
0.1 ls.net: Network Least Squares Regression for Con-

tinuous Proximity Matrix Dependent Variables

Use network least squares regression analysis to estimate the best linear predictor when the
dependent variable is a continuously-valued proximity matrix (a.k.a. sociomatrices, adjacency
matrices, or matrix representations of directed graphs).

Syntax

> z.out <- zelig(y ~ x1 + x2, model = "ls.net", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Examples

1. Basic Example with First Differences

Load sample data and format it for social networkx analysis:

> data(sna.ex)

Estimate model:

> z.out <- zelig(Var1 ~ Var2 + Var3 + Var4, model = "ls.net", data = sna.ex)

Summarize regression results:

> summary(z.out)

Set explanatory variables to their default (mean/mode) values, with high (80th per-
centile) and low (20th percentile) for the second explanatory variable (Var3).

> x.high <- setx(z.out, Var3 = quantile(sna.ex$Var3, 0.8))

> x.low <- setx(z.out, Var3 = quantile(sna.ex$Var3, 0.2))

Generate first differences for the effect of high versus low values of Var3 on the outcome
variable.

> try(s.out <- sim(z.out, x = x.high, x1 = x.low))

> try(summary(s.out))

> plot(s.out)
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Model

The ls.net model performs a least squares regression of the sociomatrix Y, a m×m matrix
representing network ties, on a set of sociomatrices X. This network regression model is
a directly analogue to standard least squares regression element-wise on the appropriately
vectorized matrices. Sociomatrices are vectorized by creating Y , an m2×1 vector to represent
the sociomatrix. The vectorization which produces the Y vector from the Y matrix is
preformed by simple row-concatenation of Y. For example if Y is a 15× 15 matrix, the Y1,1

element is the first element of Y , and the Y21 element is the second element of Y and so on.
Once the input matrices are vectorized, standard least squares regression is performed. As
such:

� The stochastic component is described by a density with mean µi and the common
variance σ2

Yi ∼ f(yi|µi, σ
2).
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� The systematic component models the conditional mean as

µi = xiβ

where xi is the vector of covariates, and β is the vector of coefficients.

The least squares estimator is the best linear predictor of a dependent variable given xi, and
minimizes the sum of squared errors

∑n
i=1(Yi − xiβ)2.

Quantities of Interest

The quantities of interest for the network least squares regression are the same as those for
the standard least squares regression.

� The expected value (qi$ev) is the mean of simulations from the stochastic component,

E(Y ) = xiβ,

given a draw of β from its sampling distribution.

� The first difference (qi$fd) is:

FD = E(Y |x1)− E(Y |x)

Output Values

The output of each Zelig command contains useful information which you may view. For
example, you run z.out <- zelig(y x, model="ls.net", data), then you may exam-
ine the available information in z.out by using names(z.out), see the coefficients by us-
ing z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output stored in z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– fitted.values: the vector of fitted values for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– df.residual: the residual degrees of freedom.

– zelig.data: the input data frame if save.data = TRUE

� From summary(z.out), you may extract:

– mod.coefficients: the parameter estimates with their associated standard er-
rors, p-values, and t statistics.

β̂ =

(
n∑

i=1

x′
ixi

)−1∑
xiyi
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– sigma: the square root of the estimate variance of the random error ε:

σ̂ =

∑
(Yi − xiβ̂)2

n− k

– r.squared: the fraction of the variance explained by the model.

R2 = 1−
∑

(Yi − xiβ̂)2∑
(yi − ȳ)2

– adj.r.squared: the above R2 statistic, penalizing for an increased number of
explanatory variables.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output stored in s.out, you may extract:

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first differences (or differences in expected values) for the
specified values of x and x1.

How to Cite

To cite the ls.net Zelig model:

Skyler J. Cranmer. 2007. “ls.net: Network Least Squares Regression for Continu-
ous Proximity Matrix Dependent Variables,” in Kosuke Imai, Gary King, and
Olivia Lau,“Zelig: Everyone’s Statistical Software,”http://gking.harvard.
edu/zelig.

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Kosuke Imai, Gary King, and Olivia Lau. 2008. “Toward A Common Frame-
work for Statistical Analysis and Development,” Journal of Computational
and Graphical Statistics, forthcoming, http://gking.harvard.edu/files/
abs/z-abs.shtml.

See also

The network least squares regression is part of the sna package by Carter T. Butts (Butts
and Carley 2001).In addition, advanced users may wish to refer to help(netlm).
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