
0.1 normal.survey: Survey-Weighted Normal Regres-

sion for Continuous Dependent Variables

The survey-weighted Normal regression model is appropriate for survey data obtained using
complex sampling techniques, such as stratified random or cluster sampling (e.g., not simple
random sampling). Like the least squares and Normal regression models (see Section ?? and
Section ??), survey-weighted Normal regression specifies a continuous dependent variable as
a linear function of a set of explanatory variables. The survey-weighted normal model reports
estimates of model parameters identical to least squares or Normal regression estimates, but
uses information from the survey design to correct variance estimates.

The normal.survey model accommodates three common types of complex survey data.
Each method listed here requires selecting specific options which are detailed in the “Addi-
tional Inputs” section below.

1. Survey weights: Survey data are often published along with weights for each obser-
vation. For example, if a survey intentionally over-samples a particular type of case,
weights can be used to correct for the over-representation of that type of case in the
dataset. Survey weights come in two forms:

(a) Probability weights report the probability that each case is drawn from the popu-
lation. For each stratum or cluster, this is computed as the number of observations
in the sample drawn from that group divided by the number of observations in
the population in the group.

(b) Sampling weights are the inverse of the probability weights.

2. Strata/cluster identification: A complex survey dataset may include variables that
identify the strata or cluster from which observations are drawn. For stratified random
sampling designs, observations may be nested in different strata. There are two ways
to employ these identifiers:

(a) Use finite population corrections to specify the total number of cases in the stra-
tum or cluster from which each observation was drawn.

(b) For stratified random sampling designs, use the raw strata ids to compute sam-
pling weights from the data.

3. Replication weights: To preserve the anonymity of survey participants, some sur-
veys exclude strata and cluster ids from the public data and instead release only pre-
computed replicate weights.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "normal.survey", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)
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Additional Inputs

In addition to the standard zelig inputs (see Section ??), survey-weighted Normal models
accept the following optional inputs:

1. Datasets that include survey weights:

• probs: An optional formula or numerical vector specifying each case’s probability
weight, the probability that the case was selected. Probability weights need not
(and, in most cases, will not) sum to one. Cases with lower probability weights
are weighted more heavily in the computation of model coefficients.

• weights: An optional numerical vector specifying each case’s sample weight, the
inverse of the probability that the case was selected. Sampling weights need not
(and, in most cases, will not) sum to one. Cases with higher sampling weights are
weighted more heavily in the computation of model coefficients.

2. Datasets that include strata/cluster identifiers:

• ids: An optional formula or numerical vector identifying the cluster from which
each observation was drawn (ordered from largest level to smallest level). For
survey designs that do not involve cluster sampling, ids defaults to NULL.

• fpc: An optional numerical vector identifying each case’s frequency weight, the
total number of units in the population from which each observation was sampled.

• strata: An optional formula or vector identifying the stratum from which each
observation was sampled. Entries may be numerical, logical, or strings. For survey
designs that do not involve cluster sampling, strata defaults to NULL.

• nest: An optional logical value specifying whether primary sampling unites (PSUs)
have non-unique ids across multiple strata. nest=TRUE is appropriate when PSUs
reuse the same identifiers across strata. Otherwise, nest defaults to FALSE.

• check.strata: An optional input specifying whether to check that clusters are
nested in strata. If check.strata is left at its default, !nest, the check is not
performed. If check.strata is specified as TRUE, the check is carried out.

3. Datasets that include replication weights:

• repweights: A formula or matrix specifying replication weights, numerical vec-
tors of weights used in a process in which the sample is repeatedly re-weighted
and parameters are re-estimated in order to compute the variance of the model
parameters.

• type: A string specifying the type of replication weights being used. This input
is required if replicate weights are specified. The following types of replication
weights are recognized: "BRR", "Fay", "JK1", "JKn", "bootstrap", or "other".
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• weights: An optional vector or formula specifying each case’s sample weight, the
inverse of the probability that the case was selected. If a survey includes both
sampling weights and replicate weights separately for the same survey, both should
be included in the model specification. In these cases, sampling weights are used
to correct potential biases in in the computation of coefficients and replication
weights are used to compute the variance of coefficient estimates.

• combined.weights: An optional logical value that should be specified as TRUE if
the replicate weights include the sampling weights. Otherwise, combined.weights
defaults to FALSE.

