
0.1 factor.bayes: Bayesian Factor Analysis

Given some unobserved explanatory variables and observed dependent variables, the Normal
theory factor analysis model estimates the latent factors. The model is implemented using a
Markov Chain Monte Carlo algorithm (Gibbs sampling with data augmentation). For factor
analysis with ordinal dependent variables, see ordered factor analysis (Section ??), and for
a mix of types of dependent variables, see the mixed factor analysis model (Section ??).

Syntax

> z.out <- zelig(cbind(Y1 ,Y2, Y3) ~ NULL, factors = 2,

model = "factor.bayes", data = mydata)

Inputs

zelig() takes the following functions for factor.bayes:

� Y1, Y2, and Y3: variables of interest in factor analysis (manifest variables), assumed to
be normally distributed. The model requires a minimum of three manifest variables.

� factors: number of the factors to be fitted (defaults to 2).

Additional Inputs

In addition, zelig() accepts the following additional arguments for model specification:

� lambda.constraints: list containing the equality or inequality constraints on the
factor loadings. Choose from one of the following forms:

– varname = list(): by default, no constraints are imposed.

– varname = list(d, c): constrains the dth loading for the variable named varname

to be equal to c.

– varname = list(d, "+"): constrains the dth loading for the variable named
varname to be positive;

– varname = list(d, "-"): constrains the dth loading for the variable named
varname to be negative.

� std.var: defaults to FALSE (manifest variables are rescaled to zero mean, but retain
observed variance). If TRUE, the manifest variables are rescaled to be mean zero and
unit variance.

In addition, zelig() accepts the following additional inputs for bayes.factor:

� burnin: number of the initial MCMC iterations to be discarded (defaults to 1,000).

� mcmc: number of the MCMC iterations after burnin (defaults to 20,000).

1

� thin: thinning interval for the Markov chain. Only every thin-th draw from the
Markov chain is kept. The value of mcmc must be divisible by this value. The default
value is 1.

� verbose: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed
to the screen.

� seed: seed for the random number generator. The default is NA which corresponds to
a random seed 12345.

� Lambda.start: starting values of the factor loading matrix Λ, either a scalar (all un-
constrained loadings are set to that value), or a matrix with compatible dimensions.
The default is NA, where the start value are set to be 0 for unconstrained factor load-
ings, and 0.5 or −0.5 for constrained factor loadings (depending on the nature of the
constraints).

� Psi.start: starting values for the uniquenesses, either a scalar (the starting values for
all diagonal elements of Ψ are set to be this value), or a vector with length equal to
the number of manifest variables. In the latter case, the starting values of the diagonal
elements of Ψ take the values of Psi.start. The default value is NA where the starting
values of the all the uniquenesses are set to be 0.5.

� store.lambda: defaults to TRUE, which stores the posterior draws of the factor loadings.

� store.scores: defaults to FALSE. If TRUE, stores the posterior draws of the factor
scores. (Storing factor scores may take large amount of memory for a large number of
draws or observations.)

The model also accepts the following additional arguments to specify prior parameters:

� l0: mean of the Normal prior for the factor loadings, either a scalar or a matrix with
the same dimensions as Λ. If a scalar value, that value will be the prior mean for all
the factor loadings. Defaults to 0.

� L0: precision parameter of the Normal prior for the factor loadings, either a scalar or
a matrix with the same dimensions as Λ. If L0 takes a scalar value, then the precision
matrix will be a diagonal matrix with the diagonal elements set to that value. The
default value is 0, which leads to an improper prior.

� a0: the shape parameter of the Inverse Gamma prior for the uniquenesses is a0/2. It
can take a scalar value or a vector. The default value is 0.001.

� b0: the shape parameter of the Inverse Gamma prior for the uniquenesses is b0/2. It
can take a scalar value or a vector. The default value is 0.001.

Zelig users may wish to refer to help(MCMCfactanal) for more information.

2

Convergence

Users should verify that the Markov Chain converges to its stationary distribution. After
running the zelig() function but before performing setx(), users may conduct the following
convergence diagnostics tests:

� geweke.diag(z.out$coefficients): The Geweke diagnostic tests the null hypothesis
that the Markov chain is in the stationary distribution and produces z-statistics for
each estimated parameter.

� heidel.diag(z.out$coefficients): The Heidelberger-Welch diagnostic first tests
the null hypothesis that the Markov Chain is in the stationary distribution and pro-
duces p-values for each estimated parameter. Calling heidel.diag() also produces
output that indicates whether the mean of a marginal posterior distribution can be es-
timated with sufficient precision, assuming that the Markov Chain is in the stationary
distribution.

