XenSource

Storage Manager Reference

Table of Contents

1Document Status / To Do

2Introduction

3Arguments and Return Values

4SR Operations

5Ordering, Concurrency, and Locking

6SR-Level API Operations

7sr_create()

8sr_delete()

9sr_attach()

10sr_detach()

11sr_content_type()

12sr_scan()

14VDI-Level API Operations

15vdi_create()

16vdi_delete()

17vdi_attach()

18vdi_detach()

19vdi_clone()

20vdi_snapshot()

21vdi_resize()

22vdi_lock()

23vdi_unlock()

24Error Codes

25Current Driver Parameters

Document Status / To Do

This is a very early version of this, and at least the following points need to be addressed:

1. The clone/snapshot API is going to change. We will discuss this in Cambridge over the next week or two and update the doc accordingly.

2. Add instructions on how a new SR driver can be added.

3. Migration hooks.

4. NFS dconf details.

5. Possibly an arch overview of the interaction between sm and tapdisk, but that is likely out of scope.

6. Revisit / more clearly specify “user generated string” in locking calls.

7. Remove sr_content_type from the implementation, and then from this doc.
Introduction

This document describes the XenEnterprise (XE) Storage Manager API. The Storage Manager (SM) is a small component in XE that allows multiple forms of physical storage to be used by host virtual machines. The SM presents an interface through which storage providers can receive calls for storage-related functionality, such as creating a virtual disk for a VM, and implement the mechanisms appropriate to a specific form of storage. The SM implementation in XenEnterprise currently has drivers for LVM-based local disks, VHD image files on local disk or a shared NFS filer, and iSCSI direct-mapped LUNs. The SM implementation is written completely in Python, and is source-visible within the domain 0 file system, providing model code for new driver development.

There are two main objects that the storage manager uses to describe storage: A Storage Repository (SR) is a single instance of storage (such as a local disk or an NFS mount point) that will contain a set of Virtual Disk Images (VDIs). A VDI is a virtual disk, and may be attached to a virtual machine in XenEnterprise. An SR represents a homogeneous interface to a set of storage and provides a common set of mechanisms to interact with the VDIs that it contains. The remainder of this document describes the SM API, and the specific interfaces that are provided for both SR- and VDI-granularity operations.

Arguments and Return Values

dconf: The dconf string is an XML data string that is passed to the SR driver on every operation as the first argument on the command line. It contains customized data that is useful to the SR driver type and enables the driver to access and configure VDI objects on the substrate. The dconf parameters are stored in the agent database in the PBD record on a host and are passed to the SM-backends on every API call. Example usage of the dconf string for different SR types is provided in the appendix.
Note: when the same SR is mapped to separate hosts, the "dconf" string may be different in each case. This reflects the fact that the same underlying storage may be exposed differently (e.g. the device nodes may differ) on separate hosts. The backend driver is responsible for verifying the contents of the dconf string and establishing whether the required parameters are provided.

SR-UUID: UUID that refers to an SR

VDI-UUID: UUID that refers to a VDI

Return Values: In all cases a return value indicates SUCCESS (a zero value) or FAILURE (a positive return code greater than zero). See the section on Error codes later in this document for further details on FAILURE codes.

SR Operations

Within the agent, SR requests translate down to a set of operations on the substrate itself. All metadata related to the internal consistency of SR data objects is handled by the substrate driver which is always considered to be authoritative. The availability and implementation of SR operations is based on the ability of the storage substrate to report and provide access to storage operations. Specific implementation details are provided throughout this API document to demonstrate how operations are implemented on different substrate types. In cases where additional metadata information such as persistent locks are concerned, backend implementations are only required to report information on which they are authoritative. Any values returned by the sr_scan() call are considered to be authoritative and always override locally cached values by the host agent.

Furthermore:

The SR driver does not provide any secure access control to VDIs.

Where available, the SR is responsible for providing persistent locks on disk for VDIs such that concurrent write access can be avoided.

The host management tool will always ensure that any cached SR data such as VDI database entries remain consistent with the actual state on disk. The sr_scan() driver command is provided for this purpose and is called periodically by the management tool to interrogate the SR’s contents.

The host manager will always explicitly lock and unlock a VDI before and after use by calling the vdi_{lock|unlock}() commands. If locking is not provided at the SR level the driver must return an ENOSYS error code.

Ordering, Concurrency, and Locking

SR implementations depend on the management tools to provide concurrency control. The management tools, which may manage multiple hosts connected to the same SR, provide the following concurrency properties:

1. Any operation that involves creating or deleting a VDI is serialized with respect to the enclosing SR.

2. SR attacand detach are serialized on a per-host/SR basis. Different hosts may be calling SR attach or detach on the same SR at the same time, but on one single host, these calls to the same SR are serialized.

