
0.1 coxph: Cox Proportional Hazards Regression for

Duration Dependent Variables

Choose the Cox proportional hazards regression model if the values in your dependent vari-
able are duration observations. The advantage of the semi-parametric Cox proportional
hazards model over fully parametric models such as the exponential or Weibull models is
that it makes no assumptions about the shape of the baseline hazard. The model only re-
quires the proportional hazards assumption that the baseline hazard does not vary across
observations. The baseline hazard can be estimated from the model via post-hoc analysis.

Syntax

> z.out <- zelig(Surv(Y, C) ~ X1 + X2, model = "coxph", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Cox proportional hazards models require that the dependent variable be in the form Surv(Y,

C), where Y and C are vectors of length n. For each observation i in 1, . . . , n, the value yi

is the duration (lifetime, for example), and the associated ci is a binary variable such that
ci = 1 if the duration is not censored (e.g., the subject dies during the study) or ci = 0 if the
duration is censored (e.g., the subject is still alive at the end of the study). If ci is omitted,
all Y are assumed to be completed; that is, ci defaults to 1 for all observations.

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for Cox
proportional hazards regression:

� robust: defaults to FALSE. If TRUE, zelig() computes robust standard errors based
on sandwich estimators (see Huber (1981) and White (1980)) based on the options in
cluster.

� cluster: if robust = TRUE, you may select a variable to define groups of correlated
observations. Let X3 be a variable that consists of either discrete numeric values,
character strings, or factors that define the clusters. Then

> z.out <- zelig(Surv(Y,C) ~ X1 + X2, robust = TRUE, cluster = "X3",

model = "coxph", data = mydata)

means that the observations can be correlated within the clusters defined by the variable
X3, and that robust standard errors should be calculated according to those clusters. If
robust = TRUE but cluster is not specified, zelig() assumes that each observation
falls into its own cluster.
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� method: defaults to "efron". Use this argument to specify how to handle ties within
event times. The model assumes that no two event times should theoretically ever be
the same, and any ties that occur are simply because the observation mechanism is not
precise enough. In practice, ties often exist in the data so the model commonly uses
one of three methods to deal with ties.

– Breslow method (method = "breslow"): This method is the simplest com-
putationally but also the least precise, especially as the number of tied events
increases.

– Efron method (method = "efron"): This is the default method and is more
intensive computationally but also more precise than the Breslow method.

– Exact discrete method (method = "exact"): This is the preferred method
if the number of distinct events is rather small due to a large number of ties.
Although it can be very computationally intensive, the exact discrete method,
which computes the exact partial likelihood, is the most precise method when
there are many ties.

Stratified Cox Model

In addition, zelig() also supports the stratified Cox model, where the baseline hazards
are assumed to be different across different strata but the coefficients are restricted to be
the same across strata. Let id be a variable that consists of either discrete numeric values,
character strings, or factors that define the strata. Then the stratified Cox model can be
estimated using strata() in the formula. The user can then find quantities of interest for a
specific stratum by defining the stratum of choice in setx(). If no strata are defined, setx
takes the mode. Strata on setx are defined as followed:

� If strata were defined by a variable (strata(id)), then strata should be defined as
strata = "id=5".

� If strata were defined by a mathematical expression (strata(id>10)), then strata
should be defined as strata = "id>10=TRUE" or strata = "id>10=FALSE".

> z.out <- zelig(Surv(Y,C) ~ X1 + X2 + strata(id), model = "coxph",

data = mydata)

> x.out <- setx(z.out, strata = "id=5")

> s.out <- sim(z.out, x = x.out)

Time-Varying Covariates

zelig() also supports the use of time-varying covariates for the Cox model, where some or
all of the covariates change over time for each case. Let “case” refer to each unit in the data.
Then each case can have one or more “observations”, where each observation has a different
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value for one or more covariates for a specific case.

