
0.1 blogit: Bivariate Logistic Regression for Two Di-

chotomous Dependent Variables

Use the bivariate logistic regression model if you have two binary dependent variables (Y1, Y2),
and wish to model them jointly as a function of some explanatory variables. Each pair of
dependent variables (Yi1, Yi2) has four potential outcomes, (Yi1 = 1, Yi2 = 1), (Yi1 = 1, Yi2 =
0), (Yi1 = 0, Yi2 = 1), and (Yi1 = 0, Yi2 = 0). The joint probability for each of these
four outcomes is modeled with three systematic components: the marginal Pr(Yi1 = 1) and
Pr(Yi2 = 1), and the odds ratio ψ, which describes the dependence of one marginal on
the other. Each of these systematic components may be modeled as functions of (possibly
different) sets of explanatory variables.

Syntax

> z.out <- zelig(list(mu1 = Y1 ~ X1 + X2 ,

mu2 = Y2 ~ X1 + X3),

model = "blogit", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Input Values

In every bivariate logit specification, there are three equations which correspond to each
dependent variable (Y1, Y2), and ψ, the odds ratio. You should provide a list of formulas for
each equation or, you may use cbind() if the right hand side is the same for both equations

> formulae <- list(cbind(Y1, Y2) ~ X1 + X2)

which means that all the explanatory variables in equations 1 and 2 (corresponding to Y1 and
Y2) are included, but only an intercept is estimated (all explanatory variables are omitted)
for equation 3 (ψ).

You may use the function tag() to constrain variables across equations:

> formulae <- list(mu1 = y1 ~ x1 + tag(x3, "x3"), mu2 = y2 ~ x2 +

+ tag(x3, "x3"))

where tag() is a special function that constrains variables to have the same effect across
equations. Thus, the coefficient for x3 in equation mu1 is constrained to be equal to the
coefficient for x3 in equation mu2.

Examples

1. Basic Example

Load the data and estimate the model:
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> data(sanction)

> z.out1 <- zelig(cbind(import, export) ~ coop + cost + target,

+ model = "blogit", data = sanction)

By default, zelig() estimates two effect parameters for each explanatory variable in
addition to the odds ratio parameter; this formulation is parametrically independent
(estimating unconstrained effects for each explanatory variable), but stochastically de-
pendent because the models share an odds ratio.

Generate baseline values for the explanatory variables (with cost set to 1, net gain
to sender) and alternative values (with cost set to 4, major loss to sender):

> x.low <- setx(z.out1, cost = 1)

> x.high <- setx(z.out1, cost = 4)

Simulate fitted values and first differences:

> s.out1 <- sim(z.out1, x = x.low, x1 = x.high)

> summary(s.out1)

> plot(s.out1)
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Predicted Probabilities: Pr(Y1=k,Y2=l|X)
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2. Joint Estimation of a Model with Different Sets of Explanatory Variables

Using sample data sanction, estimate the statistical model, with import a function
of coop in the first equation and export a function of cost and target in the second
equation:

> z.out2 <- zelig(list(import ~ coop, export ~ cost + target),

+ model = "blogit", data = sanction)

> summary(z.out2)

Set the explanatory variables to their means:

> x.out2 <- setx(z.out2)

Simulate draws from the posterior distribution:

> s.out2 <- sim(z.out2, x = x.out2)

> summary(s.out2)
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> plot(s.out2)

Predicted Probabilities: Pr(Y1=k,Y2=l|X)
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3. Joint Estimation of a Parametrically and Stochastically Dependent Model

Using the sample data sanction The bivariate model is parametrically dependent if Y1

and Y2 share some or all explanatory variables, and the effects of the shared explanatory
variables are jointly estimated. For example,

> z.out3 <- zelig(list(import ~ tag(coop, "coop") + tag(cost, "cost") +

+ tag(target, "target"), export ~ tag(coop, "coop") + tag(cost,

+ "cost") + tag(target, "target")), model = "blogit", data = sanction)

> summary(z.out3)

Note that this model only returns one parameter estimate for each of coop, cost, and
target. Contrast this to Example 1 which returns two parameter estimates for each
of the explanatory variables.
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Set values for the explanatory variables:

> x.out3 <- setx(z.out3, cost = 1:4)

Draw simulated expected values:

> s.out3 <- sim(z.out3, x = x.out3)

> summary(s.out3)

Model

For each observation, define two binary dependent variables, Y1 and Y2, each of which take
the value of either 0 or 1 (in the following, we suppress the observation index). We model
the joint outcome (Y1, Y2) using a marginal probability for each dependent variable, and
the odds ratio, which parameterizes the relationship between the two dependent variables.
Define Yrs such that it is equal to 1 when Y1 = r and Y2 = s and is 0 otherwise, where r and
s take a value of either 0 or 1. Then, the model is defined as follows,

� The stochastic component is

Y11 ∼ Bernoulli(y11 | π11)

Y10 ∼ Bernoulli(y10 | π10)

Y01 ∼ Bernoulli(y01 | π01)

where πrs = Pr(Y1 = r, Y2 = s) is the joint probability, and π00 = 1− π11 − π10 − π01.

