
Xenomai POSIX skin API
2.4.4

Generated by Doxygen 1.5.5

Sun Jun 8 18:09:10 2008

Contents

1 Module Index 1

1.1 Modules . 1

2 File Index 3

2.1 File List . 3

3 Module Documentation 5

3.1 Thread cancellation. 5

3.2 Clocks and timers services. 10

3.3 Condition variables services. 18

3.4 Interruptions management services. 26

3.5 POSIX skin. 30

3.6 Message queues services. 32

3.7 Mutex services. 41

3.8 Threads scheduling services. 51

3.9 Semaphores services. 55

3.10 Shared memory services. 62

3.11 Signals services. 68

3.12 Threads management services. 77

3.13 Thread creation attributes. 84

3.14 Thread-specific data. 96

4 File Documentation 99

4.1 ksrc/skins/posix/syscall.c File Reference . 99

Chapter 1

Module Index

1.1 Modules

Here is a list of all modules:

POSIX skin. 30
Clocks and timers services. 10
Condition variables services. 18
Interruptions management services. 26
Message queues services. 32
Mutex services. 41
Semaphores services. 55
Shared memory services. 62
Signals services. 68
Threads management services. 77

Thread cancellation. 5
Threads scheduling services. 51
Thread creation attributes. 84

Thread-specific data. 96

2 Module Index

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

Chapter 2

File Index

2.1 File List

Here is a list of all documented files with brief descriptions:

ksrc/skins/posix/apc.h . ??
ksrc/skins/posix/cancel.h . ??
ksrc/skins/posix/cond.h . ??
ksrc/skins/posix/internal.h . ??
ksrc/skins/posix/intr.h . ??
ksrc/skins/posix/mq.h . ??
ksrc/skins/posix/mutex.h . ??
ksrc/skins/posix/registry.h . ??
ksrc/skins/posix/sem.h . ??
ksrc/skins/posix/shm.h . ??
ksrc/skins/posix/sig.h . ??
ksrc/skins/posix/syscall.c (This file is part of the Xenomai project) 99
ksrc/skins/posix/thread.h . ??
ksrc/skins/posix/timer.h . ??
ksrc/skins/posix/tsd.h . ??

4 File Index

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

Chapter 3

Module Documentation

3.1 Thread cancellation.

Collaboration diagram for Thread cancellation.:

Threads management services. Thread cancellation.

3.1.1 Detailed Description

Thread cancellation.

Cancellation is the mechanism by which a thread can terminate the execution of a Xenomai POSIX
skin thread (created with pthread_create()). More precisely, a thread can send a cancellation
request to a Xenomai POSIX skin thread and depending on its cancelability type (see pthread_-
setcanceltype()) and state (see pthread_setcancelstate()), the target thread can then either ignore
the request, honor it immediately, or defer it till it reaches a cancellation point. When threads are
first created by pthread_create(), they always defer cancellation requests.

When a thread eventually honors a cancellation request, it behaves as if pthread_exit(PTHREAD_-
CANCELED) was called. All cleanup handlers are executed in reverse order, finalization functions
for thread-specific data are called, and finally the thread stops executing. If the canceled thread
was joinable, the return value PTHREAD_CANCELED is provided to whichever thread calls
pthread_join() on it. See pthread_exit() for more information.

Cancellation points are the points where the thread checks for pending cancellation requests and
performs them. The POSIX threads functions pthread_join(), pthread_cond_wait(), pthread_-
cond_timedwait(), pthread_testcancel(), sem_wait(), sem_timedwait(), sigwait(), sigwaitinfo()
and sigtimedwait() are cancellation points.

See also:

Specification.

Functions

• int pthread_cancel (pthread_t thread)

http://www.opengroup.org/onlinepubs/000095399/functions/xsh_chap02_09.html#tag_02_09_05

6 Module Documentation

Cancel a thread.

• void pthread_cleanup_push (cleanup_routine_t ∗routine, void ∗arg)
Register a cleanup handler to be executed at the time of cancellation.

• void pthread_cleanup_pop (int execute)
Unregister the last registered cleanup handler.

• int pthread_setcanceltype (int type, int ∗oldtype_ptr)
Set cancelability type of the current thread.

• int pthread_setcancelstate (int state, int ∗oldstate_ptr)
Set cancelability state of the current thread.

• void pthread_testcancel (void)
Test if a cancellation request is pending.

3.1.2 Function Documentation

3.1.2.1 int pthread_cancel (pthread_t thread)

Cancel a thread.

This service sends a cancellation request to the thread thread and returns immediately. Depending
on the target thread cancelability state (see pthread_setcancelstate()) and type (see pthread_-
setcanceltype()), its termination is either immediate, deferred or ignored.

When the cancellation request is handled and before the thread is terminated, the cancellation
cleanup handlers (registered with the pthread_cleanup_push() service) are called, then the thread-
specific data destructor functions (registered with pthread_key_create()).

Returns:

0 on success;
an error number if:

• ESRCH, the thread thread was not found.

See also:

Specification.

3.1.2.2 void pthread_cleanup_pop (int execute)

Unregister the last registered cleanup handler.

If the calling thread is a Xenomai POSIX skin thread (i.e. created with pthread_create()), this
service unregisters the last routine which was registered with pthread_cleanup_push() and call it
if execute is not null.

If the caller context is invalid (not a Xenomai POSIX skin thread), this service has no effect.

This service may be called at any place, but for maximal portability, should only called in the
same lexical scope as the matching call to pthread_cleanup_push().

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_cancel.html

3.1 Thread cancellation. 7

Parameters:

execute if non zero, the last registered cleanup handler should be executed before it is un-
registered.

Valid contexts:

• Xenomai POSIX skin kernel-space thread,
• Xenomai POSIX skin user-space thread (switches to primary mode).

See also:

Specification.

3.1.2.3 void pthread_cleanup_push (cleanup_routine_t ∗ routine, void ∗ arg)

Register a cleanup handler to be executed at the time of cancellation.

This service registers the given routine to be executed a the time of cancellation of the calling
thread, if this thread is a Xenomai POSIX skin thread (i.e. created with the pthread_create()
service). If the caller context is invalid (not a Xenomai POSIX skin thread), this service has no
effect.

If allocation from the system heap fails (because the system heap size is to small), this service fails
silently.

The routines registered with this service get called in LIFO order when the calling thread calls
pthread_exit() or is canceled, or when it calls the pthread_cleanup_pop() service with a non null
argument.

Parameters:

routine the cleanup routine to be registered;
arg the argument associated with this routine.

Valid contexts:

• Xenomai POSIX skin kernel-space thread,
• Xenomai POSIX skin user-space thread (switches to primary mode).

See also:

Specification.

3.1.2.4 int pthread_setcancelstate (int state, int ∗ oldstate_ptr)

Set cancelability state of the current thread.

This service atomically set the cancelability state of the calling thread and returns its previous
value at the address oldstate_ptr, if the calling thread is a Xenomai POSIX skin thread (i.e. created
with the pthread_create service).

The cancelability state of a POSIX thread may be:

• PTHREAD_CANCEL_ENABLE, meaning that cancellation requests will be handled if re-
ceived;

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_cleanup_pop.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_cleanup_push.html

8 Module Documentation

• PTHREAD_CANCEL_DISABLE, meaning that cancellation requests will not be handled if
received.

Parameters:

state new cancelability state of the calling thread;

oldstate_ptr address where the old cancelability state will be stored on success.

Returns:

0 on success;
an error number if:

• EINVAL, state is not a valid cancelability state;

• EPERM, the caller context is invalid.

Valid contexts:

• Xenomai POSIX skin kernel-space thread,

• Xenomai POSIX skin user-space thread (switches to primary mode).

See also:

Specification.

3.1.2.5 int pthread_setcanceltype (int type, int ∗ oldtype_ptr)

Set cancelability type of the current thread.

This service atomically sets the cancelability type of the calling thread, and return its previous
value at the address oldtype_ptr, if this thread is a Xenomai POSIX skin thread (i.e. was created
with the pthread_create() service).

The cancelability type of a POSIX thread may be:

• PTHREAD_CANCEL_DEFERRED, meaning that cancellation requests are only handled in
services which are cancellation points;

• PTHREAD_CANCEL_ASYNCHRONOUS, meaning that cancellation requests are handled
as soon as they are sent.

Parameters:

type new cancelability type of the calling thread;

oldtype_ptr address where the old cancelability type will be stored on success.

Returns:

0 on success;
an error number if:

• EINVAL, type is not a valid cancelability type;

• EPERM, the caller context is invalid.

Valid contexts:

• Xenomai POSIX skin kernel-space thread,

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_setcancelstate.html

3.1 Thread cancellation. 9

• Xenomai POSIX skin user-space thread (switches to primary mode).

See also:

Specification.

3.1.2.6 void pthread_testcancel (void)

Test if a cancellation request is pending.

This function creates a cancellation point if the calling thread is a Xenomai POSIX skin thread (i.e.
created with the pthread_create() service).

This function is a cancellation point. It has no effect if cancellation is disabled.

Valid contexts:

• Xenomai POSIX skin kernel-space thread,

• Xenomai POSIX skin user-space thread (switches to primary mode).

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_setcanceltype.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_testcancel.html

10 Module Documentation

3.2 Clocks and timers services.

Collaboration diagram for Clocks and timers services.:

POSIX skin. Clocks and timers services.

3.2.1 Detailed Description

Clocks and timers services.

Xenomai POSIX skin supports two clocks:

CLOCK_REALTIME maps to the nucleus system clock, keeping time as the amount of time since
the Epoch, with a resolution of one system clock tick.

CLOCK_MONOTONIC maps to an architecture-dependent high resolution counter, so is suitable
for measuring short time intervals. However, when used for sleeping (with clock_nanosleep()),
the CLOCK_MONOTONIC clock has a resolution of one system clock tick, like the CLOCK_-
REALTIME clock.

Timer objects may be created with the timer_create() service using either of the two clocks, but
the resolution of these timers is one system clock tick, as is the case for clock_nanosleep().

Note:

The duration of the POSIX clock tick depends on the active time base (configurable at compile-
time with the constant CONFIG_XENO_OPT_POSIX_PERIOD, and at run-time with the
xeno_posix module parameter tick_arg). When the time base is aperiodic (which is the default)
the system clock tick is one nanosecond.

See also:

Specification.

Functions

• int clock_getres (clockid_t clock_id, struct timespec ∗res)
Get the resolution of the specified clock.

• int clock_gettime (clockid_t clock_id, struct timespec ∗tp)
Read the specified clock.

• int clock_settime (clockid_t clock_id, const struct timespec ∗tp)
Set the specified clock.

• int clock_nanosleep (clockid_t clock_id, int flags, const struct timespec ∗rqtp, struct timespec
∗rmtp)

Sleep some amount of time.

• int nanosleep (const struct timespec ∗rqtp, struct timespec ∗rmtp)
Sleep some amount of time.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/xsh_chap02_08.html#tag_02_08_05

3.2 Clocks and timers services. 11

• int timer_create (clockid_t clockid, const struct sigevent ∗__restrict__ evp, timer_t ∗__-
restrict__ timerid)

Create a timer object.

• int timer_delete (timer_t timerid)
Delete a timer object.

• int timer_settime (timer_t timerid, int flags, const struct itimerspec ∗__restrict__ value, struct
itimerspec ∗__restrict__ ovalue)

Start or stop a timer.

• int timer_gettime (timer_t timerid, struct itimerspec ∗value)
Get timer next expiration date and reload value.

• int timer_getoverrun (timer_t timerid)
Get expiration overruns count since the most recent timer expiration signal delivery.

3.2.2 Function Documentation

3.2.2.1 int clock_getres (clockid_t clock_id, struct timespec ∗ res)

Get the resolution of the specified clock.

This service returns, at the address res, if it is not NULL, the resolution of the clock clock_id.

For both CLOCK_REALTIME and CLOCK_MONOTONIC, this resolution is the duration of one
system clock tick. No other clock is supported.

Parameters:

clock_id clock identifier, either CLOCK_REALTIME or CLOCK_MONOTONIC;

res the address where the resolution of the specified clock will be stored on success.

Return values:

0 on success;

-1 with errno set if:

• EINVAL, clock_id is invalid;

See also:

Specification.

3.2.2.2 int clock_gettime (clockid_t clock_id, struct timespec ∗ tp)

Read the specified clock.

This service returns, at the address tp the current value of the clock clock_id. If clock_id is:

• CLOCK_REALTIME, the clock value represents the amount of time since the Epoch, with a
precision of one system clock tick;

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/clock_getres.html

12 Module Documentation

• CLOCK_MONOTONIC, the clock value is given by an architecture-dependent high resolu-
tion counter, with a precision independent from the system clock tick duration.

Parameters:

clock_id clock identifier, either CLOCK_REALTIME or CLOCK_MONOTONIC;

tp the address where the value of the specified clock will be stored.

Return values:

0 on success;

-1 with errno set if:

• EINVAL, clock_id is invalid.

See also:

Specification.

3.2.2.3 int clock_nanosleep (clockid_t clock_id, int flags, const struct timespec ∗ rqtp, struct
timespec ∗ rmtp)

Sleep some amount of time.

This service suspends the calling thread until the wakeup time specified by rqtp, or a signal is
delivered to the caller. If the flag TIMER_ABSTIME is set in the flags argument, the wakeup time
is specified as an absolute value of the clock clock_id. If the flag TIMER_ABSTIME is not set, the
wakeup time is specified as a time interval.

If this service is interrupted by a signal, the flag TIMER_ABSTIME is not set, and rmtp is not
NULL, the time remaining until the specified wakeup time is returned at the address rmtp.

The resolution of this service is one system clock tick.

Parameters:

clock_id clock identifier, either CLOCK_REALTIME or CLOCK_MONOTONIC.

flags one of:

• 0 meaning that the wakeup time rqtp is a time interval;
• TIMER_ABSTIME, meaning that the wakeup time is an absolute value of the clock

clock_id.

rqtp address of the wakeup time.

rmtp address where the remaining time before wakeup will be stored if the service is inter-
rupted by a signal.

Returns:

0 on success;
an error number if:

• EPERM, the caller context is invalid;

• ENOTSUP, the specified clock is unsupported;

• EINVAL, the specified wakeup time is invalid;

• EINTR, this service was interrupted by a signal.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/clock_gettime.html

3.2 Clocks and timers services. 13

Valid contexts:

• Xenomai kernel-space thread,

• Xenomai user-space thread (switches to primary mode).

See also:

Specification.

Referenced by nanosleep().

3.2.2.4 int clock_settime (clockid_t clock_id, const struct timespec ∗ tp)

Set the specified clock.

This allow setting the CLOCK_REALTIME clock.

Parameters:

clock_id the id of the clock to be set, only CLOCK_REALTIME is supported.

tp the address of a struct timespec specifying the new date.

Return values:

0 on success;

-1 with errno set if:

• EINVAL, clock_id is not CLOCK_REALTIME;
• EINVAL, the date specified by tp is invalid.

See also:

Specification.

3.2.2.5 int nanosleep (const struct timespec ∗ rqtp, struct timespec ∗ rmtp)

Sleep some amount of time.

This service suspends the calling thread until the wakeup time specified by rqtp, or a signal is
delivered. The wakeup time is specified as a time interval.

If this service is interrupted by a signal and rmtp is not NULL, the time remaining until the
specified wakeup time is returned at the address rmtp.

The resolution of this service is one system clock tick.

Parameters:

rqtp address of the wakeup time.

rmtp address where the remaining time before wakeup will be stored if the service is inter-
rupted by a signal.

Return values:

0 on success;

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/clock_nanosleep.html
http://www.opengroup.org/onlinepubs/000095399/functions/clock_settime.html

14 Module Documentation

-1 with errno set if:

• EPERM, the caller context is invalid;
• EINVAL, the specified wakeup time is invalid;
• EINTR, this service was interrupted by a signal.

Valid contexts:

• Xenomai kernel-space thread,

• Xenomai user-space thread (switches to primary mode).

See also:

Specification.

References clock_nanosleep().

3.2.2.6 int timer_create (clockid_t clockid, const struct sigevent ∗__restrict__ evp, timer_t
∗__restrict__ timerid)

Create a timer object.

This service creates a time object using the clock clockid.

If evp is not NULL, it describes the notification mechanism used on timer expiration. Only
notification via signal delivery is supported (member sigev_notify of evp set to SIGEV_SIGNAL).
The signal will be sent to the thread starting the timer with the timer_settime() service. If evp is
NULL, the SIGALRM signal will be used.

Note that signals sent to user-space threads will cause them to switch to secondary mode.

If this service succeeds, an identifier for the created timer is returned at the address timerid. The
timer is unarmed until started with the timer_settime() service.

Parameters:

clockid clock used as a timing base;

evp description of the asynchronous notification to occur when the timer expires;

timerid address where the identifier of the created timer will be stored on success.

Return values:

0 on success;

-1 with errno set if:

• EINVAL, the clock clockid is invalid;
• EINVAL, the member sigev_notify of the sigevent structure at the address evp is not

SIGEV_SIGNAL;
• EINVAL, the member sigev_signo of the sigevent structure is an invalid signal num-

ber;
• EAGAIN, the maximum number of timers was exceeded, recompile with a larger

value.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/nanosleep.html
http://www.opengroup.org/onlinepubs/000095399/functions/timer_create.html

3.2 Clocks and timers services. 15

3.2.2.7 int timer_delete (timer_t timerid)

Delete a timer object.

This service deletes the timer timerid.

Parameters:

timerid identifier of the timer to be removed;

Return values:

0 on success;

-1 with errno set if:

• EINVAL, timerid is invalid;
• EPERM, the timer timerid does not belong to the current process.

See also:

Specification.

3.2.2.8 int timer_getoverrun (timer_t timerid)

Get expiration overruns count since the most recent timer expiration signal delivery.

This service returns timerid expiration overruns count since the most recent timer expiration
signal delivery. If this count is more than DELAYTIMER_MAX expirations, DELAYTIMER_MAX
is returned.

Parameters:

timerid Timer identifier.

Returns:

the overruns count on success;
-1 with errno set if:

• EINVAL, timerid is invalid;

• EPERM, the timer timerid does not belong to the current process.

See also:

Specification.

3.2.2.9 int timer_gettime (timer_t timerid, struct itimerspec ∗ value)

Get timer next expiration date and reload value.