• rho: An optional numerical value specifying a shrinkage factor for replicate weights
of type "Fay".

• bootstrap.average: An optional numerical input specifying the number of it-
erations over which replicate weights of type "bootstrap" were averaged. This
input should be left as NULL for "bootstrap" weights that were not were created
by averaging.

• scale: When replicate weights are included, the variance is computed as the sum
of squared deviations of the replicates from their mean. scale is an optional
overall multiplier for the standard deviations.

• rscale: Like scale, rscale specifies an optional vector of replicate-specific mul-
tipliers for the squared deviations used in variance computation.

• fpc: For models in which "JK1", "JKn", or "other" replicates are specified, fpc
is an optional numerical vector (with one entry for each replicate) designating the
replicates’ finite population corrections.

• fpctype: When a finite population correction is included as an fpc input, fpctype
is a required input specifying whether the input to fpc is a sampling fraction
(fpctype="fraction") or a direct correction (fpctype="correction").

• return.replicates: An optional logical value specifying whether the replicates
should be returned as a component of the output. return.replicates defaults
to FALSE.

Examples

1. A dataset that includes survey weights:

Attach the sample data:

> data(api, package = "survey")

Suppose that a dataset included a continuous measure of public schools’ performance
(api00), a measure of the percentage of students at each school who receive subsi-
dized meals (meals), an indicator for whether each school holds classes year round
(year.rnd), and sampling weights computed by the survey house (pw). Estimate a
model that regresses school performance on the meals and year.rnd variables:
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> z.out1 <- zelig(api00 ~ meals + yr.rnd, model = "normal.survey",

+ weights = ~pw, data = apistrat)

Summarize regression coefficients:

> summary(z.out1)

Set explanatory variables to their default (mean/mode) values, and set a high (80th
percentile) and low (20th percentile) value for “meals”:

> x.low <- setx(z.out1, meals = quantile(apistrat$meals, 0.2))

> x.high <- setx(z.out1, meals = quantile(apistrat$meals, 0.8))

Generate first differences for the effect of high versus low concentrations of children
receiving subsidized meals on academic performance:

> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)

Generate a visual summary of the quantities of interest:

> plot(s.out1)
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2. A dataset that includes strata/cluster identifiers:

Suppose that the survey house that provided the dataset used in the previous example
excluded sampling weights but made other details about the survey design available. A
user can still estimate a model without sampling weights that instead uses inputs that
identify the stratum and/or cluster to which each observation belongs and the size of
the finite population from which each observation was drawn.

Continuing the example above, suppose the survey house drew at random a fixed
number of elementary schools, a fixed number of middle schools, and a fixed number
of high schools. If the variable stype is a vector of characters ("E" for elementary
schools, "M" for middle schools, and "H" for high schools) that identifies the type of
school each case represents and fpc is a numerical vector that identifies for each case
the total number of schools of the same type in the population, then the user could
estimate the following model:

> z.out2 <- zelig(api00 ~ meals + yr.rnd, model = "normal.survey",

+ strata = ~stype, fpc = ~fpc, data = apistrat)
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Summarize the regression output:

> summary(z.out2)

The coefficient estimates for this example are identical to the point estimates in the
first example, when pre-existing sampling weights were used. When sampling weights
are omitted, they are estimated automatically for "normal.survey" models based on
the user-defined description of sampling designs.

Moreover, because the user provided information about the survey design, the standard
error estimates are lower in this example than in the previous example, in which the
user omitted variables pertaining to the details of the complex survey design.

3. A dataset that includes replication weights:

Consider a dataset that includes information for a sample of hospitals that includes
counts of the number of out-of-hospital cardiac arrests that each hospital treats and
the number of patients who arrive alive at each hospital:

> data(scd, package = "survey")

Survey houses sometimes supply replicate weights (in lieu of details about the survey
design). For the sake of illustrating how replicate weights can be used as inputs in
normal.survey models, create a set of balanced repeated replicate (BRR) weights:

> BRRrep <- 2 * cbind(c(1, 0, 1, 0, 1, 0), c(1, 0, 0, 1, 0, 1),

+ c(0, 1, 1, 0, 0, 1), c(0, 1, 0, 1, 1, 0))

Estimate a model that regresses counts of patients who arrive alive in each hospital
on the number of cardiac arrests that each hospital treats, using the BRR replicate
weights in BRRrep to compute standard errors.