� The systematic components model the marginal probabilities, πj = Pr(Yj = 1), as well
as the odds ratio. The odds ratio is defined as ψ = π00π01/π10π11 and describes the
relationship between the two outcomes. Thus, for each observation we have

πj =
1

1 + exp(−xjβj)
for j = 1, 2,

ψ = exp(x3β3).

Quantities of Interest

� The expected values (qi$ev) for the bivariate logit model are the predicted joint prob-
abilities. Simulations of β1, β2, and β3 (drawn from their sampling distributions) are
substituted into the systematic components (π1, π2, ψ) to find simulations of the pre-
dicted joint probabilities:

π11 =

{
1
2
(ψ − 1)−1 − a−

√
a2 + b for ψ 6= 1

π1π2 for ψ = 1
,

π10 = π1 − π11,

π01 = π2 − π11,

π00 = 1− π10 − π01 − π11,
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where a = 1 + (π1 + π2)(ψ − 1), b = −4ψ(ψ − 1)π1π2, and the joint probabilities for
each observation must sum to one. For n simulations, the expected values form an
n× 4 matrix for each observation in x.

� The predicted values (qi$pr) are draws from the multinomial distribution given the
expected joint probabilities.

� The first differences (qi$fd) for each of the predicted joint probabilities are given by

FDrs = Pr(Y1 = r, Y2 = s | x1)− Pr(Y1 = r, Y2 = s | x).

� The risk ratio (qi$rr) for each of the predicted joint probabilities are given by

RRrs =
Pr(Y1 = r, Y2 = s | x1)

Pr(Y1 = r, Y2 = s | x)

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yij(ti = 1)− E[Yij(ti = 0)]} for j = 1, 2,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yij(ti = 0)], the counterfactual expected value of Yij for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yij(ti = 1)− ̂Yij(ti = 0)

}
for j = 1, 2,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating

̂Yij(ti = 0), the counterfactual predicted value of Yij for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(y ~ x, model = "blogit", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by
using z.out$coefficients, and obtain a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.
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� From the zelig() output object z.out, you may extract:

– coefficients: the named vector of coefficients.

– fitted.values: an n× 4 matrix of the in-sample fitted values.

– predictors: an n× 3 matrix of the linear predictors xjβj.

– residuals: an n× 3 matrix of the residuals.

– df.residual: the residual degrees of freedom.

– df.total: the total degrees of freedom.

– rss: the residual sum of squares.

– y: an n× 2 matrix of the dependent variables.

– zelig.data: the input data frame if save.data = TRUE.

� From summary(z.out), you may extract:

– coef3: a table of the coefficients with their associated standard errors and t-
statistics.

– cov.unscaled: the variance-covariance matrix.

– pearson.resid: an n× 3 matrix of the Pearson residuals.

� From the sim() output object s.out, you may extract quantities of interest arranged
as arrays indexed by simulation × quantity × x-observation (for more than one x-
observation; otherwise the quantities are matrices). Available quantities are:

– qi$ev: the simulated expected joint probabilities (or expected values) for the
specified values of x.

– qi$pr: the simulated predicted outcomes drawn from a distribution defined by
the expected joint probabilities.

– qi$fd: the simulated first difference in the expected joint probabilities for the
values specified in x and x1.

– qi$rr: the simulated risk ratio in the predicted probabilities for given x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.
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How to Cite

To cite the blogit Zelig model use:

Kosuke Imai,Gary King, and Olivia Lau. 2007. “blogit: Bivariate Logistic Re-
gression for Two Dichotomous Dependent Variable,” in Kosuke Imai,Gary
King, and Olivia Lau,“Zelig: Everyone’s Statistical Software,”http://gking.
harvard.edu/zelig.

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Kosuke Imai, Gary King, and Olivia Lau. 2008. “Toward A Common Frame-
work for Statistical Analysis and Development,” Journal of Computational
and Graphical Statistics, forthcoming, http://gking.harvard.edu/files/
abs/z-abs.shtml.

See also

The bivariate logit function is part of the VGAM package by Thomas Yee (Yee and Hastie
2003). In addition, advanced users may wish to refer to help(vglm) in the VGAM library.
Additional documentation is available at http://www.stat.auckland.ac.nz/˜ yee.Sample data
are from Martin (1992)
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