Estimating a time-varying covariate model with zelig() involves setting up the data dif-
ferently to reflect a counting process. In the typical non-time-varying covariate model, the
cases include a duration time (Y ), a censoring mechanism (C), and covariates (X). A typical
dataset would look like this:

Case Y C X1 X2
1 35 0 4 7
2 56 1 6 11

The user would then estimate the model and find quantities of interest using the following
syntax:

> z.out <- zelig(Surv(Y,C) ~ X1 + X2, model = "coxph", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

With time-varying covariates, each case is composed of multiple observations with start times,
stop times, censoring (event) mechanisms, and covariates. The covariates are assumed to
be constant within the intervals defined by the start and stop times. The covariates change
only between intervals. Thus, the covariates are constant at each observation. The censoring
mechanism equals 1 when an event occurs at the stop time and equals 0 if the observation is
censored or if no event occurs at the stop time. A typical time-varying dataset would look
like this:

Case Start Stop C X1 X2
1 0 26 0 4 7
1 26 35 0 4 10
2 0 39 0 6 11
2 39 56 1 9 5

The user would then estimate the model and find quantities of interest using the following
syntax:

> z.out <- zelig(Surv(Start,Stop,C) ~ X1 + X2, model = "coxph",

data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)
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Examples

1. Example 1: Basic Example

Attaching the sample dataset:

> data(coalition)

Estimating parameter values for the coxph regression:

> z.out1 <- zelig(Surv(duration, ciep12) ~ invest + numst2 + crisis,

+ robust = TRUE, cluster = "polar", model = "coxph", data = coalition)

Setting values for the explanatory variables:

> x.low1 <- setx(z.out1, numst2 = 0)

> x.high1 <- setx(z.out1, numst2 = 1)

Simulating quantities of interest:

> s.out1 <- sim(z.out1, x = x.low1, x1 = x.high1)

> summary(s.out1)

> plot(s.out1)

4



0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75

0
2

4
6

8

Hazard Ratios: h(t|X1)/h(t|X)

D
en

si
ty

0 10 20 30 40

0.
0

0.
4

0.
8

Estimated Survival Function Over Time: S(t|X)

time

su
rv

iv
al

0 10 20 30 40

0.
0

1.
5

3.
0

Estimated Cumulative Hazard Over Time: H(t|X)

time

cu
m

ha
z

0 10 20 30 40

0.
05

0.
15

Estimated Hazard Rate Over Time: h(t|X)

time

ha
za

rd

2. Example 2: Example with Stratified Cox Model

Estimating parameter values for the stratified coxph regression:

> z.out2 <- zelig(Surv(duration, ciep12) ~ invest + strata(polar) +

+ numst2 + crisis, model = "coxph", data = coalition)

Setting values for the explanatory variables:

> x.low2 <- setx(z.out2, numst2 = 0, strata = "polar=3")

> x.high2 <- setx(z.out2, numst2 = 1, strata = "polar=3")

Simulating quantities of interest:

> s.out2 <- sim(z.out2, x = x.low2, x1 = x.high2)

> summary(s.out2)
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> plot(s.out2)
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3. Example 3: Example with Time-Varying Covariates

Create sample toy dataset (from survival package):

> toy <- as.data.frame(list(start = c(1, 2, 5, 2, 1, 7, 3, 4, 8,

+ 8), stop = c(2, 3, 6, 7, 8, 9, 9, 9, 14, 17), event = c(1,

+ 1, 1, 1, 1, 1, 1, 0, 0, 0), x = c(1, 0, 0, 1, 0, 1, 1, 1,

+ 0, 0), x1 = c(5, 5, 7, 4, 5, 6, 3, 2, 7, 4)))

Estimating parameter values for the coxph regression:

> z.out3 <- zelig(Surv(start, stop, event) ~ x + x1, model = "coxph",

+ data = toy)

Setting values for the explanatory variables:
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> x.low3 <- setx(z.out3, x = 0)

> x.high3 <- setx(z.out3, x = 1)

Simulating quantities of interest:

> s.out3 <- sim(z.out3, x = x.low3, x1 = x.high3)

> summary(s.out3)

> plot(s.out3)
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The Model

Let Y ∗
i be the survival time for observation i. This variable might be censored for some

observations at a fixed time yc such that the fully observed dependent variable, Yi, is defined
as

Yi =

{
Y ∗

i if Y ∗
i ≤ yc

yc if Y ∗
i > yc
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� The stochastic component is described by the distribution of the partially observed
variable Y ∗:

Y ∗
i ∼ f(y∗i |µi, α)

where f is an unspecified distribution with some mean µi and shape α. In the Cox
proportional hazards model, the distributional form of the duration times is unknown
and left unparameterized. Instead it uses the proportional hazards assumption to
model the set of (ordered) event times on particular covariates.