3. VDI operations, other than creation and deletion are serialized on a per-VDI basis; multiple operations of these types may be performed concurrently within the same SR.
4. The SR scan operation is serialized with respect to all other operations in the enclosing SR so that it can return consistent results.

In light of these guidelines, SR backend implementations are expected to provide the following:

1. Lock and unlock calls for data access to VDIs for shared SRs. The management tools will call vdi_lock() before any data access to a VDI and will release it using vdi_unlock when access is complete.

2. Crash recovery must be provided in the case that a physical host crashes part way through an operation. This recovery may involve documented command line interactions, but the SR should not be corrupted as a result of such crashes.

There are dependencies between the calls described in this document, as shown in the following figures:

SR-Level API Operations

SR-Level operations allow for the management of entire SRs. There are a limited number of these calls, and they serve three broad purposes:

sr_create() and sr_delete() are used to create and destroy storage repositories. sr_create() takes a storage medium such as a physical disk or NFS mount point and effectively “formats” it to hold VDIs. sr_delete() takes an empty SR and performs any additional clean-up that is required to return the specified device or mount point to a “clean” state.
sr_attach() and sr_detach() are used to connect and disconnect an SR from a given XE host. VDI operations are only available on SRs that have first been attached.

sr_scan() is used to query the contents of an SR and is called periodically by the XE management tools. This allows the tools to discover updates to the SR such as the addition or removal of VDIs that were not explicitly carried out through the XE interfaces.
sr_create()

	Arguments:
	SR-UUID, Size

	Description:
	Create an SR of size <Size> Bytes using the given dconf string. This operation may fail if it believes that an SR is already installed on the disk.

	Result:
	Create an SR of size <Size> Bytes using the given dconf string. This operation may fail if it believes that an SR is already installed on the disk.

	Examples:
	[LVM] - The operation extracts the physical device list from the dconf string and attempts to create a Volume Group named "VG_XenStorage-<SR-UUID>" across all the physical devices. If a Volume Group already exists for which any physical device is a member, the operation will fail.

[NFS] - The driver mounts the target directory and creates a directory named by the SR-UUID. If the directory already exists or any of the target attachment parameters are incorrect, the operation will fail.

	Relevant Error codes:
	ENODEV – No such device

EEXIST – SR already exists

ENOSYS – Function not implemented

sr_delete()

	Arguments:
	SR-UUID

	Description:
	Deletes the specified SR, leaving the substrate in a clean state.

	Precondition:

	All VDIs must be deleted in order for the sr_delete call to succeed. It is the responsibility of the driver to verify that this is the case.

	Result:
	Returns SUCCESS or FAILURE + error string. The operation IS idempotent and should succeed if the SR exists and can be deleted or if the SR does not exist. The call will FAIL if any VDIs in the SR are in use or have not been deleted.

	Examples:
	[LVM] - If it exists the Volume Group identified as "VG_XenStorage-<SR-UUID>" is removed and all LVM metadata removed from each physical device.

 [NFS] - Not implemented as this is a shared substrate

 [EXT] - The device must be in an unmounted state initially, and the driver satisfied that there are no VDIs present. The device is wiped by removing at least 100MB of data from the head.

	Relevant Error codes:
	ENODEV – No such device
ENOSYS – Function not implemented

sr_attach()

	Arguments:
	SR-UUID

	Description:
	Initiate local access to the SR. Initialises any device state required to access the substrate.

	Result:
	Returns SUCCESS or FAILURE + error string. The operation IS idempotent and will return success if the SR can be attached or if the SR is already attached.

	Examples:
	[LVM] - Verify the Volume Group "VG_XenStorage-<SR-UUID>" exists and explicitly set it to active.

[NFS] - If not already attached, mount the target NFS directory on the local SR mountpoint path. The call may fail if the target SR directory does not exist.

	Relevant Error codes:
	ENODEV – No such device or SR

EIO – General IO error occurred attaching device

sr_detach()

	Arguments:
	SR-UUID

	Description:
	Remove local access to the SR. Destroys any device state initiated by the sr_attach() operation.

	Result:
	Returns SUCCESS or FAILURE + error string. The operation is idempotent and will return success if the SR can be detached or if the SR is already detached. All VDIs must be detached in order for the operation to succeed.

	Examples:
	[LVM] - Verify the Volume Group "VG_XenStorage-<SR-UUID>" exists and explicitly set it to inactive.

 [NFS] - If not already detached, unmount the target NFS directory from the local SR mountpoint path and, if successful, remove the mountpoint from the local host filesystem.