� raftery.diag(z.out$coefficients): The Raftery diagnostic indicates how long the
Markov Chain should run before considering draws from the marginal posterior distri-
butions sufficiently representative of the stationary distribution.

If there is evidence of non-convergence, adjust the values for burnin and mcmc and rerun
zelig().

Advanced users may wish to refer to help(geweke.diag), help(heidel.diag), and
help(raftery.diag) for more information about these diagnostics.

Examples

1. Basic Example
Attaching the sample dataset:

> data(swiss)

> names(swiss) <- c("Fert", "Agr", "Exam", "Educ", "Cath", "InfMort")

Factor analysis:

> z.out <- zelig(cbind(Agr, Exam, Educ, Cath, InfMort) ~ NULL,

+ model = "factor.bayes", data = swiss, factors = 2, verbose = TRUE,

+ a0 = 1, b0 = 0.15, burnin = 5000, mcmc = 50000)

Checking for convergence before summarizing the estimates:

> algor <- try(geweke.diag(z.out$coefficients), silent = T)

> if (class(algor) == "try-error") print(algor)

Since the algorithm did not converge, we now add some constraints on Λ.

3

2. Putting Constraints on Λ
Put constraints on Lambda to optimize the algorithm:

> z.out <- zelig(cbind(Agr, Exam, Educ, Cath, InfMort) ~ NULL,

+ model = "factor.bayes", data = swiss, factors = 2, lambda.constraints = list(Exam = list(1,

+ "+"), Exam = list(2, "-"), Educ = c(2, 0), InfMort = c(1,

+ 0)), verbose = TRUE, a0 = 1, b0 = 0.15, burnin = 5000,

+ mcmc = 50000)

> geweke.diag(z.out$coefficients)

> heidel.diag(z.out$coefficients)

> raftery.diag(z.out$coefficients)

> summary(z.out)

Model

Suppose for observation i we observe K variables and hypothesize that there are d underlying
factors such that:

Yi = Λφi + εi

where Yi is the vector of K manifest variables for observation i. Λ is the K×d factor loading
matrix and φi is the d-vector of latent factor scores. Both Λ and φ need to be estimated.

� The stochastic component is given by:

εi ∼ Normal(0, Ψ).

where Ψ is a diagonal, positive definite matrix. The diagonal elements of Ψ are referred
to as uniquenesses.

� The systematic component is given by

µi = E(Yi) = Λφi

� The independent conjugate prior for each Λij is given by

Λij ∼ Normal(l0ij
, L−1

0ij
) for i = 1, . . . , k; j = 1, . . . , d.

� The independent conjugate prior for each Ψii is given by

Ψii ∼ InverseGamma(
a0

2
,
b0

2
), for i = 1, . . . , k.

� The prior for φi is

φi ∼ Normal(0, Id), for i = 1, . . . , n.

where Id is a d× d identity matrix.

4

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run:

z.out <- zelig(cbind(Y1, Y2, Y3), model = "factor.bayes", data)

then you may examine the available information in z.out by using names(z.out), see the
draws from the posterior distribution of the coefficients by using z.out$coefficients,
and view a default summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the estimated factor
loadings and the uniquenesses. If store.scores = TRUE, the estimated factors
scores are also contained in coefficients.

– data: the name of the input data frame.

– seed: the random seed used in the model.

� Since there are no explanatory variables, the sim() procedure is not applicable for
factor analysis models.

How to Cite

To cite the factor.bayes Zelig model:

Ben Goodrich and Ying Lu. 2007. “factor.bayes: Bayesian Factor Analysis,”
in Kosuke Imai, Gary King, and Olivia Lau, “Zelig: Everyone’s Statistical
Software,” http://gking.harvard.edu/zelig.

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Kosuke Imai, Gary King, and Olivia Lau. 2008. “Toward A Common Frame-
work for Statistical Analysis and Development,” Journal of Computational
and Graphical Statistics, forthcoming, http://gking.harvard.edu/files/
abs/z-abs.shtml.

5

http://gking.harvard.edu/zelig
http://GKing.harvard.edu/zelig
http://gking.harvard.edu/files/abs/z-abs.shtml
http://gking.harvard.edu/files/abs/z-abs.shtml

	factor.bayes: Bayesian Factor Analysis