This service stores, at the address value, the expiration date (member it_value) and reload value
(member it_interval) of the timer timerid. The values are returned as time intervals, and as multiples
of the system clock tick duration (see note in section Clocks and timers services for details on the
duration of the system clock tick). If the timer was not started, the returned members it_value and
it_interval of value are zero.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/timer_delete.html
http://www.opengroup.org/onlinepubs/000095399/functions/timer_getoverrun.html

16 Module Documentation

Parameters:

timerid timer identifier;

value address where the timer expiration date and reload value are stored on success.

Return values:

0 on success;

-1 with errno set if:

• EINVAL, timerid is invalid;
• EPERM, the timer timerid does not belong to the current process.

See also:

Specification.

3.2.2.10 int timer_settime (timer_t timerid, int flags, const struct itimerspec ∗__restrict__
value, struct itimerspec ∗__restrict__ ovalue)

Start or stop a timer.

This service sets a timer expiration date and reload value of the timer timerid. If ovalue is not
NULL, the current expiration date and reload value are stored at the address ovalue as with
timer_gettime().

If the member it_value of the itimerspec structure at value is zero, the timer is stopped, otherwise
the timer is started. If the member it_interval is not zero, the timer is periodic. The current thread
must be a POSIX skin thread (created with pthread_create()) and will be notified via signal of timer
expirations. Note that these notifications will cause user-space threads to switch to secondary
mode.

When starting the timer, if flags is TIMER_ABSTIME, the expiration value is interpreted as an
absolute date of the clock passed to the timer_create() service. Otherwise, the expiration value is
interpreted as a time interval.

Expiration date and reload value are rounded to an integer count of system clock ticks (see note
in section Clocks and timers services for details on the duration of the system tick).

Parameters:

timerid identifier of the timer to be started or stopped;

flags one of 0 or TIMER_ABSTIME;

value address where the specified timer expiration date and reload value are read;

ovalue address where the specified timer previous expiration date and reload value are
stored if not NULL.

Return values:

0 on success;

-1 with errno set if:

• EPERM, the caller context is invalid;
• EINVAL, the specified timer identifier, expiration date or reload value is invalid;
• EPERM, the timer timerid does not belong to the current process.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/timer_gettime.html

3.2 Clocks and timers services. 17

Valid contexts:

• Xenomai kernel-space POSIX skin thread,

• kernel-space thread cancellation cleanup routine,

• Xenomai POSIX skin user-space thread (switches to primary mode),

• user-space thread cancellation cleanup routine.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/timer_settime.html

18 Module Documentation

3.3 Condition variables services.

Collaboration diagram for Condition variables services.:

POSIX skin. Condition variables services.

3.3.1 Detailed Description

Condition variables services.

A condition variable is a synchronization object that allows threads to suspend execution until
some predicate on shared data is satisfied. The basic operations on conditions are: signal the
condition (when the predicate becomes true), and wait for the condition, suspending the thread
execution until another thread signals the condition.

A condition variable must always be associated with a mutex, to avoid the race condition where
a thread prepares to wait on a condition variable and another thread signals the condition just
before the first thread actually waits on it.

Before it can be used, a condition variable has to be initialized with pthread_cond_init(). An
attribute object, which reference may be passed to this service, allows to select the features of
the created condition variable, namely the clock used by the pthread_cond_timedwait() service
(CLOCK_REALTIME is used by default), and whether it may be shared between several processes
(it may not be shared by default, see pthread_condattr_setpshared()).

Note that only pthread_cond_init() may be used to initialize a condition variable, using the static
initializer PTHREAD_COND_INITIALIZER is not supported.

Functions

• int pthread_cond_init (pthread_cond_t ∗cnd, const pthread_condattr_t ∗attr)
Initialize a condition variable.

• int pthread_cond_destroy (pthread_cond_t ∗cnd)
Destroy a condition variable.

• int pthread_cond_wait (pthread_cond_t ∗cnd, pthread_mutex_t ∗mx)
Wait on a condition variable.

• int pthread_cond_timedwait (pthread_cond_t ∗cnd, pthread_mutex_t ∗mx, const struct
timespec ∗abstime)

Wait a bounded time on a condition variable.

• int pthread_cond_signal (pthread_cond_t ∗cnd)
Signal a condition variable.

• int pthread_cond_broadcast (pthread_cond_t ∗cnd)
Broadcast a condition variable.

• int pthread_condattr_init (pthread_condattr_t ∗attr)
Initialize a condition variable attributes object.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

3.3 Condition variables services. 19

• int pthread_condattr_destroy (pthread_condattr_t ∗attr)
Destroy a condition variable attributes object.

• int pthread_condattr_getclock (const pthread_condattr_t ∗attr, clockid_t ∗clk_id)
Get the clock selection attribute from a condition variable attributes object.

• int pthread_condattr_setclock (pthread_condattr_t ∗attr, clockid_t clk_id)
Set the clock selection attribute of a condition variable attributes object.

• int pthread_condattr_getpshared (const pthread_condattr_t ∗attr, int ∗pshared)
Get the process-shared attribute from a condition variable attributes object.

• int pthread_condattr_setpshared (pthread_condattr_t ∗attr, int pshared)
Set the process-shared attribute of a condition variable attributes object.

3.3.2 Function Documentation

3.3.2.1 int pthread_cond_broadcast (pthread_cond_t ∗ cnd)

Broadcast a condition variable.

This service unblocks all threads blocked on the condition variable cnd.

Parameters:

cnd the condition variable to be signalled.

Returns:

0 on succes,
an error number if:

• EINVAL, the condition variable is invalid;

• EPERM, the condition variable is not process-shared and does not belong to the current
process.

See also:

Specification.

3.3.2.2 int pthread_cond_destroy (pthread_cond_t ∗ cnd)

Destroy a condition variable.

This service destroys the condition variable cnd, if no thread is currently blocked on it. The
condition variable becomes invalid for all condition variable services (they all return the EINVAL
error) except pthread_cond_init().

Parameters:

cnd the condition variable to be destroyed.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_cond_broadcast.html

20 Module Documentation

Returns:

0 on succes,
an error number if:

• EINVAL, the condition variable cnd is invalid;

• EPERM, the condition variable is not process-shared and does not belong to the current
process;

• EBUSY, some thread is currently using the condition variable.

See also:

Specification.

3.3.2.3 int pthread_cond_init (pthread_cond_t ∗ cnd, const pthread_condattr_t ∗ attr)

Initialize a condition variable.

This service initializes the condition variable cnd, using the condition variable attributes object
attr. If attr is NULL or this service is called from user-space, default attributes are used (see
pthread_condattr_init()).

Parameters:

cnd the condition variable to be initialized;

attr the condition variable attributes object.

Returns:

0 on succes,
an error number if:

• EINVAL, the condition variable attributes object attr is invalid or uninitialized;

• EBUSY, the condition variable cnd was already initialized;

• ENOMEM, insufficient memory exists in the system heap to initialize the condition
variable, increase CONFIG_XENO_OPT_SYS_HEAPSZ.

See also:

Specification.

3.3.2.4 int pthread_cond_signal (pthread_cond_t ∗ cnd)

Signal a condition variable.

This service unblocks one thread blocked on the condition variable cnd.

If more than one thread is blocked on the specified condition variable, the highest priority thread
is unblocked.

Parameters:

cnd the condition variable to be signalled.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_cond_destroy.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_cond_init.html

3.3 Condition variables services. 21

Returns:

0 on succes,
an error number if:

• EINVAL, the condition variable is invalid;

• EPERM, the condition variable is not process-shared and does not belong to the current
process.

See also:

Specification.

3.3.2.5 int pthread_cond_timedwait (pthread_cond_t ∗ cnd, pthread_mutex_t ∗ mx, const
struct timespec ∗ abstime)

Wait a bounded time on a condition variable.

This service is equivalent to pthread_cond_wait(), except that the calling thread remains blocked
on the condition variable cnd only until the timeout specified by abstime expires.

The timeout abstime is expressed as an absolute value of the clock attribute passed to pthread_-
cond_init(). By default, CLOCK_REALTIME is used.

Parameters:

cnd the condition variable to wait for;

mx the mutex associated with cnd;

abstime the timeout, expressed as an absolute value of the clock attribute passed to pthread_-
cond_init().

Returns:

0 on success,
an error number if:

• EPERM, the caller context is invalid;

• EPERM, the specified condition variable is not process-shared and does not belong to
the current process;

• EINVAL, the specified condition variable, mutex or timeout is invalid;

• EINVAL, another thread is currently blocked on cnd using another mutex than mx;

• EPERM, the specified mutex is not owned by the caller;

• ETIMEDOUT, the specified timeout expired.

Valid contexts:

• Xenomai kernel-space thread;

• Xenomai user-space thread (switches to primary mode).

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_cond_signal.html.
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_cond_timedwait.html

22 Module Documentation

3.3.2.6 int pthread_cond_wait (pthread_cond_t ∗ cnd, pthread_mutex_t ∗ mx)

Wait on a condition variable.

This service atomically unlocks the mutex mx, and block the calling thread until the condition
variable cnd is signalled using pthread_cond_signal() or pthread_cond_broadcast(). When the
condition is signaled, this service re-acquire the mutex before returning.

Spurious wakeups occur if a signal is delivered to the blocked thread, so, an application should
not assume that the condition changed upon successful return from this service.

Even if the mutex mx is recursive and its recursion count is greater than one on entry, it is unlocked
before blocking the caller, and the recursion count is restored once the mutex is re-acquired by
this service before returning.

Once a thread is blocked on a condition variable, a dynamic binding is formed between the
condition vairable cnd and the mutex mx; if another thread calls this service specifying cnd as a
condition variable but another mutex than mx, this service returns immediately with the EINVAL
status.

This service is a cancellation point for Xenomai POSIX skin threads (created with the pthread_-
create() service). When such a thread is cancelled while blocked in a call to this service, the mutex
mx is re-acquired before the cancellation cleanup handlers are called.

Parameters:

cnd the condition variable to wait for;

mx the mutex associated with cnd.

Returns:

0 on success,
an error number if:

• EPERM, the caller context is invalid;

• EINVAL, the specified condition variable or mutex is invalid;

• EPERM, the specified condition variable is not process-shared and does not belong to
the current process;

• EINVAL, another thread is currently blocked on cnd using another mutex than mx;

• EPERM, the specified mutex is not owned by the caller.

Valid contexts:

• Xenomai kernel-space thread;

• Xenomai user-space thread (switches to primary mode).

See also:

Specification.

3.3.2.7 int pthread_condattr_destroy (pthread_condattr_t ∗ attr)

Destroy a condition variable attributes object.

This service destroys the condition variable attributes object attr. The object becomes invalid for
all condition variable services (they all return EINVAL) except pthread_condattr_init().

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_cond_wait.html

3.3 Condition variables services. 23

Parameters:

attr the initialized mutex attributes object to be destroyed.

Returns:

0 on success;
an error number if:

• EINVAL, the mutex attributes object attr is invalid.

See also:

Specification.

3.3.2.8 int pthread_condattr_getclock (const pthread_condattr_t ∗ attr, clockid_t ∗ clk_id)

Get the clock selection attribute from a condition variable attributes object.

This service stores, at the address clk_id, the value of the clock attribute in the condition variable
attributes object attr.

See pthread_cond_timedwait() documentation for a description of the effect of this attribute on a
condition variable. The clock ID returned is CLOCK_REALTIME or CLOCK_MONOTONIC.

Parameters:

attr an initialized condition variable attributes object,

clk_id address where the clock attribute value will be stored on success.

Returns:

0 on success,
an error number if:

• EINVAL, the attribute object attr is invalid.

See also:

Specification.

3.3.2.9 int pthread_condattr_getpshared (const pthread_condattr_t ∗ attr, int ∗ pshared)

Get the process-shared attribute from a condition variable attributes object.

This service stores, at the address pshared, the value of the pshared attribute in the condition
variable attributes object attr.

The pshared attribute may only be one of PTHREAD_PROCESS_PRIVATE or PTHREAD_-
PROCESS_SHARED. See pthread_condattr_setpshared() for the meaning of these two constants.

Parameters:

attr an initialized condition variable attributes object.

pshared address where the value of the pshared attribute will be stored on success.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_condattr_destroy.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_condattr_getclock.html

24 Module Documentation

Returns:

0 on success,
an error number if:

• EINVAL, the pshared address is invalid;

• EINVAL, the condition variable attributes object attr is invalid.

See also:

Specification.

3.3.2.10 int pthread_condattr_init (pthread_condattr_t ∗ attr)

Initialize a condition variable attributes object.

This services initializes the condition variable attributes object attr with default values for all
attributes. Default value are:

• for the clock attribute, CLOCK_REALTIME;

• for the pshared attribute PTHREAD_PROCESS_PRIVATE.

If this service is called specifying a condition variable attributes object that was already initialized,
the attributes object is reinitialized.

Parameters:

attr the condition variable attributes object to be initialized.

Returns:

0 on success;
an error number if:

• ENOMEM, the condition variable attribute object pointer attr is NULL.

See also:

Specification.

3.3.2.11 int pthread_condattr_setclock (pthread_condattr_t ∗ attr, clockid_t clk_id)

Set the clock selection attribute of a condition variable attributes object.

This service set the clock attribute of the condition variable attributes object attr.

See pthread_cond_timedwait() documentation for a description of the effect of this attribute on a
condition variable.

Parameters:

attr an initialized condition variable attributes object,

clk_id value of the clock attribute, may be CLOCK_REALTIME or CLOCK_MONOTONIC.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_condattr_getpshared.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_condattr_init.html

3.3 Condition variables services. 25

Returns:

0 on success,
an error number if:

• EINVAL, the condition variable attributes object attr is invalid;

• EINVAL, the value of clk_id is invalid for the clock attribute.

See also:

Specification.

3.3.2.12 int pthread_condattr_setpshared (pthread_condattr_t ∗ attr, int pshared)

Set the process-shared attribute of a condition variable attributes object.

This service set the pshared attribute of the condition variable attributes object attr.

Parameters:

attr an initialized condition variable attributes object.

pshared value of the pshared attribute, may be one of:

• PTHREAD_PROCESS_PRIVATE, meaning that a condition variable created with
the attributes object attr will only be accessible by threads within the same process
as the thread that initialized the condition variable;

• PTHREAD_PROCESS_SHARED, meaning that a condition variable created with
the attributes object attr will be accessible by any thread that has access to the
memory where the condition variable is allocated.

Returns:

0 on success,
an error status if:

• EINVAL, the condition variable attributes object attr is invalid;

• EINVAL, the value of pshared is invalid.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_condattr_setclock.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_condattr_setpshared.html

26 Module Documentation

3.4 Interruptions management services.

Collaboration diagram for Interruptions management services.:

POSIX skin. Interruptions management services.

3.4.1 Detailed Description

Interruptions management services.

The services described here allow applications written using the POSIX skin to handle interrupts,
either in kernel-space or in user-space.

Note however, that it is recommended to use the standardized driver API of the RTDM skin (see
rtdm).

Functions

• int pthread_intr_attach_np (pthread_intr_t ∗intrp, unsigned irq, int(∗isr)(xnintr_t ∗),
int(∗iack)(unsigned irq))

Create and attach an interrupt object.

• int pthread_intr_detach_np (pthread_intr_t intr)
Destroy an interrupt object.

• int pthread_intr_control_np (pthread_intr_t intr, int cmd)
Control the state of an interrupt channel.

• int pthread_intr_wait_np (pthread_intr_t intr, const struct timespec ∗to)
Wait for the next interruption.

3.4.2 Function Documentation

3.4.2.1 int pthread_intr_attach_np (pthread_intr_t ∗ intrp, unsigned irq, int(∗)(xnintr_t ∗) isr,
int(∗)(unsigned irq) iack)

Create and attach an interrupt object.

This service creates and attaches an interrupt object.

In kernel-space:

This service installs isr as the handler for the interrupt irq. If iack is not null it is a custom interrupt
acknowledge routine.

When called upon reception of an interrupt, the isr function is passed the address of an underlying
xnintr_t object, and should use the macro PTHREAD_IDESC() to get the pthread_intr_t object.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

3.4 Interruptions management services. 27

The meaning of the isr and iack function and what they should return is explained in xnintr_init()
documentation.

This service is a non-portable extension of the POSIX interface.

Parameters:

intrp address where the created interrupt object identifier will be stored on success;

irq IRQ channel;

isr interrupt handling routine;

iack if not NULL, optional interrupt acknowledge routine.

In user-space:

The prototype of this service is :

int pthread_intr_attach_np (pthread_intr_t ∗intrp, unsigned irq, int mode);

This service causes the installation of a default interrupt handler which unblocks any Xenomai
user-space interrupt server thread blocked in a call to pthread_intr_wait_np(), and returns a value
depending on the mode parameter.

Parameters:

intrp and irq have the same meaning as in kernel-space; mode is a bitwise OR of the following
values:

• PTHREAD_IPROPAGATE, meaning that the interrupt should be propagated to lower
priority domains;

• PTHREAD_INOAUTOENA, meaning that the interrupt should not be automatically
re-enabled.

This service is intended to be used in conjunction with the pthread_intr_wait_np() service.

The return values are identical in kernel-space and user-space.

Return values:

0 on success;

-1 with errno set if:

• ENOSYS, kernel-space Xenomai POSIX skin was built without support for inter-
rupts, use RTDM or enable CONFIG_XENO_OPT_POSIX_INTR in kernel configu-
ration;

• ENOMEM, insufficient memory exists in the system heap to create the interrupt
object, increase CONFIG_XENO_OPT_SYS_HEAPSZ;

• EINVAL, a low-level error occured while attaching the interrupt;
• EBUSY, an interrupt handler was already registered for the irq line irq.

References pthread_intr_detach_np().

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

28 Module Documentation

3.4.2.2 int pthread_intr_control_np (pthread_intr_t intr, int cmd)

Control the state of an interrupt channel.

This service allow to enable or disable an interrupt channel.

This service is a non-portable extension of the POSIX interface.

Parameters:

intr identifier of the interrupt to be enabled or disabled.

cmd one of PTHREAD_IENABLE or PTHREAD_IDISABLE.

Return values:

0 on success;

-1 with errno set if:

• ENOSYS, kernel-space Xenomai POSIX skin was built without support for inter-
rupts, use RTDM or enable CONFIG_XENO_OPT_POSIX_INTR in kernel configu-
ration;

• EINVAL, the identifier intr or cmd is invalid;
• EPERM, the interrupt intr does not belong to the current process.

