
0.1 factor.mix: Mixed Data Factor Analysis

Mixed data factor analysis takes both continuous and ordinal dependent variables and esti-
mates a model for a given number of latent factors. The model is estimated using a Markov
Chain Monte Carlo algorithm (Gibbs sampler with data augmentation). Alternative models
include Bayesian factor analysis for continuous variables (Section ??) and Bayesian factor
analysis for ordinal variables (Section ??).

Syntax

> z.out <- zelig(cbind(Y1 ,Y2, Y3) ~ NULL, factors = 1,

model = "factor.mix", data = mydata)

Inputs

zelig() accepts the following arguments for factor.mix:

� Y1, Y2, Y3, ...: The dependent variables of interest, which can be a mix of ordinal
and continuous variables. You must have more dependent variables than factors.

� factors: The number of the factors to be fitted.

Additional Inputs

The model accepts the following additional arguments to monitor convergence:

� lambda.constraints: A list that contains the equality or inequality constraints on
the factor loadings.

– varname = list(): by default, no constraints are imposed.

– varname = list(d, c): constrains the dth loading for the variable named varname

to be equal to c.

– varname = list(d, "+"): constrains the dth loading for the variable named
varname to be positive;

– varname = list(d, "-"): constrains the dth loading for the variable named
varname to be negative.

Unlike Bayesian factor analysis for continuous variables (Section ??), the first column
of Λ corresponds to negative item difficulty parameters and should not be constrained
in general.
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� std.mean: defaults to TRUE, which rescales the continuous manifest variables to have
mean 0.

� std.var: defaults to TRUE. which rescales the continuous manifest variables to have
unit variance.

factor.mix accepts the following additional arguments to monitor the sampling scheme for
the Markov chain:

� burnin: number of the initial MCMC iterations to be discarded. The default value is
1,000.

� mcmc: number of the MCMC iterations after burnin. The default value is 20,000.

� thin: thinning interval for the Markov chain. Only every thin-th draw from the
Markov chain is kept. The value of mcmc must be divisible by this value. The default
value is 1.

� tune: tuning parameter, which can be either a scalar or a vector of length K. The
value of the tuning parameter must be positive. The default value is 1.2.

� verbose: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed
to the screen. The default is FALSE.

� seed: seed for the random number generator. The default is NA which corresponds to
a random seed 12345.

� lambda.start: starting values of the factor loading matrix Λ for the Markov chain,
either a scalar (starting values of the unconstrained loadings will be set to that value),
or a matrix with compatible dimensions. The default is NA, where the start values for
the first column of Λ are set based on the observed pattern, while for the rest of the
columns of Λ, the start values are set to be 0 for unconstrained factor loadings, and 1
or −1 for constrained factor loadings (depending on the nature of the constraints).

� psi.start: starting values for the diagonals of the error variance (uniquenesses) ma-
trix. Since the starting values for the ordinal variables are constrained to 1 (to identify
the model), you may only specify the starting values for the continuous variables. For
the continuous variables, you may specify psi.start as a scalar or a vector with length
equal to the number of continuous variables. If a scalar, that starting value is recycled
for all continuous variables. If a vector, the starting values should correspond to each
of the continuous variables. The default value is NA, which means the starting values
of all the continuous variable uniqueness are set to 0.5.

� store.lambda: defaults to TRUE, storing the posterior draws of the factor loadings.
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� store.scores: defaults to FALSE. If TRUE, the posterior draws of the factor scores are
stored. (Storing factor scores may take large amount of memory for a a large number
of draws or observations.)

Use the following additional arguments to specify prior parameters used in the model:

� l0: mean of the Normal prior for the factor loadings, either a scalar or a matrix with
the same dimensions as Λ. If a scalar value, then that value will be the prior mean for
all the factor loadings. The default value is 0.

� L0: precision parameter of Normal prior for the factor loadings, either a scalar or a
matrix with the same dimensions as Λ. If a scalar value, then the precision matrix will
be a diagonal matrix with the diagonal elements set to that value. The default value
is 0 which leads to an improper prior.

� a0: a0/2 is the shape parameter of the Inverse Gamma priors for the uniquenesses. It
can take a scalar value or a vector. The default value is 0.001.

� b0: b0/2 is the shape parameter of the Inverse Gamma priors for the uniquenesses. It
can take a scalar value or a vector. The default value is 0.001.

Zelig users may wish to refer to help(MCMCmixfactanal) for more information.

Convergence

Users should verify that the Markov Chain converges to its stationary distribution. After
running the zelig() function but before performing setx(), users may conduct the following
convergence diagnostics tests:

� geweke.diag(z.out$coefficients): The Geweke diagnostic tests the null hypothesis
that the Markov chain is in the stationary distribution and produces z-statistics for
each estimated parameter.