> z.out3 <- zelig(alive ~ arrests, model = "poisson.survey", repweights = BRRrep,

+ type = "BRR", data = scd)

Summarize the regression coefficients:

> summary(z.out3)

Set arrests at its 20th and 80th quantiles:

> x.low <- setx(z.out3, arrests = quantile(scd$arrests, 0.2))

> x.high <- setx(z.out3, arrests = quantile(scd$arrests, 0.8))

Generate first differences for the effect of minimal versus maximal cardiac arrests on
numbers of patients who arrive alive:

> s.out3 <- sim(z.out3, x = x.low, x1 = x.high)
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> summary(s.out3)

Generate a visual summary of quantities of interest:

> plot(s.out3)
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Model

Let Yi be the continuous dependent variable for observation i.

• The stochastic component is described by a univariate normal model with a vector of
means µi and scalar variance σ2:

Yi ∼ Normal(µi, σ
2).

• The systematic component is
µi = xiβ,

where xi is the vector of k explanatory variables and β is the vector of coefficients.
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Variance

When replicate weights are not used, the variance of the coefficients is estimated as

Σ̂

[

n
∑

i=1

(1− πi)

π2
i

(Xi(Yi − µi))
′(Xi(Yi − µi)) + 2

n
∑

i=1

n
∑

j=i+1

(πij − πiπj)

πiπjπij

(Xi(Yi − µi))
′(Xj(Yj − µj))

]

Σ̂

where πi is the probability of case i being sampled, Xi is a vector of the values of the
explanatory variables for case i, Yi is value of the dependent variable for case i, µ̂i is the
predicted value of the dependent variable for case i based on the linear model estimates,
and Σ̂ is the conventional variance-covariance matrix in a parametric glm. This statistic
is derived from the method for estimating the variance of sums described in Binder (1983)
and the Horvitz-Thompson estimator of the variance of a sum described in Horvitz and
Thompson (1952).

When replicate weights are used, the model is re-estimated for each set of replicate
weights, and the variance of each parameter is estimated by summing the squared deviations
of the replicates from their mean.

Quantities of Interest

• The expected value (qi$ev) is the mean of simulations from the the stochastic compo-
nent,

E(Y ) = µi = xiβ,

given a draw of β from its posterior.

• The predicted value (qi$pr) is drawn from the distribution defined by the set of pa-
rameters (µi, σ).

• The first difference (qi$fd) is:

FD = E(Y | x1)− E(Y | x)

• In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1
∑n

i=1
ti

n
∑

i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yi(ti = 0)], the counterfactual expected value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.
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• In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1
∑n

i=1
ti

n
∑

i:ti=1

{

Yi(ti = 1)− ̂Yi(ti = 0)
}

,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating
̂Yi(ti = 0), the counterfactual predicted value of Yi for observations in the treatment

group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, if you run z.out <- zelig(y ~ x, model = "normal.survey", data), then you
may examine the available information in z.out by using names(z.out), see the coefficients
by using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: fitted values. For the survey-weighted normal model, these are
identical to the linear predictors.

– linear.predictors: fitted values. For the survey-weighted normal model, these
are identical to fitted.values.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.
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• From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$pr: the simulated predicted values drawn from the distribution defined by
(µi, σ).

– qi$fd: the simulated first difference in the simulated expected values for the
values specified in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

When users estimate normal.survey models with replicate weights in Zelig, an object
called .survey.prob.weights is created in the global environment. Zelig will over-write
any existing object with that name, and users are therefore advised to re-name any object
called .survey.prob.weights before using normal.survey models in Zelig.

How to Cite

To cite the normal.survey Zelig model:

Nicholas Carnes. 2008. ”normal.survey: Survey-Weighted Normal Regression for
Continuous Dependent Variables” in Kosuke Imai, Gary King, and Olivia Lau,
”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

Survey-weighted linear models and the sample data used in the examples above are a part
of the survey package by Thomas Lumley. Users may wish to refer to the help files for
the three functions that Zelig draws upon when estimating survey-weighted models, namely,
help(svyglm), help(svydesign), and help(svrepdesign). The Gamma model is part of
the stats package by Venables and Ripley (2002). Advanced users may wish to refer to
help(glm) and help(family), as well as McCullagh and Nelder (1989).
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