3.4.2.3 int pthread_intr_detach_np (pthread_intr_t intr)

Destroy an interrupt object.

This service destroys the interrupt object intr. The memory allocated for this object is returned to
the system heap, so further references using the same object identifier are not guaranteed to fail.

If a user-space interrupt server is blocked in a call to pthread_intr_wait_np(), it is unblocked and
the blocking service returns with an error of EIDRM.

This service is a non-portable extension of the POSIX interface.

Parameters:

intr identifier of the interrupt object to be destroyed.

Return values:

0 on success;

-1 with errno set if:

• ENOSYS, kernel-space Xenomai POSIX skin was built without support for inter-
rupts, use RTDM or enable CONFIG_XENO_OPT_POSIX_INTR in kernel configu-
ration;

• EINVAL, the interrupt object intr is invalid;
• EPERM, the interrupt intr does not belong to the current process.

Referenced by pthread_intr_attach_np().

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

3.4 Interruptions management services. 29

3.4.2.4 int pthread_intr_wait_np (pthread_intr_t intr, const struct timespec ∗ to)

Wait for the next interruption.

This service is used by user-space interrupt server threads, to wait, if no interrupt is pending, for
the next interrupt.

This service is a cancelation point. If a thread is canceled while blocked in a call to this service,
no interruption notification is lost.

This service is a non-portable extension of the POSIX interface.

Parameters:

intr interrupt object identifier;

to if not NULL, timeout, expressed as a time interval.

Returns:

the number of interrupt received on success;
-1 with errno set if:

• ENOSYS, kernel-space Xenomai POSIX skin was built without support for interrupts,
use RTDM or enable CONFIG_XENO_OPT_POSIX_INTR in kernel configuration;

• EIDRM, the interrupt object was deleted;

• EPERM, the interrupt intr does not belong to the current process;

• ETIMEDOUT, the timeout specified by to expired;

• EINTR, pthread_intr_wait_np() was interrupted by a signal.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

30 Module Documentation

3.5 POSIX skin.

Collaboration diagram for POSIX skin.:

Threads management services.

POSIX skin.

Condition variables services.

Mutex services.

Message queues services.

Interruptions management services.

Thread-specific data.

Clocks and timers services.

Shared memory services.

Semaphores services.

Signals services.

3.5.1 Detailed Description

Xenomai POSIX skin is an implementation of a small subset of the Single Unix specification over
Xenomai generic RTOS core.

The following table gives equivalence between native API services and POSIX services.

Native API services POSIX API services
alarm Clocks and timers services.
cond Condition variables services.
event no direct equivalence,

see Condition variables services.
native_heap Shared memory services.
interrupt Interruptions management services.
mutex Mutex services.
pipe no direct equivalence,

see Message queues services.
native_queue Message queues services.
semaphore Semaphores services.
task Threads management services.
native_timer Clocks and timers services.

Modules

• Clocks and timers services.
Clocks and timers services.

• Condition variables services.
Condition variables services.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

3.5 POSIX skin. 31

• Interruptions management services.
Interruptions management services.

• Message queues services.
Message queues services.

• Mutex services.
Mutex services.

• Semaphores services.
Semaphores services.

• Shared memory services.
Shared memory services.

• Signals services.
Signals management services.

• Threads management services.
Threads management services.

• Thread-specific data.
Thread-specific data.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

32 Module Documentation

3.6 Message queues services.

Collaboration diagram for Message queues services.:

POSIX skin. Message queues services.

3.6.1 Detailed Description

Message queues services.

A message queue allow exchanging data between real-time threads. For a POSIX message queue,
maximum message length and maximum number of messages are fixed when it is created with
mq_open().

Functions

• mqd_t mq_open (const char ∗name, int oflags,...)
Open a message queue.

• int mq_close (mqd_t fd)
Close a message queue.

• int mq_unlink (const char ∗name)
Unlink a message queue.

• int mq_send (mqd_t fd, const char ∗buffer, size_t len, unsigned prio)
Send a message to a message queue.

• int mq_timedsend (mqd_t fd, const char ∗buffer, size_t len, unsigned prio, const struct
timespec ∗abs_timeout)

Attempt, during a bounded time, to send a message to a message queue.

• ssize_t mq_receive (mqd_t fd, char ∗buffer, size_t len, unsigned ∗priop)
Receive a message from a message queue.

• ssize_t mq_timedreceive (mqd_t fd, char ∗__restrict__ buffer, size_t len, unsigned ∗__-
restrict__ priop, const struct timespec ∗__restrict__ abs_timeout)

Attempt, during a bounded time, to receive a message from a message queue.

• int mq_getattr (mqd_t fd, struct mq_attr ∗attr)
Get the attributes object of a message queue.

• int mq_setattr (mqd_t fd, const struct mq_attr ∗__restrict__ attr, struct mq_attr ∗__restrict__
oattr)

Set flags of a message queue.

• int mq_notify (mqd_t fd, const struct sigevent ∗evp)
Register the current thread to be notified of message arrival at an empty message queue.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

3.6 Message queues services. 33

3.6.2 Function Documentation

3.6.2.1 int mq_close (mqd_t fd)

Close a message queue.

This service closes the message queue descriptor fd. The message queue is destroyed only when
all open descriptors are closed, and when unlinked with a call to the mq_unlink() service.

Parameters:

fd message queue descriptor.

Return values:

0 on success;

-1 with errno set if:

• EBADF, fd is an invalid message queue descriptor;
• EPERM, the caller context is invalid.

Valid contexts:

• kernel module initialization or cleanup routine;

• kernel-space cancellation cleanup routine;

• user-space thread (Xenomai threads switch to secondary mode);

• user-space cancellation cleanup routine.

See also:

Specification.

3.6.2.2 int mq_getattr (mqd_t fd, struct mq_attr ∗ attr)

Get the attributes object of a message queue.

This service stores, at the address attr, the attributes of the messages queue descriptor fd.

The following attributes are set:

• mq_flags, flags of the message queue descriptor fd;

• mq_maxmsg, maximum number of messages in the message queue;

• mq_msgsize, maximum message size;

• mq_curmsgs, number of messages currently in the queue.

Parameters:

fd message queue descriptor;

attr address where the message queue attributes will be stored on success.

Return values:

0 on success;

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/mq_close.html

34 Module Documentation

-1 with errno set if:

• EBADF, fd is not a valid descriptor.

See also:

Specification.

3.6.2.3 int mq_notify (mqd_t fd, const struct sigevent ∗ evp)

Register the current thread to be notified of message arrival at an empty message queue.

If evp is not NULL and is the address of a sigevent structure with the sigev_notify member set
to SIGEV_SIGNAL, the current thread will be notified by a signal when a message is sent to
the message queue fd, the queue is empty, and no thread is blocked in call to mq_receive() or
mq_timedreceive(). After the notification, the thread is unregistered.

If evp is NULL or the sigev_notify member is SIGEV_NONE, the current thread is unregistered.

Only one thread may be registered at a time.

If the current thread is not a Xenomai POSIX skin thread (created with pthread_create()), this
service fails.

Note that signals sent to user-space Xenomai POSIX skin threads will cause them to switch to
secondary mode.

Parameters:

fd message queue descriptor;

evp pointer to an event notification structure.

Return values:

0 on success;

-1 with errno set if:

• EINVAL, evp is invalid;
• EPERM, the caller context is invalid;
• EBADF, fd is not a valid message queue descriptor;
• EBUSY, another thread is already registered.

Valid contexts:

• Xenomai kernel-space POSIX skin thread,

• Xenomai user-space POSIX skin thread (switches to primary mode).

See also:

Specification.

3.6.2.4 mqd_t mq_open (const char ∗ name, int oflags, ...)

Open a message queue.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/mq_getattr.html
http://www.opengroup.org/onlinepubs/000095399/functions/mq_notify.html

3.6 Message queues services. 35

This service establishes a connection between the message queue named name and the calling
context (kernel-space as a whole, or user-space process).

One of the following values should be set in oflags:

• O_RDONLY, meaning that the returned queue descriptor may only be used for receiving
messages;

• O_WRONLY, meaning that the returned queue descriptor may only be used for sending
messages;

• O_RDWR, meaning that the returned queue descriptor may be used for both sending and
receiving messages.

If no message queue named name exists, and oflags has the O_CREAT bit set, the message queue
is created by this function, taking two more arguments:

• a mode argument, of type mode_t, currently ignored;

• an attr argument, pointer to an mq_attr structure, specifying the attributes of the new
message queue.

If oflags has the two bits O_CREAT and O_EXCL set and the message queue alread exists, this
service fails.

If the O_NONBLOCK bit is set in oflags, the mq_send(), mq_receive(), mq_timedsend() and mq_-
timedreceive() services return -1 with errno set to EAGAIN instead of blocking their caller.

The following arguments of the mq_attr structure at the address attr are used when creating a
message queue:

• mq_maxmsg is the maximum number of messages in the queue (128 by default);

• mq_msgsize is the maximum size of each message (128 by default).

name may be any arbitrary string, in which slashes have no particular meaning. However, for
portability, using a name which starts with a slash and contains no other slash is recommended.

Parameters:

name name of the message queue to open;

oflags flags.

Returns:

a message queue descriptor on success;
-1 with errno set if:

• ENAMETOOLONG, the length of the name argument exceeds 64 characters;

• EEXIST, the bits O_CREAT and O_EXCL were set in oflags and the message queue already
exists;

• ENOENT, the bit O_CREAT is not set in oflags and the message queue does not exist;

• ENOSPC, allocation of system memory failed, or insufficient memory exists in the
system heap to create the queue, try increasing CONFIG_XENO_OPT_SYS_HEAPSZ;

• EPERM, attempting to create a message queue from an invalid context;

• EINVAL, the attr argument is invalid;

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

36 Module Documentation

• EMFILE, too many descriptors are currently open.

Valid contexts:

When creating a message queue, only the following contexts are valid:

• kernel module initialization or cleanup routine;

• user-space thread (Xenomai threads switch to secondary mode).

See also:

Specification.

3.6.2.5 ssize_t mq_receive (mqd_t fd, char ∗ buffer, size_t len, unsigned ∗ priop)

Receive a message from a message queue.

If the message queue fd is not empty and if len is greater than the mq_msgsize of the message
queue, this service copies, at the address buffer, the queued message with the highest priority.

If the queue is empty and the flag O_NONBLOCK is not set for the descriptor fd, the calling
thread is suspended until some message is sent to the queue. If the queue is empty and the flag
O_NONBLOCK is set for the descriptor fd, this service returns immediately a value of -1 with
errno set to EAGAIN.

Parameters:

fd the queue descriptor;

buffer the address where the received message will be stored on success;

len buffer length;

priop address where the priority of the received message will be stored on success.

Returns:

the message length, and copy a message at the address buffer on success;
-1 with no message unqueued and errno set if:

• EBADF, fd is not a valid descriptor open for reading;

• EMSGSIZE, the length len is lesser than the message queue mq_msgsize attribute;

• EAGAIN, the queue is empty, and the flag O_NONBLOCK is set for the descriptor fd;

• EPERM, the caller context is invalid;

• EINTR, the service was interrupted by a signal.

Valid contexts:

• Xenomai kernel-space thread,

• Xenomai user-space thread (switches to primary mode).

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/mq_open.html
http://www.opengroup.org/onlinepubs/000095399/functions/mq_receive.html

3.6 Message queues services. 37

3.6.2.6 int mq_send (mqd_t fd, const char ∗ buffer, size_t len, unsigned prio)

Send a message to a message queue.

If the message queue fd is not full, this service sends the message of length len pointed to by the
argument buffer, with priority prio. A message with greater priority is inserted in the queue before
a message with lower priority.

If the message queue is full and the flag O_NONBLOCK is not set, the calling thread is suspended
until the queue is not full. If the message queue is full and the flag O_NONBLOCK is set, the
message is not sent and the service returns immediately a value of -1 with errno set to EAGAIN.

Parameters:

fd message queue descriptor;
buffer pointer to the message to be sent;
len length of the message;
prio priority of the message.

Returns:

0 and send a message on success;
-1 with no message sent and errno set if:

• EBADF, fd is not a valid message queue descriptor open for writing;
• EMSGSIZE, the message length len exceeds the mq_msgsize attribute of the message

queue;
• EAGAIN, the flag O_NONBLOCK is set for the descriptor fd and the message queue is

full;
• EPERM, the caller context is invalid;
• EINTR, the service was interrupted by a signal.

Valid contexts:

• Xenomai kernel-space thread,
• Xenomai user-space thread (switches to primary mode).

See also:

Specification.

3.6.2.7 int mq_setattr (mqd_t fd, const struct mq_attr ∗__restrict__ attr, struct mq_attr
∗__restrict__ oattr)

Set flags of a message queue.

This service sets the flags of the fd descriptor to the value of the member mq_flags of the mq_attr
structure pointed to by attr.

The previous value of the message queue attributes are stored at the address oattr if it is not NULL.

Only setting or clearing the O_NONBLOCK flag has an effect.

Parameters:

fd message queue descriptor;

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/mq_send.html

38 Module Documentation

attr pointer to new attributes (only mq_flags is used);

oattr if not NULL, address where previous message queue attributes will be stored on
success.

Return values:

0 on success;

-1 with errno set if:

• EBADF, fd is not a valid message queue descriptor.

See also:

Specification.

3.6.2.8 ssize_t mq_timedreceive (mqd_t fd, char ∗__restrict__ buffer, size_t len, unsigned
∗__restrict__ priop, const struct timespec ∗__restrict__ abs_timeout)

Attempt, during a bounded time, to receive a message from a message queue.

This service is equivalent to mq_receive(), except that if the flag O_NONBLOCK is not set for
the descriptor fd and the message queue is empty, the calling thread is only suspended until the
timeout abs_timeout expires.

Parameters:

fd the queue descriptor;

buffer the address where the received message will be stored on success;

len buffer length;

priop address where the priority of the received message will be stored on success.

abs_timeout the timeout, expressed as an absolute value of the CLOCK_REALTIME clock.

Returns:

the message length, and copy a message at the address buffer on success;
-1 with no message unqueued and errno set if:

• EBADF, fd is not a valid descriptor open for reading;

• EMSGSIZE, the length len is lesser than the message queue mq_msgsize attribute;

• EAGAIN, the queue is empty, and the flag O_NONBLOCK is set for the descriptor fd;

• EPERM, the caller context is invalid;

• EINTR, the service was interrupted by a signal;

• ETIMEDOUT, the specified timeout expired.

Valid contexts:

• Xenomai kernel-space thread,

• Xenomai user-space thread (switches to primary mode).

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/mq_setattr.html
http://www.opengroup.org/onlinepubs/000095399/functions/mq_timedreceive.html

3.6 Message queues services. 39

3.6.2.9 int mq_timedsend (mqd_t fd, const char ∗ buffer, size_t len, unsigned prio, const
struct timespec ∗ abs_timeout)

Attempt, during a bounded time, to send a message to a message queue.

This service is equivalent to mq_send(), except that if the message queue is full and the flag O_-
NONBLOCK is not set for the descriptor fd, the calling thread is only suspended until the timeout
specified by abs_timeout expires.

Parameters:

fd message queue descriptor;

buffer pointer to the message to be sent;

len length of the message;

prio priority of the message;

abs_timeout the timeout, expressed as an absolute value of the CLOCK_REALTIME clock.

Returns:

0 and send a message on success;
-1 with no message sent and errno set if:

• EBADF, fd is not a valid message queue descriptor open for writing;

• EMSGSIZE, the message length exceeds the mq_msgsize attribute of the message queue;

• EAGAIN, the flag O_NONBLOCK is set for the descriptor fd and the message queue is
full;

• EPERM, the caller context is invalid;

• ETIMEDOUT, the specified timeout expired;

• EINTR, the service was interrupted by a signal.

Valid contexts:

• Xenomai kernel-space thread,

• Xenomai user-space thread (switches to primary mode).

See also:

Specification.

3.6.2.10 int mq_unlink (const char ∗ name)

Unlink a message queue.

This service unlinks the message queue named name. The message queue is not destroyed until
all queue descriptors obtained with the mq_open() service are closed with the mq_close() service.
However, after a call to this service, the unlinked queue may no longer be reached with the
mq_open() service.

Parameters:

name name of the message queue to be unlinked.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/mq_timedsend.html

40 Module Documentation

Return values:

0 on success;

-1 with errno set if:

• EPERM, the caller context is invalid;
• ENAMETOOLONG, the length of the name argument exceeds 64 characters;
• ENOENT, the message queue does not exist.

Valid contexts:

• kernel module initialization or cleanup routine;

• kernel-space cancellation cleanup routine;

• user-space thread (Xenomai threads switch to secondary mode);

• user-space cancellation cleanup routine.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/mq_unlink.html

3.7 Mutex services. 41

3.7 Mutex services.

Collaboration diagram for Mutex services.:

POSIX skin. Mutex services.

3.7.1 Detailed Description

Mutex services.

A mutex is a MUTual EXclusion device, and is useful for protecting shared data structures from
concurrent modifications, and implementing critical sections and monitors.

A mutex has two possible states: unlocked (not owned by any thread), and locked (owned by
one thread). A mutex can never be owned by two different threads simultaneously. A thread
attempting to lock a mutex that is already locked by another thread is suspended until the owning
thread unlocks the mutex first.

Before it can be used, a mutex has to be initialized with pthread_mutex_init(). An attribute object,
which reference may be passed to this service, allows to select the features of the created mutex,
namely its type (see pthread_mutexattr_settype()), the priority protocol it uses (see pthread_-
mutexattr_setprotocol()) and whether it may be shared between several processes (see pthread_-
mutexattr_setpshared()).

By default, Xenomai POSIX skin mutexes are of the normal type, use no priority protocol and
may not be shared between several processes.

Note that only pthread_mutex_init() may be used to initialize a mutex, using the static initializer
PTHREAD_MUTEX_INITIALIZER is not supported.

Functions

• int pthread_mutex_init (pthread_mutex_t ∗mx, const pthread_mutexattr_t ∗attr)
Initialize a mutex.

• int pthread_mutex_destroy (pthread_mutex_t ∗mx)
Destroy a mutex.

