Chapter 1

Statistical Commands

1.1 Zelig Commands

1.1.1 Quick Overview

For any statistical model, Zelig does its work with a combination of three commands.

Figure 1.1: Main Zelig commands (solid arrows) and some options (dashed arrows)

Imputation Matching
. .) h ﬁ . k - }
Validation ¢ — — — zelri()jk - — - > summary()
(set@ ~ -~ — >whatif()
sim()
7 T
summary|() plot()

1. Use zelig() to run the chosen statistical model on a given data set, with a specific
set of variables. For standard likelihood models, for example, this step estimates the
coefficients, other model parameters, and a variance-covariance matrix. In addition,
you may choose from a variety of options:

e Pre-process data: Prior to calling zelig(), you may choose from a variety of
data pre-processing commands (matching or multiple imputation, for example)
to make your statistical inferences more accurate.

e Summarize model: After calling zelig(), you may summarize the fitted model
output using summary ().

e Validate model: After calling zelig(), you may choose to validate the fitted
model. This can be done, for example, by using cross-validation procedures and
diagnostics tools.

2. Use setx() to set each of the explanatory variables to chosen (actual or counterfac-
tual) values in preparation for calculating quantities of interest. After calling setx(),
you may use to evaluate these choices by determining whether they involve
interpolation (i.e., are inside the convex hull of the observed data) or extrapolation,
as well as how far these counterfactuals are from the data. Counterfactuals chosen in
setx () that involve extrapolation far from the data can generate considerably more
model dependence (see 7, 7, 7).

3. Use sim() to draw simulations of your quantity of interest (such as a predicted value,
predicted probability, risk ratio, or first difference) from the model. (These simulations
may be drawn using an asymptotic normal approximation (the default), bootstrapping,
or other methods when available, such as directly from a Bayesian posterior.) After
calling sim(), use any of the following to summarize the simulations:

e The summary() function gives a numerical display. For multiple setx () values,
summary () lets you summarize simulations by choosing one or a subset of obser-
vations.

o If the setx() values consist of only one observation, plot() produces density
plots for each quantity of interest.

Whenever possible, we use z.out as the zelig() output object, x.out as the setx() output
object, and s.out as the sim() output object, but you may choose other names.

1.1.2 Examples

e Use the turnout data set included with Zelig to estimate a logit model of an individual’s
probability of voting as function of race and age. Simulate the predicted probability of
voting for a white individual, with age held at its mean:

data(turnout)
z.out <- zelig(vote ~ race + age, model = "logit", data = turnout)
x.out <- setx(z.out, race = "white")

s.out <- sim(z.out, x = x.out)
summary (s.out)

V V. V V V

e Compute a first difference and risk ratio, changing education from 12 to 16 years, with
other variables held at their means in the data:

data(turnout)
z.out <- zelig(vote

>

> race + educate, model = "logit", data = turnout)
> x.low <- setx(z.out, educate = 12)

> x.high <- setx(z.out, educate = 16)

> s.out <- sim(z.out, x = x.low, x1 = x.high)

> summary(s.out) # Numerical summary.
> plot(s.out) # Graphical summary.

e Calculate expected values for every observation in your data set:

> data(turnout)

> z.out <- zelig(vote ~ race + educate, model = "logit", data = turnout)
> x.out <- setx(z.out, fn = NULL)

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

e Use five multiply imputed data sets from ? in an ordered logit model:

> data(immil, immi2, immi3, immi4, immib)

> z.out <- zelig(as.factor(ipip) ~ wagel992 + prtyid + ideol,
model = "ologit",
data = mi(immil, immi2, immi3, immi4, immi5))

e Use the nearest propensity score matching via Matchlt package, and then calculate the
conditional average treatment effect of the job training program based on the linear
regression model:

> library(MatchIt)

> data(lalonde)

> m.out <- matchit(treat ~ re74 + re75 + educ + black + hispan + age,

data = lalonde, method = "nearest")