� heidel.diag(z.out$coefficients): The Heidelberger-Welch diagnostic first tests
the null hypothesis that the Markov Chain is in the stationary distribution and pro-
duces p-values for each estimated parameter. Calling heidel.diag() also produces
output that indicates whether the mean of a marginal posterior distribution can be es-
timated with sufficient precision, assuming that the Markov Chain is in the stationary
distribution.

� raftery.diag(z.out$coefficients): The Raftery diagnostic indicates how long the
Markov Chain should run before considering draws from the marginal posterior distri-
butions sufficiently representative of the stationary distribution.

If there is evidence of non-convergence, adjust the values for burnin and mcmc and rerun
zelig().

Advanced users may wish to refer to help(geweke.diag), help(heidel.diag), and
help(raftery.diag) for more information about these diagnostics.
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Examples

1. Basic Example
Attaching the sample dataset:

> data(PErisk)

Factor analysis for mixed data using factor.mix:

> z.out <- zelig(cbind(courts, barb2, prsexp2, prscorr2, gdpw2) ~

+ NULL, data = PErisk, model = "factor.mix", factors = 1, burnin = 5000,

+ mcmc = 1e+05, thin = 50, verbose = TRUE, L0 = 0.25, tune = 1.2)

Checking for convergence before summarizing the estimates:

> geweke.diag(z.out$coefficients)

> heidel.diag(z.out$coefficients)

> summary(z.out)

Model

Let Yi be a K-vector of observed variables for observation i, The kth variable can be either
continuous or ordinal. When Yik is an ordinal variable, it takes value from 1 to Jk for
k = 1, . . . , K and for i = 1, . . . , n. The distribution of Yik is assumed to be governed by
another K-vector of unobserved continuous variable Y ∗

ik. There are d underlying factors.
When Yik is continuous, we let Y ∗

ik = Yik.

� The stochastic component is described in terms of Y ∗
i :

Y ∗
i ∼ NormalK(µi, IK),

where Y ∗
i = (Y ∗

i1, . . . , Y
∗
iK), and µi = (µi1, . . . , µiK).

For ordinal Yik,

Yik = j if γ(j−1),k ≤ Y ∗
ik ≤ γjk for j = 1, . . . , Jk; k = 1, . . . , K.

where γjk, j = 0, . . . , J are the threshold parameters for the kth variable with the
following constraints, γlk < γmk for l < m, and γ0k = −∞, γJkk = ∞ for any k =
1, . . . , K. It follows that the probability of observing Yik belonging to category j is,

Pr(Yik = j) = Φ(γjk | µik)− Φ(γ(j−1),k | µik) for j = 1, . . . , Jk

where Φ(· | µik) is the cumulative distribution function of the Normal distribution with
mean µik and variance 1.
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� The systematic component is given by,

µi = Λφi,

where Λ is a K×d matrix of factor loadings for each variable, φi is a d-vector of factor
scores for observation i. Note both Λ and φ are estimated..

� The independent conjugate prior for each Λij is given by

Λij ∼ Normal(l0ij
, L−1

0ij
) for i = 1, . . . , k; j = 1, . . . , d.

� The prior for φi is,

φi ∼ Normal(0, Id−1), for i = 2, . . . , n.

where Id−1 is a (d− 1)× (d− 1) identity matrix. Note the first element of φi is 1.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run:

z.out <- zelig(cbind(Y1, Y2, Y3), model = "factor.mix", data)

then you may examine the available information in z.out by using names(z.out), see the
draws from the posterior distribution of the coefficients by using z.out$coefficients,
and view a default summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the estimated factor
loadings, the estimated cut points γ for each variable. Note the first element of γ
is normalized to be 0. If store.scores = TRUE, the estimated factors scores are
also contained in coefficients.

– zelig.data: the input data frame if save.data = TRUE.

– seed: the random seed used in the model.

� Since there are no explanatory variables, the sim() procedure is not applicable for
factor analysis models.
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How to Cite

To cite the factor.mix Zelig model:

Ben Goodrich and Ying Lu. 2007. “factor.mix: Mixed Data Factor Analysis ,”
in Kosuke Imai, Gary King, and Olivia Lau, “Zelig: Everyone’s Statistical
Software,” http://gking.harvard.edu/zelig.

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Kosuke Imai, Gary King, and Olivia Lau. 2008. “Toward A Common Frame-
work for Statistical Analysis and Development,” Journal of Computational
and Graphical Statistics, forthcoming, http://gking.harvard.edu/files/
abs/z-abs.shtml.
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