• int pthread_mutex_trylock (pthread_mutex_t ∗mx)
Attempt to lock a mutex.

• int pthread_mutex_lock (pthread_mutex_t ∗mx)
Lock a mutex.

• int pthread_mutex_timedlock (pthread_mutex_t ∗mx, const struct timespec ∗to)
Attempt, during a bounded time, to lock a mutex.

• int pthread_mutex_unlock (pthread_mutex_t ∗mx)
Unlock a mutex.

• int pthread_mutexattr_init (pthread_mutexattr_t ∗attr)

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

42 Module Documentation

Initialize a mutex attributes object.

• int pthread_mutexattr_destroy (pthread_mutexattr_t ∗attr)

Destroy a mutex attributes object.

• int pthread_mutexattr_gettype (const pthread_mutexattr_t ∗attr, int ∗type)

Get the mutex type attribute from a mutex attributes object.

• int pthread_mutexattr_settype (pthread_mutexattr_t ∗attr, int type)

Set the mutex type attribute of a mutex attributes object.

• int pthread_mutexattr_getprotocol (const pthread_mutexattr_t ∗attr, int ∗proto)

Get the protocol attribute from a mutex attributes object.

• int pthread_mutexattr_setprotocol (pthread_mutexattr_t ∗attr, int proto)

Set the protocol attribute of a mutex attributes object.

• int pthread_mutexattr_getpshared (const pthread_mutexattr_t ∗attr, int ∗pshared)

Get the process-shared attribute of a mutex attributes object.

• int pthread_mutexattr_setpshared (pthread_mutexattr_t ∗attr, int pshared)

Set the process-shared attribute of a mutex attributes object.

3.7.2 Function Documentation

3.7.2.1 int pthread_mutex_destroy (pthread_mutex_t ∗ mx)

Destroy a mutex.

This service destroys the mutex mx, if it is unlocked and not referenced by any condition variable.
The mutex becomes invalid for all mutex services (they all return the EINVAL error) except
pthread_mutex_init().

Parameters:

mx the mutex to be destroyed.

Returns:

0 on success,
an error number if:

• EINVAL, the mutex mx is invalid;

• EPERM, the mutex is not process-shared and does not belong to the current process;

• EBUSY, the mutex is locked, or used by a condition variable.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutex_destroy.html

3.7 Mutex services. 43

3.7.2.2 int pthread_mutex_init (pthread_mutex_t ∗ mx, const pthread_mutexattr_t ∗ attr)

Initialize a mutex.

This services initializes the mutex mx, using the mutex attributes object attr. If attr is NULL,
default attributes are used (see pthread_mutexattr_init()).

Parameters:

mx the mutex to be initialized;

attr the mutex attributes object.

Returns:

0 on success,
an error number if:

• EINVAL, the mutex attributes object attr is invalid or uninitialized;

• EBUSY, the mutex mx was already initialized;

• ENOMEM, insufficient memory exists in the system heap to initialize the mutex, increase
CONFIG_XENO_OPT_SYS_HEAPSZ.

See also:

Specification.

3.7.2.3 int pthread_mutex_lock (pthread_mutex_t ∗ mx)

Lock a mutex.

This service attempts to lock the mutex mx. If the mutex is free, it becomes locked. If it was
locked by another thread than the current one, the current thread is suspended until the mutex
is unlocked. If it was already locked by the current mutex, the behaviour of this service depends
on the mutex type :

• for mutexes of the PTHREAD_MUTEX_NORMAL type, this service deadlocks;

• for mutexes of the PTHREAD_MUTEX_ERRORCHECK type, this service returns the
EDEADLK error number;

• for mutexes of the PTHREAD_MUTEX_RECURSIVE type, this service increments the lock
recursion count and returns 0.

Parameters:

mx the mutex to be locked.

Returns:

0 on success
an error number if:

• EPERM, the caller context is invalid;

• EINVAL, the mutex mx is invalid;

• EPERM, the mutex is not process-shared and does not belong to the current process;

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutex_init.html

44 Module Documentation

• EDEADLK, the mutex is of the PTHREAD_MUTEX_ERRORCHECK type and was al-
ready locked by the current thread;

• EAGAIN, the mutex is of the PTHREAD_MUTEX_RECURSIVE type and the maximum
number of recursive locks has been exceeded.

Valid contexts:

• Xenomai kernel-space thread;

• Xenomai user-space thread (switches to primary mode).

See also:

Specification.

3.7.2.4 int pthread_mutex_timedlock (pthread_mutex_t ∗ mx, const struct timespec ∗ to)

Attempt, during a bounded time, to lock a mutex.

This service is equivalent to pthread_mutex_lock(), except that if the mutex mx is locked by
another thread than the current one, this service only suspends the current thread until the
timeout specified by to expires.

Parameters:

mx the mutex to be locked;

to the timeout, expressed as an absolute value of the CLOCK_REALTIME clock.

Returns:

0 on success;
an error number if:

• EPERM, the caller context is invalid;

• EINVAL, the mutex mx is invalid;

• EPERM, the mutex is not process-shared and does not belong to the current process;

• ETIMEDOUT, the mutex could not be locked and the specified timeout expired;

• EDEADLK, the mutex is of the PTHREAD_MUTEX_ERRORCHECK type and the mutex
was already locked by the current thread;

• EAGAIN, the mutex is of the PTHREAD_MUTEX_RECURSIVE type and the maximum
number of recursive locks has been exceeded.

Valid contexts:

• Xenomai kernel-space thread;

• Xenomai user-space thread (switches to primary mode).

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutex_lock.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutex_timedlock.html

3.7 Mutex services. 45

3.7.2.5 int pthread_mutex_trylock (pthread_mutex_t ∗ mx)

Attempt to lock a mutex.

This service is equivalent to pthread_mutex_lock(), except that if the mutex mx is locked by
another thread than the current one, this service returns immediately.

Parameters:

mx the mutex to be locked.

Returns:

0 on success;
an error number if:

• EPERM, the caller context is invalid;

• EINVAL, the mutex is invalid;

• EPERM, the mutex is not process-shared and does not belong to the current process;

• EBUSY, the mutex was locked by another thread than the current one;

• EAGAIN, the mutex is recursive, and the maximum number of recursive locks has been
exceeded.

Valid contexts:

• Xenomai kernel-space thread,

• Xenomai user-space thread (switches to primary mode).

See also:

Specification.

3.7.2.6 int pthread_mutex_unlock (pthread_mutex_t ∗ mx)

Unlock a mutex.

This service unlocks the mutex mx. If the mutex is of the PTHREAD_MUTEX_RECURSIVE type
and the locking recursion count is greater than one, the lock recursion count is decremented and
the mutex remains locked.

Attempting to unlock a mutex which is not locked or which is locked by another thread than the
current one yields the EPERM error, whatever the mutex type attribute.

Parameters:

mx the mutex to be released.

Returns:

0 on success;
an error number if:

• EPERM, the caller context is invalid;

• EINVAL, the mutex mx is invalid;

• EPERM, the mutex was not locked by the current thread.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutex_trylock.html

46 Module Documentation

Valid contexts:

• Xenomai kernel-space thread,
• kernel-space cancellation cleanup routine,
• Xenomai user-space thread (switches to primary mode),
• user-space cancellation cleanup routine.

See also:

Specification.

3.7.2.7 int pthread_mutexattr_destroy (pthread_mutexattr_t ∗ attr)

Destroy a mutex attributes object.

This service destroys the mutex attributes object attr. The object becomes invalid for all mutex
services (they all return EINVAL) except pthread_mutexattr_init().

Parameters:

attr the initialized mutex attributes object to be destroyed.

Returns:

0 on success;
an error number if:
• EINVAL, the mutex attributes object attr is invalid.

See also:

Specification.

3.7.2.8 int pthread_mutexattr_getprotocol (const pthread_mutexattr_t ∗ attr, int ∗ proto)

Get the protocol attribute from a mutex attributes object.

This service stores, at the address proto, the value of the protocol attribute in the mutex attributes
object attr.

The protcol attribute may only be one of PTHREAD_PRIO_NONE or PTHREAD_PRIO_INHERIT.
See pthread_mutexattr_setprotocol() for the meaning of these two constants.

Parameters:

attr an initialized mutex attributes object;
proto address where the value of the protocol attribute will be stored on success.

Returns:

0 on success,
an error number if:
• EINVAL, the proto address is invalid;
• EINVAL, the mutex attributes object attr is invalid.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutex_unlock.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutexattr_destroy.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutexattr_getprotocol.html

3.7 Mutex services. 47

3.7.2.9 int pthread_mutexattr_getpshared (const pthread_mutexattr_t ∗ attr, int ∗ pshared)

Get the process-shared attribute of a mutex attributes object.

This service stores, at the address pshared, the value of the pshared attribute in the mutex attributes
object attr.

The pashared attribute may only be one of PTHREAD_PROCESS_PRIVATE or PTHREAD_-
PROCESS_SHARED. See pthread_mutexattr_setpshared() for the meaning of these two constants.

Parameters:

attr an initialized mutex attributes object;

pshared address where the value of the pshared attribute will be stored on success.

Returns:

0 on success;
an error number if:

• EINVAL, the pshared address is invalid;

• EINVAL, the mutex attributes object attr is invalid.

See also:

Specification.

3.7.2.10 int pthread_mutexattr_gettype (const pthread_mutexattr_t ∗ attr, int ∗ type)

Get the mutex type attribute from a mutex attributes object.

This service stores, at the address type, the value of the type attribute in the mutex attributes object
attr.

See pthread_mutex_lock() and pthread_mutex_unlock() documentations for a description of the
values of the type attribute and their effect on a mutex.

Parameters:

attr an initialized mutex attributes object,

type address where the type attribute value will be stored on success.

Returns:

0 on sucess,
an error number if:

• EINVAL, the type address is invalid;

• EINVAL, the mutex attributes object attr is invalid.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutexattr_getpshared.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutexattr_gettype.html

48 Module Documentation

3.7.2.11 int pthread_mutexattr_init (pthread_mutexattr_t ∗ attr)

Initialize a mutex attributes object.

This services initializes the mutex attributes object attr with default values for all attributes.
Default value are :

• for the type attribute, PTHREAD_MUTEX_NORMAL;

• for the protocol attribute, PTHREAD_PRIO_NONE;

• for the pshared attribute, PTHREAD_PROCESS_PRIVATE.

If this service is called specifying a mutex attributes object that was already initialized, the
attributes object is reinitialized.

Parameters:

attr the mutex attributes object to be initialized.

Returns:

0 on success;
an error number if:

• ENOMEM, the mutex attributes object pointer attr is NULL.

See also:

Specification.

3.7.2.12 int pthread_mutexattr_setprotocol (pthread_mutexattr_t ∗ attr, int proto)

Set the protocol attribute of a mutex attributes object.

This service set the type attribute of the mutex attributes object attr.

Parameters:

attr an initialized mutex attributes object,

proto value of the protocol attribute, may be one of:

• PTHREAD_PRIO_NONE, meaning that a mutex created with the attributes object
attr will not follow any priority protocol;

• PTHREAD_PRIO_INHERIT, meaning that a mutex created with the attributes object
attr, will follow the priority inheritance protocol.

The value PTHREAD_PRIO_PROTECT (priority ceiling protocol) is unsupported.

Returns:

0 on success,
an error number if:

• EINVAL, the mutex attributes object attr is invalid;

• ENOTSUP, the value of proto is unsupported;

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutexattr_init.html

3.7 Mutex services. 49

• EINVAL, the value of proto is invalid.

See also:

Specification.

3.7.2.13 int pthread_mutexattr_setpshared (pthread_mutexattr_t ∗ attr, int pshared)

Set the process-shared attribute of a mutex attributes object.

This service set the pshared attribute of the mutex attributes object attr.

Parameters:

attr an initialized mutex attributes object.

pshared value of the pshared attribute, may be one of:

• PTHREAD_PROCESS_PRIVATE, meaning that a mutex created with the attributes
object attr will only be accessible by threads within the same process as the thread
that initialized the mutex;

• PTHREAD_PROCESS_SHARED, meaning that a mutex created with the attributes
object attr will be accessible by any thread that has access to the memory where the
mutex is allocated.

Returns:

0 on success,
an error status if:

• EINVAL, the mutex attributes object attr is invalid;

• EINVAL, the value of pshared is invalid.

See also:

Specification.

3.7.2.14 int pthread_mutexattr_settype (pthread_mutexattr_t ∗ attr, int type)

Set the mutex type attribute of a mutex attributes object.

This service set the type attribute of the mutex attributes object attr.

See pthread_mutex_lock() and pthread_mutex_unlock() documentations for a description of the
values of the type attribute and their effect on a mutex.

The PTHREAD_MUTEX_DEFAULT default type is the same as PTHREAD_MUTEX_NORMAL.
Note that using a Xenomai POSIX skin recursive mutex with a Xenomai POSIX skin condition
variable is safe (see pthread_cond_wait() documentation).

Parameters:

attr an initialized mutex attributes object,

type value of the type attribute.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutexattr_setprotocol.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutexattr_setpshared.html

50 Module Documentation

Returns:

0 on success,
an error number if:

• EINVAL, the mutex attributes object attr is invalid;

• EINVAL, the value of type is invalid for the type attribute.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutexattr_settype.html

3.8 Threads scheduling services. 51

3.8 Threads scheduling services.

Collaboration diagram for Threads scheduling services.:

Threads management services. Threads scheduling services.

3.8.1 Detailed Description

Thread scheduling services.

Xenomai POSIX skin supports the scheduling policies SCHED_FIFO, SCHED_RR and SCHED_-
OTHER.

The SCHED_OTHER policy is mainly useful for user-space non-realtime activities that need to
synchronize with real-time activities.

The SCHED_RR policy is only effective if the time base is periodic (i.e. if configured with the
compilation constant CONFIG_XENO_OPT_POSIX_PERIOD or the xeno_nucleus module param-
eter tick_arg set to a non null value). The SCHED_RR round-robin time slice is configured with
the xeno_posix module parameter time_slice, as a count of system timer clock ticks.

The SCHED_SPORADIC policy is not supported.

The scheduling policy and priority of a thread is set when creating a thread, by using thread cre-
ation attributes (see pthread_attr_setinheritsched(), pthread_attr_setschedpolicy() and pthread_-
attr_setschedparam()), or when the thread is already running by using the service pthread_-
setschedparam().

See also:

Specification.

Functions

• int sched_get_priority_min (int policy)
Get minimum priority of the specified scheduling policy.

• int sched_get_priority_max (int policy)
Get maximum priority of the specified scheduling policy.

• int sched_rr_get_interval (int pid, struct timespec ∗interval)
Get the round-robin scheduling time slice.

• int pthread_getschedparam (pthread_t tid, int ∗pol, struct sched_param ∗par)
Get the scheduling policy and parameters of the specified thread.

• int pthread_setschedparam (pthread_t tid, int pol, const struct sched_param ∗par)
Set the scheduling policy and parameters of the specified thread.

• int sched_yield (void)
Yield the processor.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/xsh_chap02_08.html#tag_02_08_04

52 Module Documentation

3.8.2 Function Documentation

3.8.2.1 int pthread_getschedparam (pthread_t tid, int ∗ pol, struct sched_param ∗ par)

Get the scheduling policy and parameters of the specified thread.

This service returns, at the addresses pol and par, the current scheduling policy and scheduling
parameters (i.e. priority) of the Xenomai POSIX skin thread tid. If this service is called from
user-space and tid is not the identifier of a Xenomai POSIX skin thread, this service fallback to
Linux regular pthread_getschedparam service.

Parameters:

tid target thread;

pol address where the scheduling policy of tid is stored on success;

par address where the scheduling parameters of tid is stored on success.

Returns:

0 on success;
an error number if:

• ESRCH, tid is invalid.

See also:

Specification.

Referenced by pthread_create().

3.8.2.2 int pthread_setschedparam (pthread_t tid, int pol, const struct sched_param ∗ par)

Set the scheduling policy and parameters of the specified thread.

This service set the scheduling policy of the Xenomai POSIX skin thread tid to the value pol, and
its scheduling parameters (i.e. its priority) to the value pointed to by par.

When used in user-space, passing the current thread ID as tid argument, this service turns the
current thread into a Xenomai POSIX skin thread. If tid is neither the identifier of the current
thread nor the identifier of a Xenomai POSIX skin thread this service falls back to the regular
pthread_setschedparam() service, hereby causing the current thread to switch to secondary mode
if it is Xenomai thread.

Parameters:

tid target thread;

pol scheduling policy, one of SCHED_FIFO, SCHED_RR or SCHED_OTHER;

par scheduling parameters address.

Returns:

0 on success;
an error number if:

• ESRCH, tid is invalid;

• EINVAL, pol or par->sched_priority is invalid;

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_getschedparam.html

3.8 Threads scheduling services. 53

• EAGAIN, in user-space, insufficient memory exists in the system heap, increase
CONFIG_XENO_OPT_SYS_HEAPSZ;

• EFAULT, in user-space, par is an invalid address;

• EPERM, in user-space, the calling process does not have superuser permissions.

See also:

Specification.

3.8.2.3 int sched_get_priority_max (int policy)

Get maximum priority of the specified scheduling policy.

This service returns the maximum priority of the scheduling policy policy.

Parameters:

policy scheduling policy, one of SCHED_FIFO, SCHED_RR, or SCHED_OTHER.

Return values:

0 on success;

-1 with errno set if:

• EINVAL, policy is invalid.

See also:

Specification.

3.8.2.4 int sched_get_priority_min (int policy)

Get minimum priority of the specified scheduling policy.

This service returns the minimum priority of the scheduling policy policy.

Parameters:

policy scheduling policy, one of SCHED_FIFO, SCHED_RR, or SCHED_OTHER.

Return values:

0 on success;

-1 with errno set if:

• EINVAL, policy is invalid.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_setschedparam.html
http://www.opengroup.org/onlinepubs/000095399/functions/sched_get_priority_max.html
http://www.opengroup.org/onlinepubs/000095399/functions/sched_get_priority_min.html

54 Module Documentation

3.8.2.5 int sched_rr_get_interval (int pid, struct timespec ∗ interval)

Get the round-robin scheduling time slice.

This service returns the time quantum used by Xenomai POSIX skin SCHED_RR scheduling
policy.

In kernel-space, this service only works if pid is zero, in user-space, round-robin scheduling policy
is not supported, and this service not implemented.