> m.data <- match.data(m.out)

.out <- zelig(re78 ~ treat + distance + re74 + re75 + educ + black +
hispan + age, data = m.data, model = "ls")

x.out0 <- setx(z.out, fn = NULL, treat 0)

x.outl <- setx(z.out, fn = NULL, treat = 1)

s.out <- sim(z.out, x=x.out0, xl=x.outl)

summary (s.out)

\4
N

vV V V V

e Validate the fitted model using the leave-one-out cross validation procedure and cal-
culating the average squared prediction error via boot package. For example:

library(boot)

data(turnout)

z.out <- zelig(vote ™ race + educate, model = "logit", data = turnout)
cv.out <- cv.glm(z.out, data = turnout)

print(cv.out$delta)

V V. V V V

1.1.3 Details

1. z.out <- zelig(formula, model, data, by = NULL, ...)

The zelig() command estimates a selected statistical model given the specified data.
You may name the output object (z.out above) anything you desire. You must include
three required arguments, in the following order:

(a) formula takes the form y ~ x1 + x2, where y is the dependent variable and x1
and x2 are the explanatory variables, and y, x1, and x2 are contained in the
same dataset. The + symbol means “inclusion” not “addition.” You may include
interaction terms in the form of x1*x2 without having to compute them in prior
steps or include the main effects separately. For example, R treats the formula y
T x1*xx2 asy ~ xl + x2 + x1*xx2. To prevent R from automatically including
the separate main effect terms, use the I() function, thus: y ~ I(xl * x2).

(b) model lets you choose which statistical model to run. You must put the name
of the model in quotation marks, in the form model = "1s", for example. See
Section ?7? for a list of currently supported models.

(c) data specifies the data frame containing the variables called in the formula, in the
form data = mydata. Alternatively, you may input multiply imputed datasets in
the form data = mi(datal, data2, .. .).II] If you are working with matched
data created using Matchlt, you may create a data frame within the zelig()
statement by using data = match.data(...). In all cases, the data frame or
Matchlt object must have been previously loaded into the working memory.

(d) by (an optional argument which is by default NULL) allows you to choose a factor
variable (see Section ?7?) in the data frame as a subsetting variable. For each of
the unique strata defined in the by variable, zelig() does a separate run of the
specified model. The variable chosen should not be in the formula, because there
will be no variance in the by variable in the subsets. If you have one data set for
all 191 countries in the UN, for example, you may use the by option to run the
same model 191 times, once on each country, all with a single zelig() statement.
You may also use the by option to run models on Matchlt subclasses.

!Multiple imputation is a method of dealing with missing values in your data which is more powerful
than the usual list-wise deletion approach. You can create multiply imputed datasets with a program such
as |Amelia; see [King, Honaker, Joseph, Scheve (2000).

http://gking.harvard.edu/matchit/
http://gking.harvard.edu/matchit/
http://gking.harvard.edu/stats.shtml#amelia
http://gking.harvard.edu/files/abs/evil-abs.shtml

(e) The output object, z. out, contains all of the options chosen, including the name of
the data set. Because data sets may be large, Zelig does not store the full data set,
but only the name of the dataset. Every time you use a Zelig function, it looks for
the dataset with the appropriate name in working memory. (Thus, it is critical
that you do not change the name of your data set, or perform any additional
operations on your selected variables between calling zelig() and setx(), or
between setx () and sim().)

(f) If you would like to view the regression output at this intermediate step, type
summary(z.out) to return the coefficients, standard errors, t-statistics and p-
values. We recommend instead that you calculate quantities of interest; creating
z.out is only the first of three steps in this task.

2. x.out <- setx(z.out, fn = list(numeric = mean, ordered = median, others
mode), data = NULL, cond = FALSE, ...)