An important component of all survival models is the hazard function h(t), which
measures the probability of an observation not surviving past time t given survival up
to t. The hazard function is given by

hi(t) = λ(t)× λi

where λ(t) is the baseline hazard (when all covariates equal 0), which varies over t but
not over i, and λi is the parameterized part of the hazard function, which varies over
i but not over t (the proportional hazards assumption).

The model estimates the parameters without a distributional assumption on the du-
ration times by focusing on the occurrence of events and ignoring the time between
events. The data are reconceptualized from duration times to K discrete event times
such that each yi corresponds to exactly one event time ti. The model assumes that
no two yi have the same event times.

For each event time, denote R(ti) as the set of all observations j that are at risk at
ti. Given that an event occurred at ti, we are interested in the conditional probability
that the event occurred in observation i. The conditional probability is given by

Pr(yi = ti | an event at ti) =
hi(ti)∑

j∈R(ti)
hj(ti)

=
λ(ti) λi∑

j∈R(ti)
λ(ti) λj

=
λi∑

j∈R(ti)
λj

where the numerator denotes the probability of observation i experiencing the event
at ti and the denominator denotes the probability that an event occurred at ti.

� The systematic component λi is modeled as

λi = exp(xiβ)

where xi is the vector of explanatory variables, and β is the vector of coefficients.
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� Each risk set (and thus each event time) contributes one conditional probability to the
partial likelihood function, given by

L(β|y) =
K∏

i=1

[
exp(xiβ)∑

j∈R(ti)
exp(xjβ)

]ci

where ci is the binary censoring variable. Note that event times corresponding to
censored observations are not counted since their corresponding terms for the partial
likelihood are exponentiated to 0. However, all censored observations are considered
part of the risk sets R(ti) for all event times prior to their censoring, but otherwise
do not contribute to the partial likelihood. For an example, see Box-Steffensmeier and
Jones (2004, 53).

� In the case of the Cox model with time-varying covariates, the partial likelihood func-
tion is similarly given by

L(β|y) =
K∏

i=1

[
exp(xi(ti) β)∑

j∈R(ti)
exp(xj(ti) β)

]ci

where xi(ti) is the value of the covariates at time ti. Denote “cases” as the units in our
data. Each case is composed of one or more observations corresponding to different
values in one or more covariates. At each event time ti, the partial likelihood evaluates
the hazard of the case in which the event occurred in with its covariate values at ti (the
numerator) and the hazard of all the other cases at risk at ti (risk set R(ti)) with their
covariate values at ti (the denominator). See previous section for more information.

� Although the model assumes that there are no tied event times, in practice, data often
have tied event times due to imprecise measurement. There are three commonly used
methods to deal with tied event times.

– Breslow method: The Breslow method simply treats the risk set as the same
for all tied events in the risk set. Suppose observations 1 and 3 are tied in a
risk set of observations 1, 2, 3, and 4. Theoretically, if the event occurred in 1
before in 3, then the risk set for observation 3 would have dropped observation 1.
However, since we cannot tell which event occurred first, in the partial likelihood,
the risk set for observation 1 and observation 3 are the same, consisting of both
observations 1 and 3 as well as 2 and 4. For each risk set R(ti), let di equal the
number of tied events in the ith risk set and let Di denote the set of di tied events.
For risk sets with no tied events, di = 1. The approximate partial likelihood for
the Breslow method is given by

L(β|y) =
K∏

i=1

 ∏
i∈Di

exp(xiβ)[∑
j∈R(ti)

exp(xjβ)
]di


ci
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– Efron method: The Efron method is more precise because it tries to account
for how the risk set changes depending on the sequence of tied events. For an
intuition behind the Efron approximation, suppose as in the previous example
that observations 1 and 3 are tied in a risk set of observations 1, 2, 3, and 4.
If the event occurred in 1 before 3, then the risk set for the second event would
consist of observations {2, 3, 4}. On the other hand, if the event occurred in 3
before 1, then the risk set for the second event would consist of observations
{1, 2, 4}. Since both cases are equally plausible with the tied event times, the
Efron approximation suggests that the second risk set would consist of {2, 3, 4}
with 0.5 probability and {1, 2, 4} with 0.5 probability. The Efron approximate
partial likelihood is then given by

L(β|y) =
K∏

i=1

 ∏
i∈Di

exp(xiβ)∏di

r=1

[∑
j∈R(ti)

exp(xjβ)− r−1
di

∑
j∈Di

exp(xjβ)
]
ci

where r indexes Di, which is the set of di tied events for the ith risk set.