Parameters:

pid must be zero;

interval address where the round-robin scheduling time quantum will be returned on suc-
cess.

Return values:

0 on success;

-1 with errno set if:

• ESRCH, pid is invalid (not 0).

See also:

Specification.

3.8.2.6 int sched_yield (void)

Yield the processor.

This function move the current thread at the end of its priority group.

Return values:

0

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sched_rr_get_interval.html
http://www.opengroup.org/onlinepubs/000095399/functions/sched_yield.html

3.9 Semaphores services. 55

3.9 Semaphores services.

Collaboration diagram for Semaphores services.:

POSIX skin. Semaphores services.

3.9.1 Detailed Description

Semaphores services.

Semaphores are counters for resources shared between threads. The basic operations on
semaphores are: increment the counter atomically, and wait until the counter is non-null and
decrement it atomically.

Semaphores have a maximum value past which they cannot be incremented. The macro SEM_-
VALUE_MAX is defined to be this maximum value.

Functions

• int sem_init (sem_t ∗sm, int pshared, unsigned value)
Initialize an unnamed semaphore.

• int sem_destroy (sem_t ∗sm)
Destroy an unnamed semaphore.

• sem_t ∗ sem_open (const char ∗name, int oflags,...)
Open a named semaphore.

• int sem_close (sem_t ∗sm)
Close a named semaphore.

• int sem_unlink (const char ∗name)
Unlink a named semaphore.

• int sem_trywait (sem_t ∗sm)
Attempt to lock a semaphore.

• int sem_wait (sem_t ∗sm)
Lock a semaphore.

• int sem_timedwait (sem_t ∗sm, const struct timespec ∗abs_timeout)
Attempt, during a bounded time, to lock a semaphore.

• int sem_post (sem_t ∗sm)
Unlock a semaphore.

• int sem_getvalue (sem_t ∗sm, int ∗value)
Get the value of a semaphore.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

56 Module Documentation

3.9.2 Function Documentation

3.9.2.1 int sem_close (sem_t ∗ sm)

Close a named semaphore.

This service closes the semaphore sm. The semaphore is destroyed only when unlinked with a
call to the sem_unlink() service and when each call to sem_open() matches a call to this service.

When a semaphore is destroyed, the memory it used is returned to the system heap, so that further
references to this semaphore are not guaranteed to fail, as is the case for unnamed semaphores.

This service fails if sm is an unnamed semaphore.

Parameters:

sm the semaphore to be closed.

Return values:

0 on success;

-1 with errno set if:

• EINVAL, the semaphore sm is invalid or is an unnamed semaphore.

See also:

Specification.

3.9.2.2 int sem_destroy (sem_t ∗ sm)

Destroy an unnamed semaphore.

This service destroys the semaphore sm. Threads currently blocked on sm are unblocked and the
service they called return -1 with errno set to EINVAL. The semaphore is then considered invalid
by all semaphore services (they all fail with errno set to EINVAL) except sem_init().

This service fails if sm is a named semaphore.

Parameters:

sm the semaphore to be destroyed.

Return values:

0 on success,

-1 with errno set if:

• EINVAL, the semaphore sm is invalid or a named semaphore;
• EPERM, the semaphore sm is not process-shared and does not belong to the current

process.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sem_close.html
http://www.opengroup.org/onlinepubs/000095399/functions/sem_destroy.html

3.9 Semaphores services. 57

3.9.2.3 int sem_getvalue (sem_t ∗ sm, int ∗ value)

Get the value of a semaphore.

This service stores at the address value, the current count of the semaphore sm. The state of the
semaphore is unchanged.

If the semaphore is currently locked, the value stored is zero.

Parameters:

sm a semaphore;
value address where the semaphore count will be stored on success.

Return values:

0 on success;
-1 with errno set if:

• EINVAL, the semaphore is invalid or uninitialized;
• EPERM, the semaphore sm is not process-shared and does not belong to the current

process.

See also:

Specification.

3.9.2.4 int sem_init (sem_t ∗ sm, int pshared, unsigned value)

Initialize an unnamed semaphore.

This service initializes the semaphore sm, with the value value.

This service fails if sm is already initialized or is a named semaphore.

Parameters:

sm the semaphore to be initialized;
pshared if zero, means that the new semaphore may only be used by threads in the same

process as the thread calling sem_init(); if non zero, means that the new semaphore may
be used by any thread that has access to the memory where the semaphore is allocated.

value the semaphore initial value.

Return values:

0 on success,
-1 with errno set if:

• EBUSY, the semaphore sm was already initialized;
• ENOSPC, insufficient memory exists in the system heap to initialize the semaphore,

increase CONFIG_XENO_OPT_SYS_HEAPSZ;
• EINVAL, the value argument exceeds SEM_VALUE_MAX.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sem_getvalue.html
http://www.opengroup.org/onlinepubs/000095399/functions/sem_init.html

58 Module Documentation

3.9.2.5 sem_t∗ sem_open (const char ∗ name, int oflags, ...)

Open a named semaphore.

This service establishes a connection between the semaphore named name and the calling context
(kernel-space as a whole, or user-space process).

If no semaphore named name exists and oflags has the O_CREAT bit set, the semaphore is created
by this function, using two more arguments:

• a mode argument, of type mode_t, currently ignored;

• a value argument, of type unsigned, specifying the initial value of the created semaphore.

If oflags has the two bits O_CREAT and O_EXCL set and the semaphore already exists, this service
fails.

name may be any arbitrary string, in which slashes have no particular meaning. However, for
portability, using a name which starts with a slash and contains no other slash is recommended.

If sem_open() is called from the same context (kernel-space as a whole, or user-space process)
several times with the same value of name, the same address is returned.

Parameters:

name the name of the semaphore to be created;

oflags flags.

Returns:

the address of the named semaphore on success;
SEM_FAILED with errno set if:

• ENAMETOOLONG, the length of the name argument exceeds 64 characters;

• EEXIST, the bits O_CREAT and O_EXCL were set in oflags and the named semaphore
already exists;

• ENOENT, the bit O_CREAT is not set in oflags and the named semaphore does not exist;

• ENOSPC, insufficient memory exists in the system heap to create the semaphore, in-
crease CONFIG_XENO_OPT_SYS_HEAPSZ;

• EINVAL, the value argument exceeds SEM_VALUE_MAX.

See also:

Specification.

3.9.2.6 int sem_post (sem_t ∗ sm)

Unlock a semaphore.

This service unlocks the semaphore sm.

If no thread is currently blocked on this semaphore, its count is incremented, otherwise the highest
priority thread is unblocked.

Parameters:

sm the semaphore to be unlocked.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sem_open.html

3.9 Semaphores services. 59

Return values:

0 on success;

-1 with errno set if:

• EINVAL, the specified semaphore is invalid or uninitialized;
• EPERM, the semaphore sm is not process-shared and does not belong to the current

process;
• EAGAIN, the semaphore count is SEM_VALUE_MAX.

See also:

Specification.

3.9.2.7 int sem_timedwait (sem_t ∗ sm, const struct timespec ∗ abs_timeout)

Attempt, during a bounded time, to lock a semaphore.

This serivce is equivalent to sem_wait(), except that the caller is only blocked until the timeout
abs_timeout expires.

Parameters:

sm the semaphore to be locked;

abs_timeout the timeout, expressed as an absolute value of the CLOCK_REALTIME clock.

Return values:

0 on success;

-1 with errno set if:

• EPERM, the caller context is invalid;
• EINVAL, the semaphore is invalid or uninitialized;
• EINVAL, the specified timeout is invalid;
• EPERM, the semaphore sm is not process-shared and does not belong to the current

process;
• EINTR, the caller was interrupted by a signal while blocked in this service;
• ETIMEDOUT, the semaphore could not be locked and the specified timeout expired.

Valid contexts:

• Xenomai kernel-space thread,

• Xenomai user-space thread (switches to primary mode).

See also:

Specification.

3.9.2.8 int sem_trywait (sem_t ∗ sm)

Attempt to lock a semaphore.

This service is equivalent to sem_wait(), except that it returns immediately if the semaphore sm
is currently locked, and that it is not a cancellation point.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sem_post.html
http://www.opengroup.org/onlinepubs/000095399/functions/sem_timedwait.html

60 Module Documentation

Parameters:

sm the semaphore to be locked.

Return values:

0 on success;
-1 with errno set if:

• EINVAL, the specified semaphore is invalid or uninitialized;
• EPERM, the semaphore sm is not process-shared and does not belong to the current

process;
• EAGAIN, the specified semaphore is currently locked.

∗

See also:

Specification.

3.9.2.9 int sem_unlink (const char ∗ name)

Unlink a named semaphore.

This service unlinks the semaphore named name. This semaphore is not destroyed until all
references obtained with sem_open() are closed by calling sem_close(). However, the unlinked
semaphore may no longer be reached with the sem_open() service.

When a semaphore is destroyed, the memory it used is returned to the system heap, so that further
references to this semaphore are not guaranteed to fail, as is the case for unnamed semaphores.

Parameters:

name the name of the semaphore to be unlinked.

Return values:

0 on success;
-1 with errno set if:

• ENAMETOOLONG, the length of the name argument exceeds 64 characters;
• ENOENT, the named semaphore does not exist.

See also:

Specification.

3.9.2.10 int sem_wait (sem_t ∗ sm)

Lock a semaphore.

This service locks the semaphore sm if it is currently unlocked (i.e. if its value is greater than
0). If the semaphore is currently locked, the calling thread is suspended until the semaphore is
unlocked, or a signal is delivered to the calling thread.

This service is a cancellation point for Xenomai POSIX skin threads (created with the pthread_-
create() service). When such a thread is cancelled while blocked in a call to this service, the
semaphore state is left unchanged before the cancellation cleanup handlers are called.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sem_trywait.html
http://www.opengroup.org/onlinepubs/000095399/functions/sem_unlink.html

3.9 Semaphores services. 61

Parameters:

sm the semaphore to be locked.

Return values:

0 on success;

-1 with errno set if:

• EPERM, the caller context is invalid;
• EINVAL, the semaphore is invalid or uninitialized;
• EPERM, the semaphore sm is not process-shared and does not belong to the current

process;
• EINTR, the caller was interrupted by a signal while blocked in this service.

Valid contexts:

• Xenomai kernel-space thread,

• Xenomai user-space thread (switches to primary mode).

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sem_wait.html

62 Module Documentation

3.10 Shared memory services.

Collaboration diagram for Shared memory services.:

POSIX skin. Shared memory services.

3.10.1 Detailed Description

Shared memory services.

Shared memory objects are memory regions that can be mapped into processes address space,
allowing them to share these regions as well as to share them with kernel-space modules.

Shared memory are also the only mean by which anonymous POSIX skin synchronization objects
(mutexes, condition variables or semaphores) may be shared between kernel-space modules and
user-space processes, or between several processes.

Functions

• int shm_open (const char ∗name, int oflags, mode_t mode)

Open a shared memory object.

• int close (int fd)

Close a file descriptor.

• int shm_unlink (const char ∗name)

Unlink a shared memory object.

• int ftruncate (int fd, off_t len)

Truncate a file or shared memory object to a specified length.

• void ∗mmap (void ∗addr, size_t len, int prot, int flags, int fd, off_t off)

Map pages of memory.

• int munmap (void ∗addr, size_t len)

Unmap pages of memory.

3.10.2 Function Documentation

3.10.2.1 int close (int fd)

Close a file descriptor.

This service closes the file descriptor fd. In kernel-space, this service only works for file descriptors
opened with shm_open(), i.e. shared memory objects. A shared memory object is only destroyed
once all file descriptors are closed with this service, it is unlinked with the shm_unlink() service,
and all mappings are unmapped with the munmap() service.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

3.10 Shared memory services. 63

Parameters:

fd file descriptor.

Return values:

0 on success;

-1 with errno set if:

• EBADF, fd is not a valid file descriptor (in kernel-space, it was not obtained with
shm_open());

• EPERM, the caller context is invalid.

Valid contexts:

• kernel module initialization or cleanup routine;

• kernel-space cancellation cleanup routine;

• user-space thread (Xenomai threads switch to secondary mode);

• user-space cancellation cleanup routine.

See also:

Specification.

Referenced by shm_open().

3.10.2.2 int ftruncate (int fd, off_t len)

Truncate a file or shared memory object to a specified length.

When used in kernel-space, this service set to len the size of a shared memory object opened with
the shm_open() service. In user-space this service falls back to Linux regular ftruncate service for
file descriptors not obtained with shm_open(). When this service is used to increase the size of a
shared memory object, the added space is zero-filled.

Shared memory are suitable for direct memory access (allocated in physically contiguous memory)
if their size is less than or equal to 128 K.

Shared memory objects may only be resized if they are not currently mapped.

Parameters:

fd file descriptor;

len new length of the underlying file or shared memory object.

Return values:

0 on success;

-1 with errno set if:

• EBADF, fd is not a valid file descriptor;
• EPERM, the caller context is invalid;
• EINVAL, the specified length is invalid;
• EINTR, this service was interrupted by a signal;
• EBUSY, fd is a shared memory object descriptor and the underlying shared memory

is currently mapped;

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/close.html

64 Module Documentation

• EFBIG, allocation of system memory failed.

Valid contexts:

• kernel module initialization or cleanup routine;

• user-space thread (Xenomai threads switch to secondary mode).

See also:

Specification.

Referenced by shm_open().

3.10.2.3 void∗mmap (void ∗ addr, size_t len, int prot, int flags, int fd, off_t off)

Map pages of memory.

This service allow shared memory regions to be accessed by the caller.

When used in kernel-space, this service returns the address of the offset off of the shared memory
object underlying fd. The protection flags prot, are only checked for consistency with fd open
flags, but memory protection is unsupported. An existing shared memory region exists before it
is mapped, this service only increments a reference counter.

The only supported value for flags is MAP_SHARED.

When used in user-space, this service maps the specified shared memory region into the caller
address-space. If fd is not a shared memory object descriptor (i.e. not obtained with shm_open()),
this service falls back to the regular Linux mmap service.

Parameters:

addr ignored.

len size of the shared memory region to be mapped.

prot protection bits, checked in kernel-space, but only useful in user-space, are a bitwise or
of the following values:

• PROT_NONE, meaning that the mapped region can not be accessed;
• PROT_READ, meaning that the mapped region can be read;
• PROT_WRITE, meaning that the mapped region can be written;
• PROT_EXEC, meaning that the mapped region can be executed.

flags only MAP_SHARED is accepted, meaning that the mapped memory region is shared.

fd file descriptor, obtained with shm_open().

off offset in the shared memory region.

Return values:

0 on success;

MAP_FAILED with errno set if:

• EINVAL, len is null or addr is not a multiple of PAGE_SIZE;
• EBADF, fd is not a shared memory object descriptor (obtained with shm_open());
• EPERM, the caller context is invalid;
• ENOTSUP, flags is not MAP_SHARED;

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/ftruncate.html

3.10 Shared memory services. 65

• EACCES, fd is not opened for reading or is not opend for writing and PROT_WRITE
is set in prot;

• EINTR, this service was interrupted by a signal;
• ENXIO, the range [off;off+len) is invalid for the shared memory region specified by

fd;
• EAGAIN, insufficient memory exists in the system heap to create the mapping,

increase CONFIG_XENO_OPT_SYS_HEAPSZ.

Valid contexts:

• kernel module initialization or cleanup routine;
• user-space thread (Xenomai threads switch to secondary mode).

See also:

Specification.

3.10.2.4 int munmap (void ∗ addr, size_t len)

Unmap pages of memory.

This service unmaps the shared memory region [addr;addr+len) from the caller address-space.

When called from kernel-space the memory region remain accessible as long as it exists, and this
service only decrements a reference counter.

When called from user-space, if the region is not a shared memory region, this service falls back
to the regular Linux munmap() service.

Parameters:

addr start address of shared memory area;
len length of the shared memory area.

Return values:

0 on success;
-1 with errno set if:

• EINVAL, len is null, addr is not a multiple of the page size or the range
[addr;addr+len) is not a mapped region;

• ENXIO, addr is not the address of a shared memory area;
• EPERM, the caller context is invalid;
• EINTR, this service was interrupted by a signal.

Valid contexts:

• kernel module initialization or cleanup routine;
• kernel-space cancellation cleanup routine;
• user-space thread (Xenomai threads switch to secondary mode);
• user-space cancellation cleanup routine.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/mmap.html
http://www.opengroup.org/onlinepubs/000095399/functions/munmap.html

66 Module Documentation

3.10.2.5 int shm_open (const char ∗ name, int oflags, mode_t mode)

Open a shared memory object.

This service establishes a connection between a shared memory object and a file descriptor.
Further use of this descriptor will allow to dimension and map the shared memory into the
calling context address space.

One of the following access mode should be set in oflags:

• O_RDONLY, meaning that the shared memory object may only be mapped with the PROT_-
READ flag;

• O_WRONLY, meaning that the shared memory object may only be mapped with the PROT_-
WRITE flag;

• O_RDWR, meaning that the shared memory object may be mapped with the PROT_READ
| PROT_WRITE flag.

If no shared memory object named name exists, and oflags has the O_CREAT bit set, the shared
memory object is created by this function.

If oflags has the two bits O_CREAT and O_EXCL set and the shared memory object alread exists,
this service fails.

If oflags has the bit O_TRUNC set, the shared memory exists and is not currently mapped, its size
is truncated to 0.

name may be any arbitrary string, in which slashes have no particular meaning. However, for
portability, using a name which starts with a slash and contains no other slash is recommended.

Parameters:

name name of the shared memory object to open;

oflags flags.

mode ignored.

Returns:

a file descriptor on success;
-1 with errno set if:

• ENAMETOOLONG, the length of the name argument exceeds 64 characters;

• EEXIST, the bits O_CREAT and O_EXCL were set in oflags and the shared memory object
already exists;

• ENOENT, the bit O_CREAT is not set in oflags and the shared memory object does not
exist;

• ENOSPC, insufficient memory exists in the system heap to create the shared memory
object, increase CONFIG_XENO_OPT_SYS_HEAPSZ;

• EPERM, the caller context is invalid;

• EINVAL, the O_TRUNC flag was specified and the shared memory object is currently
mapped;

• EMFILE, too many descriptors are currently open.

Valid contexts:

• kernel module initialization or cleanup routine;

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

3.10 Shared memory services. 67

• user-space thread (Xenomai threads switch to secondary mode).