The setx() command lets you choose values for the explanatory variables, with which
sim() will simulate quantities of interest. There are two types of setx() procedures:

e You may perform the usual unconditional prediction (by default, cond = FALSE),
by explicitly choosing the values of each explanatory variable yourself or letting
setx() compute them, either from the data used to create z.out or from a new
data set specified in the optional data argument. You may also compute predic-
tions for all observed values of your explanatory variables using fn = NULL.

e Alternatively, for advanced uses, you may perform conditional prediction (cond
= TRUE), which predicts certain quantities of interest by conditioning on the ob-
served value of the dependent variable. In a simple linear regression model, this
procedure is not particularly interesting, since the conditional prediction is merely
the observed value of the dependent variable for that observation. However, con-
ditional prediction is extremely useful for other models and methods, including
the following:

— In a matched sampling design, the sample average treatment effect for the
treated can be estimated by computing the difference between the observed
dependent variable for the treated group and their expected or predicted
values of the dependent variable under no treatment (?).

— With censored data, conditional prediction will ensure that all predicted val-
ues are greater than the censored observed values (7).

— In ecological inference models, conditional prediction guarantees that the pre-
dicted values are on the tomography line and thus restricted to the known
bounds (77).

— The conditional prediction in many linear random effects (or Bayesian hierar-
chical) models is a weighted average of the unconditional prediction and the
value of the dependent variable for that observation, with the weight being

an estimable function of the accuracy of the unconditional prediction (see 7).
When the unconditional prediction is highly certain, the weight on the value
of the dependent variable for this observation is very small, hence reducing
inefficiency; when the unconditional prediction is highly uncertain, the rel-
ative weight on the unconditional prediction is very small, hence reducing
bias. Although the simple weighted average expression no longer holds in
nonlinear models, the general logic still holds and the mean square error of
the measurement is typically reduced (see ?).

In these and other models, conditioning on the observed value of the dependent
variable can vastly increase the accuracy of prediction and measurement.

The setx () arguments for unconditional prediction are as follows:

(a) z.out, the zelig() output object, must be included first.

(b) You can set particular explanatory variables to specified values. For example:

> z.out <- zelig(vote ~ age + race, model = "logit", data = turnout)
> x.out <- setx(z.out, age = 30)

setx () sets the variables not explicitly listed to their mean if numeric, and their
median if ordered factors, and their mode if unordered factors, logical values, or
character strings. Alternatively, you may specify one explanatory variable as a
range of values, creating one observation for every unique value in the range of
valuesf]

> x.out <- setx(z.out, age = 18:95)

This creates 78 observations with with age set to 18 in the first observation, 19 in
the second observation, up to 95 in the 78th observation. The other variables are
set to their default values, but this may be changed by setting fn, as described
next.

(c) Optionally, fn is a list which lets you to choose a different function to apply to
explanatory variables of class
e numeric, which is mean by default,
e ordered factor, which is median by default, and
e other variables, which consist of logical variables, character string, and un-
ordered factors, and are set to their mode by default.

While any function may be applied to numeric variables, mean will default to
median for ordered factors, and mode is the only available option for other types
of variables. In the special case, fn = NULL, setx () returns all of the observations.

2If you allow more than one variable to vary at a time, you risk confounding the predictive effect of the
variables in question.

(d) You cannot perform other math operations within the fn argument, but can use
the output from one call of setx to create new values for the explanatory variables.
For example, to set the explanatory variables to one standard deviation below
their mean:

> X.sd <- setx(z.out, fn = list(numeric = sd))
> X.mean <- setx(z.out, fn = list(numeric = mean))
> x.out <- X.mean - X.sd

(e) Optionally, data identifies a new data frame (rather than the one used to create
z.out) from which the setx() values are calculated. You can use this argument
to set values of the explanatory variables for hold-out or out-of-sample fit tests.

(f) The cond is always FALSE for unconditional prediction.

If you wish to calculate risk ratios or first differences, call setx() a second time to
create an additional set of the values for the explanatory variables. For example,
continuing from the example above, you may create an alternative set of explanatory
variables values one standard deviation above their mean:

> x.alt <- X.mean + X.sd

The required arguments for conditional prediction are as follows:

(a) z.out, the zelig() output object, must be included first.