– Exact discrete method: Unlike the Breslow and Efron methods, which assume
a continuous time process, the exact discrete method assumes a discrete time
process where the tied events actually do occur at exactly the same time. The
method begins by assuming that the data are grouped into risk sets R(ti). In each
risk set and for each observation, denote a binary dependent variable which takes
on the value of 1 for each observation that experiences the event and 0 for each
observation that does not experience the event. Denote di as the number of 1s in
R(ti) and Di as the set of observations with 1s in R(ti). Di represents a specific
pattern of 0s and 1s (in our previous example, the specific pattern of 0s and 1s is
that observations 1 and 3 experienced an event while 2 and 4 did not, so Di is the
set {1, 3}). Then for each R(ti), we are interested in the conditional probability
of getting the specific pattern of 0s and 1s given the total number of 1s in R(ti).
Thus, the conditional probability for each risk set is given as

Pr(Di|di) =

∏
i∈Di

exp(xiβ)∑M
m=1

[∏
j∈Aim

exp(xjβ)
]

where Aim is a set of observations that represents one combination of di number
of 1s in R(ti). There are M possible combinations for each risk set. The partial
likelihood then takes the conditional probability over each i risk set. Note that the
exact discrete approximation method is equivalent to a conditional logit model.

Quantities of Interest

� The hazard ratio (qi$hr) is defined as

HR =
h(t | x1)

h(t | x)
=

λ(t) exp(x1β)

λ(t) exp(xβ)
=

exp(x1β)

exp(xβ)
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given draws of β from its sampling distribution, where x and x1 are values of the
independent variables chosen by the user. Typically, x and x1 should only differ over
one independent variable to interpret the effect of that variable on the hazard rate. In
a stratified Cox model, the strata should be the same in both x and x1.

� The survival function (qi$survival) is defined as the fraction of observations surviving
past time t. It is derived from the cumulative hazard function (exp(-cumhaz)). The
confidence interval of the survival function is drawn on the log(survival) scale.

� The cumulative hazard function (qi$cumhaz) is defined as -log(survival). Although
there is no direct interpretation, the cumulative hazard function is estimated from the
data and then other quantities of interest are derived from the cumulative hazard
function.

� The hazard function (qi$hazard) is defined as the probability of an observation not
surviving past time t given survival up to t. It is derived directly from the cumulative
hazard function.

� For MI data, if survival times are multiply imputed, we suggest having a larger number
of imputed datasets. Because the quantities of interest are derived semi-parametrically,
there may be instances in which survival times appear only in one or a small fraction
of the multiply imputed datasets, which may bias the results.

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, if you run z.out <- zelig(Surv(y,c) ~ x, model = "coxph", data), then you
may examine the available information in z.out by using names(z.out), see the coefficients
by using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– var: the variance-covariance matrix.

– residuals: the working residuals of the fit.

– loglik: the log-likelihood for the baseline and full models

– linear.predictors: a mean-adjusted linear predictor xiβ, where xi = xi −
mean(x).

� From summary(z.out), you may extract:

– coef: the parameter estimates with their associated standard errors, p-values,
and z-statistics.
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– conf.int: exp(β) and their associated confidence intervals.

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$hr: the simulated hazard ratios for the specified values of x and x1.

– qi$survival: the estimated survival function for the values specified in x.

– qi$cumhaz: the estimated cumulative hazard function for the values specified in
x.

– qi$hazard: the estimated hazard function for the values specified in x.

How To Cite

To cite the coxph Zelig model:

Patrick Lam. 2007. “coxph: Cox Proportional Hazards Regression for Duration
Dependent Variables,” in Kosuke Imai, Gary King, and Olivia Lau, “Zelig:
Everyone’s Statistical Software,” http://gking.harvard.edu/zelig.

See also

The Cox proportional hazards model is part of the survival library by Terry Therneau (Th-
erneau and Grambsch 2000), ported to R by Thomas Lumley. Advanced users may wish
to refer to help(coxph) and help(survfit) in the survival library. Sample data are from
King et al. (1990)
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