See also:

Specification.

References close(), and ftruncate().

3.10.2.6 int shm_unlink (const char ∗ name)

Unlink a shared memory object.

This service unlinks the shared memory object named name. The shared memory object is not
destroyed until every file descriptor obtained with the shm_open() service is closed with the
close() service and all mappings done with mmap() are unmapped with munmap(). However,
after a call to this service, the unlinked shared memory object may no longer be reached with the
shm_open() service.

Parameters:

name name of the shared memory obect to be unlinked.

Return values:

0 on success;

-1 with errno set if:

• EPERM, the caller context is invalid;
• ENAMETOOLONG, the length of the name argument exceeds 64 characters;
• ENOENT, the shared memory object does not exist.

Valid contexts:

• kernel module initialization or cleanup routine;

• kernel-space cancellation cleanup routine;

• user-space thread (Xenomai threads switch to secondary mode);

• user-space cancellation cleanup routine.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/shm_open.html
http://www.opengroup.org/onlinepubs/000095399/functions/shm_unlink.html

68 Module Documentation

3.11 Signals services.

Collaboration diagram for Signals services.:

POSIX skin. Signals services.

3.11.1 Detailed Description

Signals management services.

Signals are asynchronous notifications delivered to a process or thread. Such notifications occur
as the result of an exceptional event or at the request of another process.

The services documented here are reserved to Xenomai kernel-space threads, user-space threads
switch to secondary mode when handling signals, and use Linux regular signals services.

Xenomai POSIX skin signals are implemented as real-time signals, meaning that they are queued
when posted several times to a thread before the first notification is handled, and that each signal
carry additional data in a siginfo_t object. In order to ensure consistence with user-space signals,
valid signals number range from 1 to SIGRTMAX, signals from SIGRTMIN to SIGRTMAX being
higher priority than signals from 1 to SIGRTMIN-1. As a special case, signal 0 may be used with
services pthread_kill() and pthread_sigqueue_np() to check if a thread exists, but entails no other
action.

The action to be taken upon reception of a signal depends on the thread signal mask, (see
pthread_sigmask()), and on the settings described by a sigaction structure (see sigaction()).

Functions

• int sigemptyset (sigset_t ∗set)
Initialize and empty a signal set.

• int sigfillset (sigset_t ∗set)
Initialize and fill a signal set.

• int sigaddset (sigset_t ∗set, int sig)
Add a signal to a signal set.

• int sigdelset (sigset_t ∗set, int sig)
Delete a signal from a signal set.

• int sigismember (const sigset_t ∗set, int sig)
Test for a signal in a signal set.

• int sigaction (int sig, const struct sigaction ∗act, struct sigaction ∗oact)
Examine and change a signal action.

• int pthread_kill (pthread_t thread, int sig)
Send a signal to a thread.

• int pthread_sigqueue_np (pthread_t thread, int sig, union sigval value)

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

3.11 Signals services. 69

Queue a signal to a thread.

• int sigpending (sigset_t ∗set)
Examine pending signals.

• int pthread_sigmask (int how, const sigset_t ∗set, sigset_t ∗oset)
Examine and change the set of signals blocked by a thread.

• int sigwait (const sigset_t ∗set, int ∗sig)
Wait for signals.

• int sigwaitinfo (const sigset_t ∗__restrict__ set, siginfo_t ∗__restrict__ info)
Wait for signals.

• int sigtimedwait (const sigset_t ∗__restrict__ set, siginfo_t ∗__restrict__ info, const struct
timespec ∗__restrict__ timeout)

Wait during a bounded time for signals.

3.11.2 Function Documentation

3.11.2.1 int pthread_kill (pthread_t thread, int sig)

Send a signal to a thread.

This service send the signal sig to the Xenomai POSIX skin thread thread (created with pthread_-
create()). If sig is zero, this service check for existence of the thread thread, but no signal is
sent.

Parameters:

thread thread identifier;

sig signal number.

Returns:

0 on success;
an error number if:

• EINVAL, sig is an invalid signal number;

• EAGAIN, the maximum number of pending signals has been exceeded;

• ESRCH, thread is an invalid thread identifier.

See also:

Specification.

3.11.2.2 int pthread_sigmask (int how, const sigset_t ∗ set, sigset_t ∗ oset)

Examine and change the set of signals blocked by a thread.

The signal mask of a thread is the set of signals that are blocked by this thread.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_kill.html

70 Module Documentation

If oset is not NULL, this service stores, at the address oset the current signal mask of the calling
thread.

If set is not NULL, this service sets the signal mask of the calling thread according to the value of
how, as follow:

• if how is SIG_BLOCK, the signals in set are added to the calling thread signal mask;

• if how is SIG_SETMASK, the calling thread signal mask is set to set;

• if how is SIG_UNBLOCK, the signals in set are removed from the calling thread signal mask.

If some signals are unblocked by this service, they are handled before this service returns.

Parameters:

how if set is not null, a value indicating how to interpret set;

set if not null, a signal set that will be used to modify the calling thread signal mask;

oset if not null, address where the previous value of the calling thread signal mask will be
stored on success.

Returns:

0 on success;
an error number if:

• EPERM, the calling context is invalid;

• EINVAL, how is not SIG_BLOCK, SIG_UNBLOCK or SIG_SETMASK.

Valid contexts:

• Xenomai POSIX skin kernel-space thread.

See also:

Specification.

3.11.2.3 int pthread_sigqueue_np (pthread_t thread, int sig, union sigval value)

Queue a signal to a thread.

This service send the signal sig to the Xenomai POSIX skin thread thread (created with pthread_-
create()), with the value value. If sig is zero, this service check for existence of the thread thread,
but no signal is sent.

This service is equivalent to the POSIX service sigqueue(), except that the signal is directed to a
thread instead of being directed to a process.

Parameters:

thread thread identifier,

sig signal number,

value additional datum passed to thread with the signal sig.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_sigmask.html

3.11 Signals services. 71

Returns:

0 on success;
an error number if:

• EINVAL, sig is an invalid signal number;

• EAGAIN, the maximum number of pending signals has been exceeded;

• ESRCH, thread is an invalid thread identifier.

See also:

sigqueue() specification.

3.11.2.4 int sigaction (int sig, const struct sigaction ∗ act, struct sigaction ∗ oact)

Examine and change a signal action.

The sigaction structure descibes the actions to be taken upon signal delivery. A sigaction structure
is associated with every signal, for the kernel-space as a whole.

If oact is not NULL, this service returns at the address oact, the current value of the sigaction
structure associated with the signal sig.

If act is not NULL, this service set to the value pointed to by act, the sigaction structure associated
with the signal sig.

The structure sigaction has the following members:

• sa_flags, is a bitwise OR of the flags;

– SA_RESETHAND, meaning that the signal handler will be reset to SIG_GFL and SA_-
SIGINFO cleared upon reception of a signal,

– SA_NODEFER, meaning that the signal handler will be called with the signal sig not
masked when handling the signal sig,

– SA_SIGINFO, meaning that the member sa_sigaction of the sigaction structure will be
used as a signal handler instead of sa_handler

• sa_mask, of type sigset_t, is the value to which the thread signals mask will be set during
execution of the signal handler (sig is automatically added to this set if SA_NODEFER is
not set in sa_flags);

• sa_handler, of type void (∗)(int) is the signal handler which will be called upon signal delivery
if SA_SIGINFO is not set in sa_flags, or one of SIG_IGN or SIG_DFL, meaning that the signal
will be respectively ignored or handled with the default handler;

• sa_sigaction, of type void (∗)(int, siginfo_t ∗, void ∗) is the signal handler which will be called
upon signal delivery if SA_SIGINFO is set in sa_flags.

When using sa_handler as a signal handler, it is passed the number of the received signal, when
using sa_sigaction, two additional arguments are passed:

• a pointer to a siginfo_t object, containing additional information about the received signal;

• a void pointer, always null in this implementation.

The following members of the siginfo_t structure are filled by this implementation:

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sigqueue.html

72 Module Documentation

• si_signo, the signal number;

• si_code, the provenance of the signal, one of:

– SI_QUEUE, the signal was queued with pthread_sigqueue_np(),

– SI_USER, the signal was queued with pthread_kill(),

– SI_TIMER, the signal was queued by a timer (see timer_settime()),

– SI_MESQ, the signal was queued by a message queue (see mq_notify());

• si_value, an additional datum, of type union sigval.

Parameters:

sig a signal number;

act if not null, description of the action to be taken upon notification of the signal sig;

oact if not null, address where the previous description of the signal action is stored on
success.

Return values:

0 on sucess;

-1 with errno set if:

• EINVAL, sig is an invalid signal number;
• ENOTSUP, the sa_flags member of act contains other flags than SA_RESETHAND,

SA_NODEFER and SA_SIGINFO;

See also:

Specification.

3.11.2.5 int sigaddset (sigset_t ∗ set, int sig)

Add a signal to a signal set.

This service adds the signal number sig to the signal set pointed to by set.

Parameters:

set address of a signal set;

sig signal to be added to set.

Return values:

0 on success;

-1 with errno set if:

• EINVAL, sig is not a valid signal number.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sigaction.html
http://www.opengroup.org/onlinepubs/000095399/functions/sigaddset.html

3.11 Signals services. 73

3.11.2.6 int sigdelset (sigset_t ∗ set, int sig)

Delete a signal from a signal set.

This service remove the signal number sig from the signal set pointed to by set.

Parameters:

set address of a signal set;
sig signal to be removed from set.

Return values:

0 on success;
-1 with errno set if:

• EINVAL, sig is not a valid signal number.

See also:

Specification.

3.11.2.7 int sigemptyset (sigset_t ∗ set)

Initialize and empty a signal set.

This service initializes ane empties the signal set pointed to by set.

Parameters:

set address of a the signal set to be initialized.

Return values:

0

See also:

Specification.

3.11.2.8 int sigfillset (sigset_t ∗ set)

Initialize and fill a signal set.

This service initializes ane fills the signal set pointed to by set.

Parameters:

set address of a the signal set to be filled.

Return values:

0

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sigdelset.html
http://www.opengroup.org/onlinepubs/000095399/functions/sigemptyset.html
http://www.opengroup.org/onlinepubs/000095399/functions/sigfillset.html

74 Module Documentation

3.11.2.9 int sigismember (const sigset_t ∗ set, int sig)

Test for a signal in a signal set.

This service tests whether the signal number sig is member of the signal set pointed to by set.

Parameters:

set address of a signal set;

sig tested signal number.

Return values:

0 on success;

-1 with errno set if:

• EINVAL, sig is not a valid signal number.

See also:

Specification.

3.11.2.10 int sigpending (sigset_t ∗ set)

Examine pending signals.

This service stores, at the address set, the set of signals that are currently blocked and have been
received by the calling thread.

Parameters:

set address where the set of blocked and received signals are stored on success.

Return values:

0 on success;

-1 with errno set if:

• EPERM, the calling context is invalid.

Valid contexts:

• Xenomai POSIX skin kernel-space thread.

See also:

Specification.

3.11.2.11 int sigtimedwait (const sigset_t ∗__restrict__ set, siginfo_t ∗__restrict__ info, const
struct timespec ∗__restrict__ timeout)

Wait during a bounded time for signals.

This service is equivalent to the sigwaitinfo() service, except that the calling thread is only blocked
until the timeout specified by timeout expires.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sigismember.html
http://www.opengroup.org/onlinepubs/000095399/functions/sigpending.html

3.11 Signals services. 75

Parameters:

set set of signals to wait for;
info address where the received siginfo_t object will be stored on success;
timeout the timeout, expressed as a time interval.

Return values:

0 on success;
-1 with errno set if:

• EINVAL, the specified timeout is invalid;
• EPERM, the caller context is invalid;
• EINVAL, a signal in set is not currently blocked;
• EAGAIN, no signal was received and the specified timeout expired.

Valid contexts:

• Xenomai POSIX skin kernel-space thread.

See also:

Specification.

3.11.2.12 int sigwait (const sigset_t ∗ set, int ∗ sig)

Wait for signals.

This service blocks a Xenomai kernel-space POSIX skin thread until a signal of the set set is
received. If a signal in set is not currently blocked by the calling thread, this service returns
immediately with an error. The signal received is stored at the address sig.

If a signal of the set set was already pending, it is cleared and this service returns immediately.

Signals are received in priority order, i.e. from SIGRTMIN to SIGRTMAX, then from 1 to
SIGRTMIN-1.

Parameters:

set set of signals to wait for;
sig address where the received signal will be stored on success.

Returns:

0 on success;
an error number if:

• EPERM, the caller context is invalid;
• EINVAL, a signal in set is not currently blocked.

Valid contexts:

• Xenomai POSIX skin kernel-space thread.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sigtimedwait.html
http://www.opengroup.org/onlinepubs/000095399/functions/sigwait.html

76 Module Documentation

3.11.2.13 int sigwaitinfo (const sigset_t ∗__restrict__ set, siginfo_t ∗__restrict__ info)

Wait for signals.

This service is equivalent to the sigwait() service, except that it returns, at the address info, the
siginfo_t object associated with the received signal instead of only returning the signal number.

Parameters:

set set of signals to wait for;

info address where the received siginfo_t object will be stored on success.

Return values:

0 on success;

-1 with errno set if:

• EPERM, the caller context is invalid;
• EINVAL, a signal in set is not currently blocked.

Valid contexts:

• Xenomai POSIX skin kernel-space thread.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sigwaitinfo.html

3.12 Threads management services. 77

3.12 Threads management services.

Collaboration diagram for Threads management services.:

Threads management services.

Thread cancellation.

Threads scheduling services.

Thread creation attributes.

POSIX skin.

3.12.1 Detailed Description

Threads management services.

See also:

Specification.

Modules

• Thread cancellation.
Thread cancellation.

• Threads scheduling services.
Thread scheduling services.

• Thread creation attributes.
Thread creation attributes.

Functions

• int pthread_once (pthread_once_t ∗once, void(∗init_routine)(void))
Execute an initialization routine.

• int pthread_create (pthread_t ∗tid, const pthread_attr_t ∗attr, void ∗(∗start)(void ∗), void
∗arg)

Create a thread.

• int pthread_detach (pthread_t thread)
Detach a running thread.

• int pthread_equal (pthread_t t1, pthread_t t2)
Compare thread identifiers.

• void pthread_exit (void ∗value_ptr)
Terminate the current thread.

• int pthread_join (pthread_t thread, void ∗∗value_ptr)

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/xsh_chap02_09.html#tag_02_09

78 Module Documentation

Wait for termination of a specified thread.

• pthread_t pthread_self (void)
Get the identifier of the calling thread.

• int pthread_make_periodic_np (pthread_t thread, struct timespec ∗starttp, struct timespec
∗periodtp)

Make a thread periodic.

• int pthread_wait_np (unsigned long ∗overruns_r)
Wait for current thread next period.

• int pthread_set_mode_np (int clrmask, int setmask)
Set the mode of the current thread.

• int pthread_set_name_np (pthread_t thread, const char ∗name)
Set a thread name.

3.12.2 Function Documentation

3.12.2.1 int pthread_create (pthread_t ∗ tid, const pthread_attr_t ∗ attr, void ∗(∗)(void ∗) start,
void ∗ arg)

Create a thread.

This service create a thread. The created thread may be used with all POSIX skin services.

The new thread run the start routine, with the arg argument.

The new thread signal mask is inherited from the current thread, if it was also created with
pthread_create(), otherwise the new thread signal mask is empty.

Other attributes of the new thread depend on the attr argument. If attr is null, default values
for these attributes are used. See Thread creation attributes. for a definition of thread creation
attributes and their default values.

Returning from the start routine has the same effect as calling pthread_exit() with the return value.

Parameters:

tid address where the identifier of the new thread will be stored on success;

attr thread attributes;

start thread routine;

arg thread routine argument.

Returns:

0 on success;
an error number if:

• EINVAL, attr is invalid;

• EAGAIN, insufficient memory exists in the system heap to create a new thread, increase
CONFIG_XENO_OPT_SYS_HEAPSZ;

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

3.12 Threads management services. 79

• EINVAL, thread attribute inheritsched is set to PTHREAD_INHERIT_SCHED and the
calling thread does not belong to the POSIX skin;

See also:

Specification.

References pthread_getschedparam().

3.12.2.2 int pthread_detach (pthread_t thread)

Detach a running thread.

This service detaches a joinable thread. A detached thread is a thread which control block is
automatically reclaimed when it terminates. The control block of a joinable thread, on the other
hand, is only reclaimed when joined with the service pthread_join().

If some threads are currently blocked in the pthread_join() service with thread as a target, they are
unblocked and pthread_join() returns EINVAL.

Parameters:

thread target thread.

Returns:

0 on success;
an error number if:

• ESRCH, thread is an invalid thread identifier;
• EINVAL, thread is not joinable.

See also:

Specification.

3.12.2.3 int pthread_equal (pthread_t t1, pthread_t t2)

Compare thread identifiers.

This service compare the thread identifiers t1 and t2. No attempt is made to check the threads for
existence. In order to check if a thread exists, the pthread_kill() service should be used with the
signal number 0.

Parameters:

t1 thread identifier;
t2 other thread identifier.

Returns:

a non zero value if the thread identifiers are equal;
0 otherwise.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_create.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_detach.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_equal.html

80 Module Documentation

3.12.2.4 void pthread_exit (void ∗ value_ptr)

Terminate the current thread.

This service terminate the current thread with the return value value_ptr. If the current thread is
joinable, the return value is returned to any thread joining the current thread with the pthread_-
join() service.

When a thread terminates, cancellation cleanup handlers are executed in the reverse order that
they were pushed. Then, thread-specific data destructors are executed.

Parameters:

value_ptr thread return value.

See also:

Specification.

3.12.2.5 int pthread_join (pthread_t thread, void ∗∗ value_ptr)

Wait for termination of a specified thread.

If the thread thread is running and joinable, this service blocks the calling thread until the thread
thread terminates or detaches. In this case, the calling context must be a blockable context (i.e. a
Xenomai thread without the scheduler locked) or the root thread (i.e. a module initilization or
cleanup routine). When thread terminates, the calling thread is unblocked and its return value is
stored at∗ the address value_ptr.

If, on the other hand, the thread thread has already finished execution, its return value is stored at
the address value_ptr and this service returns immediately. In this case, this service may be called
from any context.