(b) fn, which equals NULL to indicate that all of the observations are selected. You
may only perform conditional inference on actual observations, not the mean of
observations or any other function applied to the observations. Thus, if fn is
missing, but cond = TRUE, setx() coerces fn = NULL.

(c) data, the data for conditional prediction.
(d) cond, which equals TRUE for conditional prediction.

Additional arguments, such as any of the variable names, are ignored in conditional
prediction since the actual values of that observation are used.

. s.out <- sim(z.out, x = x.out, x1 = NULL, num = c(1000, 100), bootstrap
FALSE, bootfn = NULL, ...)

The sim() command simulates quantities of interest given the output objects from
zelig() and setx(). This procedure uses only the assumptions of the statistical
model. The sim() command performs either unconditional or conditional prediction
depending on the options chosen in setx().

The arguments are as follows for unconditional prediction:

(a) z.out, the model output from zelig().

(b) x, the output from the setx() procedure performed on the model output.

(c) Optionally, you may calculate first differences by specifying x1, an additional
setx() object. For example, using the x.out and x.alt, you may generate first
differences using:

> s.out <- sim(z.out, x = x.out, x1 = x.alt)

(d) By default, the number of simulations, num, equals 1000 (or 100 simulations if
bootstrap is selected), but this may be decreased to increase computational speed,
or increased for additional precision.

(e) Zelig simulates parameters from classical mazimum likelihood models using asymp-
totic normal approximation to the log-likelihood. This is the same assumption as
used for frequentist hypothesis testing (which is of course equivalent to the asymp-
totic approximation of a Bayesian posterior with improper uniform priors). See
King, Tomz, and Wittenberg (2000). For Bayesian models, Zelig simulates quanti-
ties of interest from the posterior density, whenever possible. For robust Bayesian
models, simulations are drawn from the identified class of Bayesian posteriors.

(f) Alternatively, you may set bootstrap = TRUE to simulate parameters using boot-
strapped data sets. If your dataset is large, bootstrap procedures will usually
be more memory intensive and time-consuming than simulation using asymp-
totic normal approximation. The type of bootstrapping (including the sampling
method) is determined by the optional argument bootfn, described below.

(g) If bootstrap = TRUE is selected, sim() will bootstrap parameters using the de-
fault bootfn, which re-samples from the data frame with replacement to create a
sampled data frame of the same number of observations, and then re-runs zelig()
(inside sim()) to create one set of bootstrapped parameters. Alternatively, you
may create a function outside the sim() procedure to handle different bootstrap
procedures. Please consult help(boot) for more detailsf]

For conditional prediction, sim() takes only two required arguments:

(a) z.out, the model output from zelig().
(b) x, the conditional output from setx().

(c) Optionally, for duration models, cond.data, which is the data argument from
setx(). For models for duration dependent variables (see Section ??7), sim()
must impute the uncensored dependent variables before calculating the average
treatment effect. Inputting the cond.data allows sim() to generate appropriate
values.

Additional arguments are ignored or generate error messages.

3If you choose to create your own bootfn, it must include the the following three arguments: data, the
original data frame; one of the sampling methods described in help(boot); and object, the original zelig()
output object. The alternative bootstrapping function must sample the data, fit the model, and extract the
model-specific parameters.

http://gking.harvard.edu/files/abs/making-abs.shtml

Presenting Results

1. Use summary(s.out) to print a summary of your simulated quantities. You may specify
the number of significant digits as:

> print(summary(s.out), digits = 2)

2. Alternatively, you can plot your results using plot(s.out).

3. You can also use names(s.out) to see the names and a description of the elements
in this object and the $ operator to extract particular results. For most models,
these are: s.outqipr (for predicted values), s.outqiev (for expected values),
and s.outqifd (for first differences in expected values). For the logit, probit, multi-
nomial logit, ordinal logit, and ordinal probit models, quantities of interest also include
s.outqirr (the risk ratio).

