) {
case LOAD: case LOADG: case CONST: case STO: case STOG:
case CALL: case ENTER: case JMP: case FJMP:
Console.WritelLine (Next2()); break;
case ADD: case SUB: case MUL: case DIV: case NEG:
case EQU: case LSS: case GIR: case RET: case LEAVE:
case READ: case WRITE:
Console.Writeline(); break;

//-———- interpreter methods -—---

static int Next () {
return code[pc++];

}

static int Next2 () {
int x, v;
x = (sbyte)codelpc++]; v = codelpct++];
return (x << 8) + y;

}

static int Int (bool b) {
if (b) return 1; else return 0;

}

static void Push (int val) {
stack[top++] = val;
}

static int Pop() {
return stack[--top];
}

static int ReadInt (FileStream s) {
int ch, sign, n = 0;
do {ch = s.ReadByte();} while (!(ch >= '0' & ch <= '9' || ch = '-"));
if (ch == '-') {sign = -1; ch = s.ReadByte();} else sign = 1;
while (ch >= '0' && ch <= '9') {
n=10*n+ (ch - '0");
ch = s.ReadByte() ;
}
return n * sign;

}

public static void Interpret (string data) {
int val;
try {
FileStream s = new FileStream(data, FileMode.Open) ;
Console.WritelLine() ;
pc = progStart; stack[0] = 0; top = 1; bpo = 0;
for (;;) {
switch (Next()) {
case CONST: Push(Next2()); break;
case LOAD: Push(stack[lptNext2()]); break;
case LOADG: Push(globals[Next2()]); break;
case STO: stack[lbp+Next2()] = Pop(); break;
case STOG: globals[Next2()] = Pop(); break;
case ADD: Push (Pop () +Pop ()) ; break;
case SUB: Push(-Pop()+Pop()); break;
case DIV: val = Pop(); Push(Pop()/val); break;
case MUL: Push(Pop()*Pop()); break;

case NEG: Push (-Pop()); break;

case EQU: Push(Int (Pop()==Pcp())); break;
case LSS: Push (Int (Pop () >Pop())) ; break;
case GIR: Push (Int (Pop()<Pop())) ; break;

case JMP: pc = Next2(); break;

case FIMP: val = Next2(); if (Pop()==0) pc = val; break;

(
case READ: val = ReadInt(s); Push(val); break;
case WRITE: Console.Writeline(Pop()); break;
case CALL: Push(pct+2); pc = Next2(); break;
)

case RET: pc = Pop(); if (pc == 0) return; break;
case ENTER: Push(bp); bp = top; top = top + Next2(); break;
case LEAVE: top = bp; bp = Pop(); break;

default: throw new Exception("illegal opcode");
}
}
} catch (IOException) {
Console.Writeline("--- Error accessing file {0}", data);
System. Environment .Exit (0) ;
}

}
public static void Imit () { pc = 1; }

} // end TC
} // end namespace

40

B.4 Taste.cs (main program)
using System;
namespace Taste {
class Taste {
public static void Main (string[] arg) {
if (arg.Length > 0) {

Scamner. Init (arg[0]) ;
Parser.Parse() ;

if (Errors.count == 0) {
TC.Decode() ;
TC. Interpret ("Taste.IN") ;
}
} else {
Console.Writeline("-- No source file specified");
}

}

}

} // end namespace

41