This service is a cancelation point for POSIX skin threads: if the calling thread is canceled while
blocked in a call to this service, the cancelation request is honored and thread remains joinable.

Multiple simultaneous calls to pthread_join() specifying the same running target thread block all
the callers until the target thread terminates.

Parameters:

thread identifier of the thread to wait for;

value_ptr address where the target thread return value will be stored on success.

Returns:

0 on success;
an error number if:

• ESRCH, thread is invalid;

• EDEADLK, attempting to join the calling thread;

• EINVAL, thread is detached;

• EPERM, the caller context is invalid.

Valid contexts, if this service has to block its caller:

• Xenomai kernel-space thread;

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_exit.html

3.12 Threads management services. 81

• kernel module initilization or cleanup routine;

• Xenomai user-space thread (switches to primary mode).

See also:

Specification.

3.12.2.6 int pthread_make_periodic_np (pthread_t thread, struct timespec ∗ starttp, struct
timespec ∗ periodtp)

Make a thread periodic.

This service make the POSIX skin thread thread periodic.

This service is a non-portable extension of the POSIX interface.

Parameters:

thread thread identifier. This thread is immediately delayed until the first periodic release
point is reached.

starttp start time, expressed as an absolute value of the CLOCK_REALTIME clock. The
affected thread will be delayed until this point is reached.

periodtp period, expressed as a time interval.

Returns:

0 on success;
an error number if:

• ESRCH, thread is invalid;

• ETIMEDOUT, the start time has already passed.

Rescheduling: always, until the starttp start time has been reached.

3.12.2.7 int pthread_once (pthread_once_t ∗ once, void(∗)(void) init_routine)

Execute an initialization routine.

This service may be used by libraries which need an initialization function to be called only once.

The function init_routine will only be called, with no argument, the first time this service is called
specifying the address once.

Returns:

0 on success;
an error number if:

• EINVAL, the object pointed to by once is invalid (it must have been initialized with
PTHREAD_ONCE_INIT).

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_join.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_once.html

82 Module Documentation

3.12.2.8 pthread_t pthread_self (void)

Get the identifier of the calling thread.

This service returns the identifier of the calling thread.

Returns:

identifier of the calling thread;
NULL if the calling thread is not a POSIX skin thread.

See also:

Specification.

3.12.2.9 int pthread_set_mode_np (int clrmask, int setmask)

Set the mode of the current thread.

This service sets the mode of the calling thread. clrmask and setmask are two bit masks which are
respectively cleared and set in the calling thread status. They are a bitwise OR of the following
values:

• PTHREAD_LOCK_SCHED, when set, locks the scheduler, which prevents the current
thread from being switched out by the scheduler until the scheduler is unlocked;

• PTHREAD_SHIELD, when set, activates the interrupt shield, which improve the execution
determinism of the current thread by blocking Linux interrupts when it runs in secondary
mode;

• PTHREAD_RPIOFF, when set, prevents the root Linux thread from inheriting the priority
of the calling thread, when this thread is running in secondary mode;

• PTHREAD_WARNSW, when set, cause the signal SIGXCPU to be sent to the current thread,
whenever it involontary switches to secondary mode;

• PTHREAD_PRIMARY, cause the migration of the current thread to primary mode.

PTHREAD_LOCK_SCHED is valid for any Xenomai thread, the other bits are only valid for
Xenomai user-space threads.

This service is a non-portable extension of the POSIX interface.

Parameters:

clrmask set of bits to be cleared;

setmask set of bits to be set.

Returns:

0 on success;
an error number if:

• EINVAL, some bit in clrmask or setmask is invalid.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_self.html

3.12 Threads management services. 83

3.12.2.10 int pthread_set_name_np (pthread_t thread, const char ∗ name)

Set a thread name.

This service set to name, the name of thread. This name is used for displaying information in
/proc/xenomai/sched.

This service is a non-portable extension of the POSIX interface.

Parameters:

thread target thread;

name name of the thread.

Returns:

0 on success;
an error number if:

• ESRCH, thread is invalid.

3.12.2.11 int pthread_wait_np (unsigned long ∗ overruns_r)

Wait for current thread next period.

If it is periodic, this service blocks the calling thread until the next period elapses.

This service is a cancelation point for POSIX skin threads.

This service is a non-portable extension of the POSIX interface.

Parameters:

overruns_r address where the overruns count is returned in case of overrun.

Returns:

0 on success;
an error number if:

• EPERM, the calling context is invalid;

• EWOULDBLOCK, the calling thread is not periodic;

• EINTR, this service was interrupted by a signal;

• ETIMEDOUT, at least one overrun occurred.

Valid contexts:

• Xenomai kernel-space thread;

• Xenomai user-space thread (switches to primary mode).

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

84 Module Documentation

3.13 Thread creation attributes.

Collaboration diagram for Thread creation attributes.:

Threads management services. Thread creation attributes.

3.13.1 Detailed Description

Thread creation attributes.

The services described in this section allow to set the attributes of a pthread_attr_t object, passed
to the pthread_create() service in order to set the attributes of a created thread.

A pthread_attr_t object has to be initialized with pthread_attr_init() first, which sets attributes to
their default values, i.e. in kernel-space:

• detachstate to PTHREAD_CREATE_JOINABLE,

• stacksize to PTHREAD_STACK_MIN,

• inheritsched to PTHREAD_EXPLICIT_SCHED,

• schedpolicy to SCHED_OTHER,

• name to NULL (only available in kernel-space),

• scheduling priority to the minimum,

• floating-point hardware enabled (only available in kernel-space),

• processor affinity set to all available processors (only available as a thread attribute in
kernel-space).

In user-space, the attributes and their defaults values are those documented by the underlying
threading library (LinuxThreads or NPTL).

Functions

• int pthread_attr_init (pthread_attr_t ∗attr)
Initialize a thread attributes object.

• int pthread_attr_destroy (pthread_attr_t ∗attr)
Destroy a thread attributes object.

• int pthread_attr_getdetachstate (const pthread_attr_t ∗attr, int ∗detachstate)
Get detachstate attribute.

• int pthread_attr_setdetachstate (pthread_attr_t ∗attr, int detachstate)
Set detachstate attribute.

• int pthread_attr_getstacksize (const pthread_attr_t ∗attr, size_t ∗stacksize)
Get stacksize attribute.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

3.13 Thread creation attributes. 85

• int pthread_attr_setstacksize (pthread_attr_t ∗attr, size_t stacksize)

Set stacksize attribute.

• int pthread_attr_getinheritsched (const pthread_attr_t ∗attr, int ∗inheritsched)

Get inheritsched attribute.

• int pthread_attr_setinheritsched (pthread_attr_t ∗attr, int inheritsched)

Set inheritsched attribute.

• int pthread_attr_getschedpolicy (const pthread_attr_t ∗attr, int ∗policy)

Get schedpolicy attribute.

• int pthread_attr_setschedpolicy (pthread_attr_t ∗attr, int policy)

Set schedpolicy attribute.

• int pthread_attr_getschedparam (const pthread_attr_t ∗attr, struct sched_param ∗par)

Get schedparam attribute.

• int pthread_attr_setschedparam (pthread_attr_t ∗attr, const struct sched_param ∗par)

Set schedparam attribute.

• int pthread_attr_getscope (const pthread_attr_t ∗attr, int ∗scope)

Get contention scope attribute.

• int pthread_attr_setscope (pthread_attr_t ∗attr, int scope)

Set contention scope attribute.

• int pthread_attr_getname_np (const pthread_attr_t ∗attr, const char ∗∗name)

Get name attribute.

• int pthread_attr_setname_np (pthread_attr_t ∗attr, const char ∗name)

Set name attribute.

• int pthread_attr_getfp_np (const pthread_attr_t ∗attr, int ∗fp)

Get the floating point attribute.

• int pthread_attr_setfp_np (pthread_attr_t ∗attr, int fp)

Set the floating point attribute.

• int pthread_attr_getaffinity_np (const pthread_attr_t ∗attr, xnarch_cpumask_t ∗mask)

Get the processor affinity attribute.

• int pthread_attr_setaffinity_np (pthread_attr_t ∗attr, xnarch_cpumask_t mask)

Set the processor affinity attribute.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

86 Module Documentation

3.13.2 Function Documentation

3.13.2.1 int pthread_attr_destroy (pthread_attr_t ∗ attr)

Destroy a thread attributes object.

This service invalidates the attribute object pointed to by attr. The object becomes invalid for all
services (they all return EINVAL) except pthread_attr_init().

See also:

Specification.

3.13.2.2 int pthread_attr_getaffinity_np (const pthread_attr_t ∗ attr, xnarch_cpumask_t ∗
mask)

Get the processor affinity attribute.

This service stores, at the address mask, the value of the affinity attribute in the attribute object attr.

The affinity attributes is a bitmask where bits set indicate processor where a thread created with
the attribute attr may run. The least significant bit corresponds to the first logical processor.

This service is a non-portable extension of the POSIX interface.

Parameters:

attr attribute object;

mask address where the value of the affinity attribute will be stored on success.

Returns:

0 on success;
an error number if:

• EINVAL, attr is invalid.

Valid contexts:

• kernel module initialization or cleanup routine;

• Xenomai kernel-space thread.

3.13.2.3 int pthread_attr_getdetachstate (const pthread_attr_t ∗ attr, int ∗ detachstate)

Get detachstate attribute.

This service returns, at the address detachstate, the value of the detachstate attribute in the thread
attribute object attr.

Valid values of this attribute are PTHREAD_CREATE_JOINABLE and PTHREAD_CREATE_-
DETACHED. A detached thread is a thread which control block is automatically reclaimed when
it terminates. The control block of a joinable thread, on the other hand, is only reclaimed when
joined with the service pthread_join().

A thread that was created joinable may be detached after creation by using the pthread_detach()
service.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_destroy.html

3.13 Thread creation attributes. 87

Parameters:

attr attribute object

detachstate address where the value of the detachstate attribute will be stored on success.

Returns:

0 on success;
an error number if:

• EINVAL, attr is invalid;

See also:

Specification.

3.13.2.4 int pthread_attr_getfp_np (const pthread_attr_t ∗ attr, int ∗ fp)

Get the floating point attribute.

This service returns, at the address fp, the value of the fp attribute in the attribute object attr.

The fp attribute is a boolean attribute indicating whether a thread created with the attribute attr
may use floating-point hardware.

This service is a non-portable extension of the POSIX interface.

Parameters:

attr attribute object;

fp address where the value of the fp attribute will be stored on success.

Returns:

0 on success;
an error number if:

• EINVAL, attr is invalid.

Valid contexts:

• kernel module initialization or cleanup routine;

• Xenomai kernel-space thread.

3.13.2.5 int pthread_attr_getinheritsched (const pthread_attr_t ∗ attr, int ∗ inheritsched)

Get inheritsched attribute.

This service returns at the address inheritsched the value of the inheritsched attribute in the attribute
object attr.

Threads created with this attribute set to PTHREAD_INHERIT_SCHED will use the same schedul-
ing policy and priority as the thread calling pthread_create(). Threads created with this attribute
set to PTHREAD_EXPLICIT_SCHED will use the value of the schedpolicy attribute as scheduling
policy, and the value of the schedparam attribute as scheduling priority.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_getdetachstate.html

88 Module Documentation

Parameters:

attr attribute object;
inheritsched address where the value of the inheritsched attribute will be stored on success.

Returns:

0 on success;
an error number if:

• EINVAL, attr is invalid.

See also:

Specification.

3.13.2.6 int pthread_attr_getname_np (const pthread_attr_t ∗ attr, const char ∗∗ name)

Get name attribute.

This service stores, at the address name, the value of the name attribute in the attribute object attr.

The name attribute is the name under which a thread created with the attribute object attr will
appear under /proc/xenomai/sched.

The name returned by this function is only valid until the name is changed with pthread_attr_-
setname_np() or the attr object is destroyed with pthread_attr_destroy().

If name is NULL, a unique default name will be used.

This service is a non-portable extension of the POSIX interface.

Parameters:

attr attribute object;
name address where the value of the name attribute will be stored on success.

Returns:

0 on success;
an error number if:

• EINVAL, attr is invalid.

Valid contexts:

• kernel module initialization or cleanup routine;
• Xenomai kernel-space thread.

3.13.2.7 int pthread_attr_getschedparam (const pthread_attr_t ∗ attr, struct sched_param ∗
par)

Get schedparam attribute.

This service stores, at the address par, the value of the schedparam attribute in the attribute object
attr.

The only member of the sched_param structure used by this implementation is sched_priority.
Threads created with attr will use the value of this attribute as a scheduling priority if the
attribute inheritsched is set to PTHREAD_EXPLICIT_SCHED. Valid priorities range from 1 to 99.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_getinheritsched.html

3.13 Thread creation attributes. 89

Parameters:

attr attribute object;

par address where the value of the schedparam attribute will be stored on success.

Returns:

0 on success;
an error number if:

• EINVAL, attr is invalid.

See also:

Specification.

3.13.2.8 int pthread_attr_getschedpolicy (const pthread_attr_t ∗ attr, int ∗ policy)

Get schedpolicy attribute.

This service stores, at the address policy, the value of the policy attribute in the attribute object attr.

Threads created with the attribute object attr use the value of this attribute as scheduling policy
if the inheritsched attribute is set to PTHREAD_EXPLICIT_SCHED. The value of this attribute is
one of SCHED_FIFO, SCHED_RR or SCHED_OTHER.

Parameters:

attr attribute object;

policy address where the value of the policy attribute in the attribute object attr will be stored
on success.

Returns:

0 on success;
an error number if:

• EINVAL, attr is invalid.

See also:

Specification.

3.13.2.9 int pthread_attr_getscope (const pthread_attr_t ∗ attr, int ∗ scope)

Get contention scope attribute.

This service stores, at the address scope, the value of the scope attribute in the attribute object attr.

The scope attribute represents the scheduling contention scope of threads created with the attribute
object attr. This implementation only supports the value PTHREAD_SCOPE_SYSTEM.

Parameters:

attr attribute object;

scope address where the value of the scope attribute will be stored on sucess.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_getschedparam.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_getschedpolicy.html

90 Module Documentation

Returns:

0 on success;
an error number if:

• EINVAL, attr is invalid.

See also:

Specification.

3.13.2.10 int pthread_attr_getstacksize (const pthread_attr_t ∗ attr, size_t ∗ stacksize)

Get stacksize attribute.

This service stores, at the address stacksize, the value of the stacksize attribute in the attribute object
attr.

The stacksize attribute is used as the stack size of the threads created using the attribute object attr.

Parameters:

attr attribute object;

stacksize address where the value of the stacksize attribute will be stored on success.

Returns:

0 on success;
an error number if:

• EINVAL, attr is invalid.

See also:

Specification.

3.13.2.11 int pthread_attr_init (pthread_attr_t ∗ attr)

Initialize a thread attributes object.

This service initializes the thread creation attributes structure pointed to by attr. Attributes are
set to their default values (see Thread creation attributes.).

If this service is called specifying a thread attributes object that was already initialized, the
attributes object is reinitialized.

Parameters:

attr address of the thread attributes object to initialize.

Returns:

0.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_getscope.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_getstacksize.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_init.html

3.13 Thread creation attributes. 91

3.13.2.12 int pthread_attr_setaffinity_np (pthread_attr_t ∗ attr, xnarch_cpumask_t mask)

Set the processor affinity attribute.

This service sets to mask, the value of the affinity attribute in the attribute object attr.

The affinity attributes is a bitmask where bits set indicate processor where a thread created with
the attribute attr may run. The least significant bit corresponds to the first logical processor.

This service is a non-portable extension of the POSIX interface.

Parameters:

attr attribute object;

mask address where the value of the affinity attribute will be stored on success.

Returns:

0 on success;
an error number if:

• EINVAL, attr is invalid.

Valid contexts:

• kernel module initialization or cleanup routine;

• Xenomai kernel-space thread.

3.13.2.13 int pthread_attr_setdetachstate (pthread_attr_t ∗ attr, int detachstate)

Set detachstate attribute.

This service sets to detachstate the value of the detachstate attribute in the attribute object attr.

Valid values of this attribute are PTHREAD_CREATE_JOINABLE and PTHREAD_CREATE_-
DETACHED. A detached thread is a thread which control block is automatically reclaimed when
it terminates. The control block of a joinable thread, on the other hand, is only reclaimed when
joined with the service pthread_join().

A thread that was created joinable may be detached after creation by using the pthread_detach()
service.

Parameters:

attr attribute object;

detachstate value of the detachstate attribute.

Returns:

0 on success;
an error number if:

• EINVAL, the attribute object attr is invalid

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_setdetachstate.html

92 Module Documentation

3.13.2.14 int pthread_attr_setfp_np (pthread_attr_t ∗ attr, int fp)

Set the floating point attribute.

This service set to fp, the value of the fp attribute in the attribute object attr.

The fp attribute is a boolean attribute indicating whether a thread created with the attribute attr
may use floating-point hardware.

This service is a non-portable extension of the POSIX interface.

Parameters:

attr attribute object;

fp value of the fp attribute.

Returns:

0 on success;
an error number if:

• EINVAL, attr is invalid.

Valid contexts:

• kernel module initialization or cleanup routine;

• Xenomai kernel-space thread.

3.13.2.15 int pthread_attr_setinheritsched (pthread_attr_t ∗ attr, int inheritsched)

Set inheritsched attribute.

This service set to inheritsched the value of the inheritsched attribute in the attribute object attr.

Threads created with this attribute set to PTHREAD_INHERIT_SCHED will use the same schedul-
ing policy and priority as the thread calling pthread_create(). Threads created with this attribute
set to PTHREAD_EXPLICIT_SCHED will use the value of the schedpolicy attribute as scheduling
policy, and the value of the schedparam attribute as scheduling priority.

Parameters:

attr attribute object;

inheritsched value of the inheritsched attribute, PTHREAD_INHERIT_SCHED or
PTHREAD_EXPLICIT_SCHED.

Returns:

0 on success;
an error number if:

• EINVAL, attr or inheritsched is invalid.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_setinheritsched.html

3.13 Thread creation attributes. 93

3.13.2.16 int pthread_attr_setname_np (pthread_attr_t ∗ attr, const char ∗ name)

Set name attribute.

This service set to name, the value of the name attribute in the attribute object attr.