1.2 Supported Models

We list here all models implemented in Zelig, organized by the nature of the dependent
variable(s) to be predicted, explained, or described.

1. Continuous Unbounded dependent variables can take any real value in the range
(—00,00). While most of these models take a continuous dependent variable, Bayesian
factor analysis takes multiple continuous dependent variables.

(a) "1s": The linear least-squares (see Section ?7) calculates the coefficients that min-
imize the sum of squared residuals. This is the usual method of computing linear
regression coefficients, and returns unbiased estimates of 3 and o2 (conditional on
the specified model).

(b) "normal": The Normal (see Section ??) model computes the maximum-likelihood
estimator for a Normal stochastic component and linear systematic component.
The coefficients are identical to 1s, but the maximum likelihood estimator for o2
is consistent but biased.

(c) "normal.bayes": The Bayesian Normal regression model (Section ?7?) is sim-
ilar to maximum likelihood Gaussian regression, but makes valid small sample
inferences via draws from the exact posterior and also allows for priors.

(d) "netls": The network least squares regression (Section ??) is similar to least
squares regression for continuous-valued proximity matrix dependent variables.
Proximity matrices are also known as sociomatrices, adjacency matrices, and ma-
trix representations of directed graphs.

(e) "tobit": The tobit regression model (see Section ??) is a Normal distribution
with left-censored observations.

()
(2)
(h)

"tobit.bayes": The Bayesian tobit distribution (see Section ?7) is a Normal
distribution that has either left and/or right censored observations.

"arima": Use auto-regressive, integrated, moving-average (ARIMA) models for
time series data (see Section ?7.

"factor.bayes": The Bayesian factor analysis model (see Section ?7?) estimates
multiple observed continuous dependent variables as a function of latent explana-
tory variables.

2. Dichotomous dependent variables consist of two discrete values, usually (0, 1).

(a)
(b)

"logit": Logistic regression (see Section ??) specifies Pr(Y = 1) to be a(n inverse)
logistic transformation of a linear function of a set of explanatory variables.

"relogit": The rare events logistic regression option (see Section ?7) estimates
the same model as the logit, but corrects for bias due to rare events (when one
of the outcomes is much more prevalent than the other). It also optionally uses
prior correction to correct for choice-based (case-control) sampling designs.

"logit.bayes": Bayesian logistic regression (see Section ?77) is similar to max-
imum likelihood logistic regression, but makes valid small sample inferences via
draws from the exact posterior and also allows for priors.

"probit": Probit regression (see Section ?7) Specifies Pr(Y = 1) to be a(n inverse)
CDF normal transformation as a linear function of a set of explanatory variables.

"probit.bayes": Bayesian probit regression (see Section ?7?) is similar to max-
imum likelihood probit regression, but makes valid small sample inferences via
draws from the exact posterior and also allows for priors.

"netlogit": The network logistic regression (Section ??) is similar to logistic
regression for binary-valued proximity matrix dependent variables. Proximity
matrices are also known as sociomatrices, adjacency matrices, and matrix repre-
sentations of directed graphs.

"blogit": The bivariate logistic model (see Section ??7) models Pr(Y;; = y1, Yio =
yo) for (y1,v2) = (0,0),(0,1),(1,0), (1, 1) according to a bivariate logistic density.
"bprobit": The bivariate probit model (see Section ??) models Pr(Y;; = y1, Yo =
yo) for (y1,y2) = (0,0),(0,1),(1,0), (1, 1) according to a bivariate normal density.
"irt1d": The one-dimensional item response model (see Section ?7?) takes multi-

ple dichotomous dependent variables and models them as a function of one latent
(unobserved) explanatory variable.

"irtkd": The k-dimensional item response model (see Section ?77) takes multi-
ple dichotomous dependent variables and models them as a function of £ latent
(unobserved) explanatory variables.

