
0.1 tobit: Linear Regression for a Left-Censored De-

pendent Variable

Tobit regression estimates a linear regression model for a left-censored dependent variable,
where the dependent variable is censored from below. While the classical tobit model has
values censored at 0, you may select another censoring point. For other linear regression mod-
els with fully observed dependent variables, see Bayesian regression (Section ??), maximum
likelihood normal regression (Section ??), or least squares (Section ??).

Syntax

> z.out <- zelig(Y ~ X1 + X2, below = 0, above = Inf,

model = "tobit", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Inputs

zelig() accepts the following arguments to specify how the dependent variable is censored.

� below: (defaults to 0) The point at which the dependent variable is censored from
below. If any values in the dependent variable are observed to be less than the censoring
point, it is assumed that that particular observation is censored from below at the
observed value. (See Section ?? for a Bayesian implementation that supports both left
and right censoring.)

� robust: defaults to FALSE. If TRUE, zelig() computes robust standard errors based
on sandwich estimators (see Huber (1981) and White (1980)) and the options selected
in cluster.

� cluster: if robust = TRUE, you may select a variable to define groups of correlated
observations. Let x3 be a variable that consists of either discrete numeric values,
character strings, or factors that define strata. Then

> z.out <- zelig(y ~ x1 + x2, robust = TRUE, cluster = "x3",

model = "tobit", data = mydata)

means that the observations can be correlated within the strata defined by the variable
x3, and that robust standard errors should be calculated according to those clusters. If
robust = TRUE but cluster is not specified, zelig() assumes that each observation
falls into its own cluster.

Zelig users may wish to refer to help(survreg) for more information.
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Examples

1. Basic Example
Attaching the sample dataset:

> data(tobin)

Estimating linear regression using tobit:

> z.out <- zelig(durable ~ age + quant, model = "tobit", data = tobin)

Setting values for the explanatory variables to their sample averages:

> x.out <- setx(z.out)

Simulating quantities of interest from the posterior distribution given x.out.

> s.out1 <- sim(z.out, x = x.out)

> summary(s.out1)

2. Simulating First Differences
Set explanatory variables to their default(mean/mode) values, with high (80th per-
centile) and low (20th percentile) liquidity ratio (quant):

> x.high <- setx(z.out, quant = quantile(tobin$quant, prob = 0.8))

> x.low <- setx(z.out, quant = quantile(tobin$quant, prob = 0.2))

Estimating the first difference for the effect of high versus low liquidity ratio on dura-
tion(durable):

> s.out2 <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out2)

Model

� Let Y ∗
i be a latent dependent variable which is distributed with stochastic component

Y ∗
i ∼ Normal(µi, σ

2)

where µi is a vector means and σ2 is a scalar variance parameter. Y ∗
i is not directly

observed, however. Rather we observed Yi which is defined as:

Yi =

{
Y ∗

i if c < Y ∗
i

c if c ≥ Y ∗
i

where c is the lower bound below which Y ∗
i is censored.
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� The systematic component is given by

µi = xiβ,

where xi is the vector of k explanatory variables for observation i and β is the vector
of coefficients.

Quantities of Interest

� The expected values (qi$ev) for the tobit regression model are the same as the expected
value of Y ∗:

E(Y ∗|X) = µi = xiβ

� The first difference (qi$fd) for the tobit regression model is defined as

FD = E(Y ∗ | x1)− E(Y ∗ | x).

� In conditional prediction models, the average expected treatment effect (qi$att.ev)
for the treatment group is

1∑
ti

∑
i:ti=1

[E[Y ∗
i (ti = 1)]− E[Y ∗

i (ti = 0)]],

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run:

z.out <- zelig(y ~ x, model = "tobit.bayes", data)

then you may examine the available information in z.out by using names(z.out), see the
draws from the posterior distribution of the coefficients by using z.out$coefficients,
and view a default summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the estimated parame-
ters. The first k columns contain the posterior draws of the coefficients β, and
the last column contains the posterior draws of the variance σ2.

– zelig.data: the input data frame if save.data = TRUE.

– seed: the random seed used in the model.
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� From the sim() output object s.out:

– qi$ev: the simulated expected value for the specified values of x.

– qi$fd: the simulated first difference in the expected values given the values spec-
ified in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the oprobit.bayes Zelig model use:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “oprobit.bayes: Bayesian Or-
dered Probit Regression,” in Kosuke Imai,Gary King, and Olivia Lau, “Zelig:
Everyone’s Statistical Software,” http://gking.harvard.edu/zelig.

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Kosuke Imai, Gary King, and Olivia Lau. 2008. “Toward A Common Frame-
work for Statistical Analysis and Development,” Journal of Computational
and Graphical Statistics, forthcoming, http://gking.harvard.edu/files/
abs/z-abs.shtml.

See also

The tobit function is part of the survival library by Terry Therneau, ported to R by Thomas
Lumley. Advanced users may wish to refer to help(survfit) in the survival library and
Venables and Ripley (2002).Sample data are from King et al. (1990).
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