
0.1 relogit: Rare Events Logistic Regression for Di-

chotomous Dependent Variables

The relogit procedure estimates the same model as standard logistic regression (appropriate
when you have a dichotomous dependent variable and a set of explanatory variables; see
Section ??), but the estimates are corrected for the bias that occurs when the sample is
small or the observed events are rare (i.e., if the dependent variable has many more 1s
than 0s or the reverse). The relogit procedure also optionally uses prior correction for
case-control sampling designs.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "relogit", tau = NULL,

case.correct = c("prior", "weighting"),

bias.correct = TRUE, robust = FALSE,

data = mydata, ...)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Arguments

The relogit procedure supports four optional arguments in addition to the standard argu-
ments for zelig(). You may additionally use:

� tau: a vector containing either one or two values for τ , the true population fraction of
ones. Use, for example, tau = c(0.05, 0.1) to specify that the lower bound on tau

is 0.05 and the upper bound is 0.1. If left unspecified, only finite-sample bias correction
is performed, not case-control correction.

� case.correct: if tau is specified, choose a method to correct for case-control sampling
design: "prior" (default) or "weighting".

� bias.correct: a logical value of TRUE (default) or FALSE indicating whether the in-
tercept should be corrected for finite sample (rare events) bias.

� robust: defaults to FALSE (except when case.control = "weighting"; the default
in this case becomes robust = TRUE). If TRUE is selected, zelig() computes robust
standard errors via the sandwich package (see Zeileis (2004)). The default type of
robust standard error is heteroskedastic and autocorrelation consistent (HAC), and
assumes that observations are ordered by time index.

In addition, robust may be a list with the following options:

– method: Choose from

* "vcovHAC": (default if robust = TRUE) HAC standard errors.
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* "kernHAC": HAC standard errors using the weights given in Andrews (1991).

* "weave": HAC standard errors using the weights given in Lumley and Hea-
gerty (1999).

– order.by: defaults to NULL (the observations are chronologically ordered as in the
original data). Optionally, you may specify a vector of weights (either as order.by
= z, where z exists outside the data frame; or as order.by = ~z, where z is a
variable in the data frame) The observations are chronologically ordered by the
size of z.

– ...: additional options passed to the functions specified in method. See the
sandwich library and Zeileis (2004) for more options.

Note that if tau = NULL, bias.correct = FALSE, robust = FALSE, the relogit proce-
dure performs a standard logistic regression without any correction.

Example 1: One Tau with Prior Correction and Bias Correction

Due to memory and space considerations, the data used here are a sample drawn from the
full data set used in King and Zeng, 2001, The proportion of militarized interstate conflicts
to the absence of disputes is τ = 1, 042/303, 772 ≈ 0.00343. To estimate the model,

> data(mid)

> z.out1 <- zelig(conflict ~ major + contig + power + maxdem +

+ mindem + years, data = mid, model = "relogit", tau = 1042/303772)

Summarize the model output:

> summary(z.out1)

Set the explanatory variables to their means:

> x.out1 <- setx(z.out1)

Simulate quantities of interest:

> s.out1 <- sim(z.out1, x = x.out1)

> summary(s.out1)

> plot(s.out1)
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Example 2: One Tau with Weighting, Robust Standard Errors, and Bias Cor-
rection

Suppose that we wish to perform case control correction using weighting (rather than the
default prior correction). To estimate the model:

> z.out2 <- zelig(conflict ~ major + contig + power + maxdem +

+ mindem + years, data = mid, model = "relogit", tau = 1042/303772,

+ case.control = "weighting", robust = TRUE)

Summarize the model output:

> summary(z.out2)

Set the explanatory variables to their means:

> x.out2 <- setx(z.out2)
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Simulate quantities of interest:

> s.out2 <- sim(z.out2, x = x.out2)

> summary(s.out2)

Example 3: Two Taus with Bias Correction and Prior Correction

Suppose that we did not know that τ ≈ 0.00343, but only that it was somewhere between
(0.002, 0.005). To estimate a model with a range of feasible estimates for τ (using the default
prior correction method for case control correction):

> z.out2 <- zelig(conflict ~ major + contig + power + maxdem +

+ mindem + years, data = mid, model = "relogit", tau = c(0.002,

+ 0.005))

Summarize the model output:

> summary(z.out2)

Set the explanatory variables to their means:

> x.out2 <- setx(z.out2)

Simulate quantities of interest:

> s.out <- sim(z.out2, x = x.out2)

> summary(s.out2)

> plot(s.out2)
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The cost of giving a range of values for τ is that point estimates are not available for quantities
of interest. Instead, quantities are presented as confidence intervals with significance less than
or equal to a specified level (e.g., at least 95% of the simulations are contained in the nominal
95% confidence interval).

Model

� Like the standard logistic regression, the stochastic component for the rare events
logistic regression is:

Yi ∼ Bernoulli(πi),

where Yi is the binary dependent variable, and takes a value of either 0 or 1.