10

3. Ordinal are used to model ordered, discrete dependent variables. The values of the
outcome variables (such as kill, punch, tap, bump) are ordered, but the distance be-
tween any two successive categories is not known exactly. Each dependent variable may
be thought of as linear, with one continuous, unobserved dependent variable observed
through a mechanism that only returns the ordinal choice.

(a)

"ologit": The ordinal logistic model (see Section ?7) specifies the stochastic
component of the unobserved variable to be a standard logistic distribution.

"oprobit": The ordinal probit distribution (see Section ??) specifies the stochastic
component of the unobserved variable to be standardized normal.

"oprobit.bayes": Bayesian ordinal probit model (see Section ??) is similar to
ordinal probit regression, but makes valid small sample inferences via draws from
the exact posterior and also allows for priors.

"factor.ord": Bayesian ordered factor analysis (see Section ??7) models ob-
served, ordinal dependent variables as a function of latent explanatory variables.

4. Multinomial dependent variables are unordered, discrete categorical responses. For
example, you could model an individual’s choice among brands of orange juice or among
candidates in an election.

(a)

(b)

"mlogit": The multinomial logistic model (see Section ?7) specifies categorical
responses distributed according to the multinomial stochastic component and lo-
gistic systematic component.

"mlogit.bayes": Bayesian multinomial logistic regression (see Section ?77) is
similar to maximum likelihood multinomial logistic regression, but makes valid
small sample inferences via draws from the exact posterior and also allows for
priors.

5. Count dependent variables are non-negative integer values, such as the number of
presidential vetoes or the number of photons that hit a detector.

(a)

"poisson": The Poisson model (see Section ?7?) specifies the expected number
of events that occur in a given observation period to be an exponential function
of the explanatory variables. The Poisson stochastic component has the property
that, A = E(Yj|X;) = V(Yi|X;).

"poisson.bayes": Bayesian Poisson regression (see Section ?7) is similar to
maximum likelihood Poisson regression, but makes valid small sample inferences
via draws from the exact posterior and also allows for priors.

"negbin": The negative binomial model (see Section ??) has the same systematic
component as the Poisson, but allows event counts to be over-dispersed, such that
V(Yi|Xi) > E(Y|X).

11

6. Continuous Bounded dependent variables that are continuous only over a certain
range, usually (0, 00). In addition, some models (exponential, lognormal, and Weibull)
are also censored for values greater than some censoring point, such that the dependent
variable has some units fully observed and others that are only partially observed
(censored).

(a)
(b)

()

"gamma": The Gamma model (see Section ??) for positively-valued, continuous
dependent variables that are fully observed (no censoring).

"exp": The ezponential model (see Section ??) for right-censored dependent vari-
ables assumes that the hazard function is constant over time. For some variables,
this may be an unrealistic assumption as subjects are more or less likely to fail
the longer they have been exposed to the explanatory variables.

"weibull": The Weibull model (see Section ??) for right-censored dependent
variables relaxes the assumption of constant hazard by including an additional
scale parameter a: If o > 1, the risk of failure increases the longer the subject
has survived; if o < 1, the risk of failure decreases the longer the subject has
survived. While zelig() estimates o by default, you may optionally fix o at any
value greater than 0. Fixing o = 1 results in an exponential model.

"lognorm": The log-normal model (see Section ??) for right-censored duration de-
pendent variables specifies the hazard function non-monotonically, with increasing
hazard over part of the observation period and decreasing hazard over another.

7. Mixed dependent variables include models that take more than one dependent vari-
able, where the dependent variables come from two or more of categories above. (They
do not need to be of a homogeneous type.)

(a)

The Bayesian mixed factor analysis model, in contrast to the Bayesian factor anal-
ysis model and ordinal factor analysis model, can model both types of dependent
variables as a function of latent explanatory variables.