The name attribute is the name under which a thread created with the attribute object attr will
appear under /proc/xenomai/sched.

If name is NULL, a unique default name will be used.

This service is a non-portable extension of the POSIX interface.

Parameters:

attr attribute object;

name value of the name attribute.

Returns:

0 on success;
an error number if:

• EINVAL, attr is invalid;

• ENOMEM, insufficient memory exists in the system heap to duplicate the name string,
increase CONFIG_XENO_OPT_SYS_HEAPSZ.

Valid contexts:

• kernel module initialization or cleanup routine;

• Xenomai kernel-space thread.

3.13.2.17 int pthread_attr_setschedparam (pthread_attr_t ∗ attr, const struct sched_param ∗
par)

Set schedparam attribute.

This service set to par, the value of the schedparam attribute in the attribute object attr.

The only member of the sched_param structure used by this implementation is sched_priority.
Threads created with attr will use the value of this attribute as a scheduling priority if the
attribute inheritsched is set to PTHREAD_EXPLICIT_SCHED. Valid priorities range from 1 to 99.

Parameters:

attr attribute object;

par value of the schedparam attribute.

Returns:

0 on success;
an error number if:

• EINVAL, attr or par is invalid.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_setschedparam.html

94 Module Documentation

3.13.2.18 int pthread_attr_setschedpolicy (pthread_attr_t ∗ attr, int policy)

Set schedpolicy attribute.

This service set to policy the value of the policy attribute in the attribute object attr.

Threads created with the attribute object attr use the value of this attribute as scheduling policy
if the inheritsched attribute is set to PTHREAD_EXPLICIT_SCHED. The value of this attribute is
one of SCHED_FIFO, SCHED_RR or SCHED_OTHER.

Parameters:

attr attribute object;

policy value of the policy attribute.

Returns:

0 on success;
an error number if:

• EINVAL, attr or policy is invalid.

See also:

Specification.

3.13.2.19 int pthread_attr_setscope (pthread_attr_t ∗ attr, int scope)

Set contention scope attribute.

This service set to scope the value of the scope attribute in the attribute object attr.

The scope attribute represents the scheduling contention scope of threads created with the attribute
object attr. This implementation only supports the value PTHREAD_SCOPE_SYSTEM.

Parameters:

attr attribute object;

scope value of the scope attribute.

Returns:

0 on success;
an error number if:

• ENOTSUP, scope is an unsupported value of the scope attribute.

• EINVAL, attr is invalid.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_setschedpolicy.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_setscope.html

3.13 Thread creation attributes. 95

3.13.2.20 int pthread_attr_setstacksize (pthread_attr_t ∗ attr, size_t stacksize)

Set stacksize attribute.

This service set to stacksize, the value of the stacksize attribute in the attribute object attr.

The stacksize attribute is used as the stack size of the threads created using the attribute object attr.

The minimum value for this attribute is PTHREAD_STACK_MIN.

Parameters:

attr attribute object;

stacksize value of the stacksize attribute.

Returns:

0 on success;
an error number if:

• EINVAL, attr or stacksize is invalid.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_setstacksize.html

96 Module Documentation

3.14 Thread-specific data.

Collaboration diagram for Thread-specific data.:

POSIX skin. Thread-specific data.

3.14.1 Detailed Description

Thread-specific data.

Programs often need global or static variables that have different values in different threads. Since
threads share one memory space, this cannot be achieved with regular variables. Thread-specific
data is the POSIX threads answer to this need.

Each thread possesses a private memory block, the thread-specific data area, or TSD area for
short. This area is indexed by TSD keys. The TSD area associates values of type ‘void ∗’ to TSD
keys. TSD keys are common to all threads, but the value associated with a given TSD key can be
different in each thread.

When a thread is created, its TSD area initially associates NULL with all keys.

The services documented here are valid in kernel-space context; when called in user-space, the
underlying Linux threading library (LinuxThreads or NPTL) services are used.

Functions

• int pthread_key_create (pthread_key_t ∗key, void(∗destructor)(void ∗))

Create a thread-specific data key.

• int pthread_setspecific (pthread_key_t key, const void ∗value)

Associate a thread-specific value with the specified key.

• void ∗ pthread_getspecific (pthread_key_t key)

Get the thread-specific value bound to the specified key.

• int pthread_key_delete (pthread_key_t key)

Delete a thread-specific data key.

3.14.2 Function Documentation

3.14.2.1 void∗ pthread_getspecific (pthread_key_t key)

Get the thread-specific value bound to the specified key.

This service returns the value associated, for the calling thread, with the key key.

Parameters:

key TSD key, obtained with pthread_key_create().

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

3.14 Thread-specific data. 97

Returns:

the value associated with key;
NULL if the context is invalid.

Valid contexts:

• Xenomai POSIX skin kernel-space thread.

See also:

Specification.

3.14.2.2 int pthread_key_create (pthread_key_t ∗ key, void(∗)(void ∗) destructor)

Create a thread-specific data key.

This service create a TSD key. The NULL value is associated for all threads with the new key
and the new key is returned at the address key. If destructor is not null, it is executed when a
thread is terminated as long as the datum associated with the key is not NULL, up to PTHREAD_-
DESTRUCTOR_ITERATIONS times.

Parameters:

key address where the new key will be stored on success;
destructor function to be invoked when a thread terminates and has a non NULL value

associated with the new key.

Returns:

0 on success;
an error number if:

• EAGAIN, the total number of keys PTHREAD_KEYS_MAX TSD has been exceeded;
• ENOMEM, insufficient memory exists in the system heap to create a new key, increase

CONFIG_XENO_OPT_SYS_HEAPSZ.

See also:

Specification.

3.14.2.3 int pthread_key_delete (pthread_key_t key)

Delete a thread-specific data key.

This service deletes the TSD key key. Note that the key destructor function is not called, so, if
any thread has a value associated with key that is a pointer to dynamically allocated memory, the
application has to manage to free that memory by other means.

Parameters:

key the TSD key to be destroyed.

Returns:

0 on success;
an error number if:

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_getspecific.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_key_create.html

98 Module Documentation

• EINVAL, key is invalid.

See also:

Specification.

3.14.2.4 int pthread_setspecific (pthread_key_t key, const void ∗ value)

Associate a thread-specific value with the specified key.

This service associates, for the calling thread, the value value to the key key.

Parameters:

key TSD key, obtained with pthread_key_create();

value value.

Returns:

0 on success;
an error number if:

• EPERM, the caller context is invalid;

• EINVAL, key is invalid.

Valid contexts:

• Xenomai POSIX skin kernel-space thread.

See also:

Specification.

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_key_delete.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_setspecific.html

Chapter 4

File Documentation

4.1 ksrc/skins/posix/syscall.c File Reference

4.1.1 Detailed Description

This file is part of the Xenomai project.

Copyright (C) 2005 Philippe Gerum<rpm@xenomai.org>Copyright (C) 2005 Gilles Chanteperdrix
<gilles.chanteperdrix@laposte.net>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for syscall.c:

ksrc/skins/posix/syscall.c

asm/xenomai/wrappers.h nucleus/jhash.h

nucleus/ppd.h

posix/syscall.h

posix/posix.h

posix/thread.h

posix/registry.h

posix/mutex.h

posix/cond.h

posix/mq.h

posix/intr.h

posix/sem.h

posix/shm.h

posix/timer.h

posix/internal.h

nucleus/select.hnucleus/xenomai.h nucleus/core.h nucleus/assert.h

stdarg.hnucleus/queue.h nucleus/synch.h

nucleus/intr.hposix/sig.h

mailto:rpm@xenomai.org
mailto:gilles.chanteperdrix@laposte.net

Index

clock_getres
posix_time, 11

clock_gettime
posix_time, 11

clock_nanosleep
posix_time, 12

clock_settime
posix_time, 13

Clocks and timers services., 10
close

posix_shm, 62
Condition variables services., 18

ftruncate
posix_shm, 63

Interruptions management services., 26

ksrc/skins/posix/syscall.c, 99

Message queues services., 32
mmap

posix_shm, 64
mq_close

posix_mq, 33
mq_getattr

posix_mq, 33
mq_notify

posix_mq, 34
mq_open

posix_mq, 34
mq_receive

posix_mq, 36
mq_send

posix_mq, 36
mq_setattr

posix_mq, 37
mq_timedreceive

posix_mq, 38
mq_timedsend

posix_mq, 38
mq_unlink

posix_mq, 39
munmap

posix_shm, 65

Mutex services., 41

nanosleep
posix_time, 13

POSIX skin., 30
posix_cancel

pthread_cancel, 6
pthread_cleanup_pop, 6
pthread_cleanup_push, 7
pthread_setcancelstate, 7
pthread_setcanceltype, 8
pthread_testcancel, 9

posix_cond
pthread_cond_broadcast, 19
pthread_cond_destroy, 19
pthread_cond_init, 20
pthread_cond_signal, 20
pthread_cond_timedwait, 21
pthread_cond_wait, 21
pthread_condattr_destroy, 22
pthread_condattr_getclock, 23
pthread_condattr_getpshared, 23
pthread_condattr_init, 24
pthread_condattr_setclock, 24
pthread_condattr_setpshared, 25

posix_intr
pthread_intr_attach_np, 26
pthread_intr_control_np, 27
pthread_intr_detach_np, 28
pthread_intr_wait_np, 28

posix_mq
mq_close, 33
mq_getattr, 33
mq_notify, 34
mq_open, 34
mq_receive, 36
mq_send, 36
mq_setattr, 37
mq_timedreceive, 38
mq_timedsend, 38
mq_unlink, 39

posix_mutex
pthread_mutex_destroy, 42
pthread_mutex_init, 42

INDEX 101

pthread_mutex_lock, 43
pthread_mutex_timedlock, 44
pthread_mutex_trylock, 44
pthread_mutex_unlock, 45
pthread_mutexattr_destroy, 46
pthread_mutexattr_getprotocol, 46
pthread_mutexattr_getpshared, 46
pthread_mutexattr_gettype, 47
pthread_mutexattr_init, 47
pthread_mutexattr_setprotocol, 48
pthread_mutexattr_setpshared, 49
pthread_mutexattr_settype, 49

posix_sched
pthread_getschedparam, 52
pthread_setschedparam, 52
sched_get_priority_max, 53
sched_get_priority_min, 53
sched_rr_get_interval, 53
sched_yield, 54

posix_sem
sem_close, 56
sem_destroy, 56
sem_getvalue, 56
sem_init, 57
sem_open, 57
sem_post, 58
sem_timedwait, 59
sem_trywait, 59
sem_unlink, 60
sem_wait, 60

posix_shm
close, 62
ftruncate, 63
mmap, 64
munmap, 65
shm_open, 65
shm_unlink, 67

posix_signal
pthread_kill, 69
pthread_sigmask, 69
pthread_sigqueue_np, 70
sigaction, 71
sigaddset, 72
sigdelset, 72
sigemptyset, 73
sigfillset, 73
sigismember, 73
sigpending, 74
sigtimedwait, 74
sigwait, 75
sigwaitinfo, 75

posix_thread
pthread_create, 78
pthread_detach, 79

pthread_equal, 79
pthread_exit, 79
pthread_join, 80
pthread_make_periodic_np, 81
pthread_once, 81
pthread_self, 81
pthread_set_mode_np, 82
pthread_set_name_np, 82
pthread_wait_np, 83

posix_threadattr
pthread_attr_destroy, 86
pthread_attr_getaffinity_np, 86
pthread_attr_getdetachstate, 86
pthread_attr_getfp_np, 87
pthread_attr_getinheritsched, 87
pthread_attr_getname_np, 88
pthread_attr_getschedparam, 88
pthread_attr_getschedpolicy, 89
pthread_attr_getscope, 89
pthread_attr_getstacksize, 90
pthread_attr_init, 90
pthread_attr_setaffinity_np, 90
pthread_attr_setdetachstate, 91
pthread_attr_setfp_np, 91
pthread_attr_setinheritsched, 92
pthread_attr_setname_np, 92
pthread_attr_setschedparam, 93
pthread_attr_setschedpolicy, 93
pthread_attr_setscope, 94
pthread_attr_setstacksize, 94

posix_time
clock_getres, 11
clock_gettime, 11
clock_nanosleep, 12
clock_settime, 13
nanosleep, 13
timer_create, 14
timer_delete, 14
timer_getoverrun, 15
timer_gettime, 15
timer_settime, 16

posix_tsd
pthread_getspecific, 96
pthread_key_create, 97
pthread_key_delete, 97
pthread_setspecific, 98

pthread_attr_destroy
posix_threadattr, 86

pthread_attr_getaffinity_np
posix_threadattr, 86

pthread_attr_getdetachstate
posix_threadattr, 86

pthread_attr_getfp_np
posix_threadattr, 87

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

102 INDEX

pthread_attr_getinheritsched
posix_threadattr, 87

pthread_attr_getname_np
posix_threadattr, 88

pthread_attr_getschedparam
posix_threadattr, 88

pthread_attr_getschedpolicy
posix_threadattr, 89

pthread_attr_getscope
posix_threadattr, 89

pthread_attr_getstacksize
posix_threadattr, 90

pthread_attr_init
posix_threadattr, 90

pthread_attr_setaffinity_np
posix_threadattr, 90

pthread_attr_setdetachstate
posix_threadattr, 91

pthread_attr_setfp_np
posix_threadattr, 91

pthread_attr_setinheritsched
posix_threadattr, 92

pthread_attr_setname_np
posix_threadattr, 92

pthread_attr_setschedparam
posix_threadattr, 93

pthread_attr_setschedpolicy
posix_threadattr, 93

pthread_attr_setscope
posix_threadattr, 94

pthread_attr_setstacksize
posix_threadattr, 94

pthread_cancel
posix_cancel, 6

pthread_cleanup_pop
posix_cancel, 6

pthread_cleanup_push
posix_cancel, 7

pthread_cond_broadcast
posix_cond, 19

pthread_cond_destroy
posix_cond, 19

pthread_cond_init
posix_cond, 20

pthread_cond_signal
posix_cond, 20

pthread_cond_timedwait
posix_cond, 21

pthread_cond_wait
posix_cond, 21

pthread_condattr_destroy
posix_cond, 22

pthread_condattr_getclock
posix_cond, 23

pthread_condattr_getpshared
posix_cond, 23

pthread_condattr_init
posix_cond, 24

pthread_condattr_setclock
posix_cond, 24

pthread_condattr_setpshared
posix_cond, 25

pthread_create
posix_thread, 78

pthread_detach
posix_thread, 79

pthread_equal
posix_thread, 79

pthread_exit
posix_thread, 79

pthread_getschedparam
posix_sched, 52

pthread_getspecific
posix_tsd, 96

pthread_intr_attach_np
posix_intr, 26

pthread_intr_control_np
posix_intr, 27

pthread_intr_detach_np
posix_intr, 28

pthread_intr_wait_np
posix_intr, 28

pthread_join
posix_thread, 80

pthread_key_create
posix_tsd, 97

pthread_key_delete
posix_tsd, 97

pthread_kill
posix_signal, 69

pthread_make_periodic_np
posix_thread, 81

pthread_mutex_destroy
posix_mutex, 42

pthread_mutex_init
posix_mutex, 42

pthread_mutex_lock
posix_mutex, 43

pthread_mutex_timedlock
posix_mutex, 44

pthread_mutex_trylock
posix_mutex, 44

pthread_mutex_unlock
posix_mutex, 45

pthread_mutexattr_destroy
posix_mutex, 46

pthread_mutexattr_getprotocol
posix_mutex, 46

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

INDEX 103

pthread_mutexattr_getpshared
posix_mutex, 46

pthread_mutexattr_gettype
posix_mutex, 47

pthread_mutexattr_init
posix_mutex, 47

pthread_mutexattr_setprotocol
posix_mutex, 48

pthread_mutexattr_setpshared
posix_mutex, 49

pthread_mutexattr_settype
posix_mutex, 49

pthread_once
posix_thread, 81

pthread_self
posix_thread, 81

pthread_set_mode_np
posix_thread, 82

pthread_set_name_np
posix_thread, 82

pthread_setcancelstate
posix_cancel, 7

pthread_setcanceltype
posix_cancel, 8

pthread_setschedparam
posix_sched, 52

pthread_setspecific
posix_tsd, 98

pthread_sigmask
posix_signal, 69

pthread_sigqueue_np
posix_signal, 70

pthread_testcancel
posix_cancel, 9

pthread_wait_np
posix_thread, 83

sched_get_priority_max
posix_sched, 53

sched_get_priority_min
posix_sched, 53

sched_rr_get_interval
posix_sched, 53

sched_yield
posix_sched, 54

sem_close
posix_sem, 56

sem_destroy
posix_sem, 56

sem_getvalue
posix_sem, 56

sem_init
posix_sem, 57

sem_open

posix_sem, 57
sem_post

posix_sem, 58
sem_timedwait

posix_sem, 59
sem_trywait

posix_sem, 59
sem_unlink

posix_sem, 60
sem_wait

posix_sem, 60
Semaphores services., 55
Shared memory services., 62
shm_open

posix_shm, 65
shm_unlink

posix_shm, 67
sigaction

posix_signal, 71
sigaddset

posix_signal, 72
sigdelset

posix_signal, 72
sigemptyset

posix_signal, 73
sigfillset

posix_signal, 73
sigismember

posix_signal, 73
Signals services., 68
sigpending

posix_signal, 74
sigtimedwait

posix_signal, 74
sigwait

posix_signal, 75
sigwaitinfo

posix_signal, 75

Thread cancellation., 5
Thread creation attributes., 84
Thread-specific data., 96
Threads management services., 77
Threads scheduling services., 51
timer_create

posix_time, 14
timer_delete

posix_time, 14
timer_getoverrun

posix_time, 15
timer_gettime

posix_time, 15
timer_settime

posix_time, 16

Generated on Sun Jun 8 18:09:10 2008 for Xenomai POSIX skin API by Doxygen

	Module Index
	Modules

	File Index
	File List

	Module Documentation
	Thread cancellation.
	Clocks and timers services.
	Condition variables services.
	Interruptions management services.
	POSIX skin.
	Message queues services.
	Mutex services.
	Threads scheduling services.
	Semaphores services.
	Shared memory services.
	Signals services.
	Threads management services.
	Thread creation attributes.
	Thread-specific data.

	File Documentation
	ksrc/skins/posix/syscall.c File Reference