� The systematic component is:

πi =
1

1 + exp(−xiβ)
.
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� If the sample is generated via a case-control (or choice-based) design, such as when
drawing all events (or “cases”) and a sample from the non-events (or “controls”) and
going backwards to collect the explanatory variables, you must correct for selecting
on the dependent variable. While the slope coefficients are approximately unbiased,
the constant term may be significantly biased. Zelig has two methods for case control
correction:

1. The “prior correction” method adjusts the intercept term. Let τ be the true
population fraction of events, ȳ the fraction of events in the sample, and β̂0 the
uncorrected intercept term. The corrected intercept β0 is:

β = β̂0 − ln

[(
1− τ

τ

)(
ȳ

1− ȳ

)]
.

2. The “weighting” method performs a weighted logistic regression to correct for a
case-control sampling design. Let the 1 subscript denote observations for which
the dependent variable is observed as a 1, and the 0 subscript denote observations
for which the dependent variable is observed as a 0. Then the vector of weights
wi

w1 =
τ

ȳ

w0 =
(1− τ)

(1− ȳ)

wi = w1Yi + w0(1− Yi)

If τ is unknown, you may alternatively specify an upper and lower bound for the
possible range of τ . In this case, the relogit procedure uses“robust Bayesian”methods
to generate a confidence interval (rather than a point estimate) for each quantity of
interest. The nominal coverage of the confidence interval is at least as great as the
actual coverage.

� By default, estimates of the the coefficients β are bias-corrected to account for finite
sample or rare events bias. In addition, quantities of interest, such as predicted proba-
bilities, are also corrected of rare-events bias. If β̂ are the uncorrected logit coefficients
and bias(β̂) is the bias term, the corrected coefficients β̃ are

β̂ − bias(β̂) = β̃

The bias term is
bias(β̂) = (X ′WX)−1X ′Wξ

where

ξi = 0.5Qii

(
(1 + w − 1)π̂i − w1

)
Q = X(X ′WX)−1X ′

W = diag{π̂i(1− π̂i)wi}
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where wi and w1 are given in the “weighting” section above.

Quantities of Interest

� For either one or no τ :

– The expected values (qi$ev) for the rare events logit are simulations of the pre-
dicted probability

E(Y ) = πi =
1

1 + exp(−xiβ)
,

given draws of β from its posterior.

– The predicted value (qi$pr) is a draw from a binomial distribution with mean
equal to the simulated πi.

– The first difference (qi$fd) is defined as

FD = Pr(Y = 1 | x1, τ)− Pr(Y = 1 | x, τ).

– The risk ratio (qi$rr) is defined as

RR = Pr(Y = 1 | x1, τ) / Pr(Y = 1 | x, τ).

� For a range of τ defined by [τ1, τ2], each of the quantities of interest are n× 2 matrices,
which report the lower and upper bounds, respectively, for a confidence interval with
nominal coverage at least as great as the actual coverage. At worst, these bounds are
conservative estimates for the likely range for each quantity of interest. Please refer
to King and Zeng (2002) for the specific method of calculating bounded quantities of
interest.

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yi(ti = 0)], the counterfactual expected value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,
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where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating

̂Yi(ti = 0), the counterfactual predicted value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(y ~ x, model = "relogit", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by
using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– bias.correct: TRUE if bias correction was selected, else FALSE.

– prior.correct: TRUE if prior correction was selected, else FALSE.

– weighting: TRUE if weighting was selected, else FALSE.

– tau: the value of tau for which case control correction was implemented.

– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: the vector of fitted values for the systemic component, πi.

– linear.predictors: the vector of xiβ

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

Note that for a range of τ , each of the above items may be extracted from the
"lower.estimate" and "upper.estimate" objects in your zelig output. Use lower

<- z.out$lower.estimate, and then lower$coefficients to extract the coefficients
for the empirical estimate generated for the smaller of the two τ .

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.
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– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected values, or predicted probabilities, for the specified
values of x.

– qi$pr: the simulated predicted values drawn from Binomial distributions given
the predicted probabilities.

– qi$fd: the simulated first difference in the predicted probabilities for the values
specified in x and x1.

– qi$rr: the simulated risk ratio for the predicted probabilities simulated from x

and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

Differences with Stata Version

The Stata version of ReLogit and the R implementation differ slightly in their coefficient
estimates due to differences in the matrix inversion routines implemented in R and Stata.
Zelig uses orthogonal-triangular decomposition (through lm.influence()) to compute the
bias term, which is more numerically stable than standard matrix calculations.

How to Cite

To cite the relogit Zelig model:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “relogit: Rare Events Lo-
gistic Regression for Dichotomous Dependent Variables,” in Kosuke Imai,
Gary King, and Olivia Lau, “Zelig: Everyone’s Statistical Software,” http:

//gking.harvard.edu/zelig.

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Kosuke Imai, Gary King, and Olivia Lau. 2008. “Toward A Common Frame-
work for Statistical Analysis and Development,” Journal of Computational
and Graphical Statistics, forthcoming, http://gking.harvard.edu/files/
abs/z-abs.shtml.
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See also

For more information see King and Zeng (2001a),King and Zeng (2001b),King and Zeng
(2002). Sample data are from King and Zeng (2001a).
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