8. Ecological inference models estimate unobserved internal cell values given contin-
gency tables with observed row and column marginals.

(a)
(b)
()

ei.hier: The hierarchical EI model (see Section ?7) produces estimates for a
cross-section of 2 x 2 tables.

ei.dynamic: Quinn’s dynamic Bayesian EI model (see Section ?7) estimates a
dynamic Bayesian model for 2 x 2 tables with temporal dependence across tables.

ei.RxC: The RxC El model (see Section ?7) estimates a hierarchical Multinomial-
Dirichlet EI model for contingency tables with more than 2 rows or columns.

12

1.3 Replication Procedures

A large part of any statistical analysis is documenting your work such that given the same
data, anyone may replicate your results. In addition, many journals require the creation
and dissemination of “replication data sets” in order that others may replicate your results
(see King, 1995). Whether you wish to create replication materials for your own records, or
contribute data to others as a companion to your published work, Zelig makes this process
easy.

1.3.1 Saving Replication Materials

Let mydata be your final data set, z.out be your zelig() output, and s.out your sim()
output. To save all of this in one file, type:

> save(mydata, z.out, s.out, file = "replication.RData")

This creates the file replication.RData in your working directory. You may compress this file
using zip or gzip tools.

If you have run several specifications, all of these estimates may be saved in one .RData
file. Even if you only created quantities of interest from one of these models, you may still
save all the specifications in one file. For example:

> save(mydata, z.outl, z.out2, s.out, file = "replication.RData")

Although the .RData format can contain data sets as well as output objects, it is not the
most space-efficient way of saving large data sets. In an uncompressed format, ASCII text
files take up less space than data in .RData format. (When compressed, text-formatted data
is still smaller than .RData-formatted data.) Thus, if you have more than 100,000 observa-
tions, you may wish to save the data set separately from the Zelig output objects. To do this,
use the write.table() command. For example, if mydata is a data frame in your workspace,
use write.table(mydata, file = "mydata.tab") to save this as a tab-delimited ASCII
text file. You may specify other delimiters as well; see help.zelig("write.table") for
options.

1.3.2 Replicating Analyses

If the data set and analyses are all saved in one .RData file, located in your working directory;,
you may simply type:

> load("replication.RData") # Loads the replication file.
> z.rep <- repl(z.out) # To replicate the model only.
> s.rep <- repl(s.out) # To replicate the model and

quantities of interest.

13

http://gking.harvard.edu/data.shtml#repl

By default, repl() uses the same options used to create the original output object. Thus,
if the original s.out object used bootstrapping with 245 simulations, the s.rep object will
similarly have 245 bootstrapped simulations. In addition, you may use the prev option when
replicating quantities of interest to reuse rather than recreate simulated parameters. Type
help.zelig("repl") to view the complete list of options for repl().

If the data were saved in a text file, use read.table () to load the data, and then replicate
the analysis:

> dat <- read.table("mydata.tab", header = TRUE) # Where “dat' is the same
> load("replication.RData") # as the name used in
> z.rep <- repl(z.out) # “z.out'.

>

s.rep <- repl(s.out)

If you have problems loading the data, please refer to Section ?77.
Finally, you may use the identical () command to ensure that the replicated regression
output is in every way identical to the original zelig() outputE] For example:

> identical(z.out$coef, z.rep$coef) # Checks the coefficients.

Simulated quantities of interest will vary from the original quantities if parameters are re-
simulated or re-sampled. If you wish to use identical() to verify that the quantities of
interest are identical, you may use

Re-use the parameters simulated (and stored) in the original sim() output.
> s.rep <- repl(s.out, prev = s.out$par)

Check that the expected values are identical. You may do this for each qi.
> identical(s.outqiev, s.rep$qifev)

4The identical () command checks that numeric values are identical to the maximum number of decimal
places (usually 16), and also checks that the the two objects have the same class (numeric, character, integer,
logical, or factor). Refer to help(identical) for more information.

14

