
Chapter 1

Programming Statements

This chapter introduces the main programming commands. These include functions, if-else
statements, for-loops, and special procedures for managing the inputs to statistical models.

1.1 Functions

Functions are either built-in or user-defined sets of encapsulated commands which may take
any number of arguments. Preface a function with the function statement and use the <-

operator to assign functions to objects in your workspace.
You may use functions to run the same procedure on different objects in your workspace.

For example,

check <- function(p, q) {

result <- (p - q)/q

result

}

is a simple function with arguments p and q which calculates the difference between the ith
elements of the vector p and the ith element of the vector q as a proportion of the ith element
of q, and returns the resulting vector. For example, check(p = 10, q = 2) returns 4. You
may omit the descriptors as long as you keep the arguments in the correct order: check(10,
2) also returns 4. You may also use other objects as inputs to the function. If again = 10

and really = 2, then check(p = again, q = really) and check(again, really) also
returns 4.

Because functions run commands as a set, you should make sure that each command in
your function works by testing each line of the function at the R prompt.

1.2 If-Statements

Use if (and optionally, else) to control the flow of R functions. For example, let x and y

be scalar numerical values:

1

if (x == y) { # If the logical statement in the ()'s is true,

x <- NA # then `x' is changed to `NA' (missing value).

}

else { # The `else' statement tells R what to do if

x <- x^2 # the if-statement is false.

}

As with a function, use { and } to define the set of commands associated with each if and
else statement. (If you include if statements inside functions, you may have multiple sets of
nested curly braces.)

1.3 For-Loops

Use for to repeat (loop) operations. Avoiding loops by using matrix or vector commands is
usually faster and more elegant, but loops are sometimes necessary to assign values. If you
are using a loop to assign values to a data structure, you must first initialize an empty data
structure to hold the values you are assigning.

Select a data structure compatible with the type of output your loop will generate. If your
loop generates a scalar, store it in a vector (with the ith value in the vector corresponding
to the the ith run of the loop). If your loop generates vector output, store them as rows
(or columns) in a matrix, where the ith row (or column) corresponds to the ith iteration
of the loop. If your output consists of matrices, stack them into an array. For list output
(such as regression output) or output that changes dimensions in each iteration, use a list.
To initialize these data structures, use:

> x <- vector() # An empty vector of any length.

> x <- list() # An empty list of any length.

The vector() and list() commands create a vector or list of any length, such that assigning
x[5] <- 15 automatically creates a vector with 5 elements, the first four of which are empty
values (NA). In contrast, the matrix() and array() commands create data structures that
are restricted to their original dimensions.

> x <- matrix(nrow = 5, ncol = 2) # A matrix with 5 rows and 2 columns.

> x <- array(dim = c(5,2,3)) # A 3D array of 3 stacked 5 by 2 matrices.

If you attempt to assign a value at (100, 200, 20) to either of these data structures, R will
return an error message (“subscript is out of bounds”). R does not automatically extend the
dimensions of either a matrix or an array to accommodate additional values.

Example 1: Creating a vector with a logical statement

x <- array() # Initializes an empty data structure.

for (i in 1:10) { # Loops through every value from 1 to 10, replacing

2

if (is.integer(i/2)) { # the even values in `x' with i+5.

x[i] <- i + 5

}

} # Enclose multiple commands in {}.

You may use for() inside or outside of functions.

Example 2: Creating dummy variables by hand You may also use a loop to create a
matrix of dummy variables to append to a data frame. For example, to generate fixed effects
for each state, let’s say that you have mydata which contains y, x1, x2, x3, and state, with
state a character variable with 50 unique values. There are three ways to create dummy
variables: 1) with a built-in R command; 2) with one loop; or 3) with 2 for loops.

1. R will create dummy variables on the fly from a single variable with distinct values.

> z.out <- zelig(y ~ x1 + x2 + x3 + as.factor(state),

data = mydata, model = "ls")

This method returns k − 1 indicators for k states.

2. Alternatively, you can use a loop to create dummy variables by hand. There are
two ways to do this, but both start with the same initial commands. Using vector
commands, first create an index of for the states, and initialize a matrix to hold the
dummy variables:

idx <- sort(unique(mydata$state))

dummy <- matrix(NA, nrow = nrow(mydata), ncol = length(idx))

Now choose between the two methods.

(a) The first method is computationally inefficient, but more intuitive for users not
accustomed to vector operations. The first loop uses i as in index to loop through
all the rows, and the second loop uses j to loop through all 50 values in the vector
idx, which correspond to columns 1 through 50 in the matrix dummy.

for (i in 1:nrow(mydata)) {

for (j in 1:length(idx)) {

if (mydata$state[i,j] == idx[j]) {

dummy[i,j] <- 1

}

else {

dummy[i,j] <- 0

}

}

}

3

Then add the new matrix of dummy variables to your data frame:

names(dummy) <- idx

mydata <- cbind(mydata, dummy)

(b) As you become more comfortable with vector operations, you can replace the
double loop procedure above with one loop:

for (j in 1:length(idx)) {

dummy[,j] <- as.integer(mydata$state == idx[j])

}

The single loop procedure evaluates each element in idx against the vector mydata$state.
This creates a vector of n TRUE/FALSE observations, which you may transform to
1’s and 0’s using as.integer(). Assign the resulting vector to the appropriate
column in dummy. Combine the dummy matrix with the data frame as above to
complete the procedure.

Example 3: Weighted regression with subsets Selecting the by option in zelig()

partitions the data frame and then automatically loops the specified model through each
partition. Suppose that mydata is a data frame with variables y, x1, x2, x3, and state,
with state a factor variable with 50 unique values. Let’s say that you would like to run a
weighted regression where each observation is weighted by the inverse of the standard error
on x1, estimated for that observation’s state. In other words, we need to first estimate the
model for each of the 50 states, calculate 1 / se(x1j) for each state j = 1, . . . , 50, and then
assign these weights to each observation in mydata.

� Estimate the model separate for each state using the by option in zelig():

z.out <- zelig(y ~ x1 + x2 + x3, by = "state", data = mydata, model = "ls")

Now z.out is a list of 50 regression outputs.

� Extract the standard error on x1 for each of the state level regressions.

se <- array() # Initalize the empty data structure.

for (i in 1:50) { # vcov() creates the variance matrix

se[i] <- sqrt(vcov(z.out[[i]])[2,2]) # Since we have an intercept, the 2nd

} # diagonal value corresponds to x1.

� Create the vector of weights.

wts <- 1 / se

This vector wts has 50 values that correspond to the 50 sets of state-level regression
output in z.out.

4

� To assign the vector of weights to each observation, we need to match each observation’s
state designation to the appropriate state. For simplicity, assume that the states are
numbered 1 through 50.

mydata$w <- NA # Initalizing the empty variable

for (i in 1:50) {

mydata$w[mydata$state == i] <- wts[i]

}

We use mydata$state as the index (inside the square brackets) to assign values to
mydata$w. Thus, whenever state equals 5 for an observation, the loop assigns the
fifth value in the vector wts to the variable w in mydata. If we had 500 observations
in mydata, we could use this method to match each of the 500 observations to the
appropriate wts.

If the states are character strings instead of integers, we can use a slightly more complex
version

mydata$w <- NA

idx <- sort(unique(mydata$state))

for (i in 1:length(idx) {

mydata$w[mydata$state == idx[i]] <- wts[i]

}

� Now we can run our weighted regression:

z.wtd <- zelig(y ~ x1 + x2 + x3, weights = w, data = mydata,

model = "ls")

5