	Relevant Error codes:
	ENODEV – No such device

EBUSY – Device in use, unable to detach

sr_content_type()

****N.B. This functionality will be deprecated in preference to returning the content-type as part of the vdi_attach call****

	Arguments:
	SR-UUID

	Description:
	Reports the SR content type used by the agent to determine the Block device driver to initialise.

	Result:
	Returns an XML string with a 'type' object.

	Examples:
	[LVM] - Returns a value of 'aio' to indicate that the blktap Asynchronous IO driver should handle the disk IO:

<?xml version="1.0" ?>

<sr>

 <type>

 "aio"

 </type>

</sr>

[NFS] - Returns a value of 'vhd' to indicate that the blktap VHD driver should handle the disk IO.

<?xml version="1.0" ?>

<sr>

 <type>

 "vhd"

 </type>

</sr>

sr_scan()

	Arguments:
	SR-UUID

	Description:
	List the SR contents as an XML string.

	Result:
	Returns an XML string containing the following objects:

HIGH-LEVEL SR OBJECTS:

<uuid>

A globally unique SR identifier conforming to OSF DCE 1.1 which matches the SR-UUID on the command line.

<physical_utilisation>

The amount of physical space in Bytes consumed by VDIs.

<virtual_allocation>

The virtual disk space in Bytes allocated to this SR.

<physical_size>

The physical disk space in Bytes allocated to this SR

<default_vdi_visibility>

The default behaviour of the agent on discovering a new VDI i.e. should the VDI automatically be made available?

<label>

A user generated tag for identifyng the SR.

<description>

A longer user generated SR description string.

PER-VDI SUB OBJECTS:

<uuid>
A globally unique VDI identifier conforming to OSF DCE 1.1.
<utilisation>
The amount of physical space in Bytes consumed by this VDI
<size>
The virtual size of the disk in Bytes.
<locked>
The lock status of the VDI
<label>
A User generated tag for identifyng the VDI
<description>
A longer user generated VDI description string
<shareable>
Whether the VDI can safely be shared across hosts
<read_only>

Whether the disk is read-only accessible

<parent>

If this VDI has a read-only parent dependency, specify the UUID of the parent disk

	Examples:
	[File] - Following is the XML output from a local File-based disk SR of size 140GB with a single VDI of size 512MB:

<?xml version="1.0" ?>

<sr>

 <uuid>

 87b8646b-b800-9500-cb7b-af3b74e02f5c

 </uuid>

 <physical_utilisation>

 7786209280

 </physical_utilisation>

 <virtual_allocation>

 536870912

 </virtual_allocation>

 <physical_size>

 149407555584

 </physical_size>

 <default_vdi_visibility>

 True

 </default_vdi_visibility>

 <vdi>

 <uuid>

 98de866e-b035-4b1a-a571-613bff542b89

 </uuid>

 <size>

 536870912

 </size>

 <utilisation>

 3072

 </utilisation>

 <locked>

 False

 </locked>

 </vdi>

</sr>

	Relevant Error codes:
	ENODEV – No such SR

VDI-Level API Operations

VDI-level operations allow the manipulation of individual virtual disks within an SR. To be called, the appropriate SR must have already been attached to the calling host.

vdi_create() and vdi_delete() allow the creation and deletion of individual virtual disks.

vdi_attach() and vdi_detach() connect or disconnect the specified virtual disk to the calling host and provide details on how the VM should access it.

vdi_resize() allows a VDI to be grown to a larger capacity.

vdi_lock() and vdi_unlock() provide exclusive write access on the data path for the specified VDI.

vdi_snapshot() creates a read-only snapshot of the specified VDI, and vdi_clone() creates a writable snapshot.
vdi_create()

	Arguments:
	SR-UUID, VDI-UUID, Size

	Description:
	Create a VDI of size <Size> Bytes on the given SR.

	Result:
	Returns SUCCESS or FAILURE + error string. The operation IS NOT idempotent and will fail if the UUID already exists or if there is insufficient space. This operation will instantiate a virtual object to support the virtual size requested. The agent will subsequently call vdi_attach() whenever the disk is required.

	Examples:
	[LVM] – After verifying that the sr exists and contains sufficient free space for the VDI, a logical volume is created with the VDI UUID of, at least, the requested size.

[NFS] – The driver verifies that the SR exists and is accessible, and then creates a sparse VHD file using the VDI UUID as it’s name. The virtual size of the VHD image is set to the requested VDI size.

	Relevant Error codes:
	ENOSPC – Insufficient space on the SR

EEXIST – VDI/SR already exists

ENOSYS – Operation not available

vdi_delete()

	Arguments:
	SR-UUID, VDI-UUID

	Precondition:
	The agent will ensure that vdi_detach is successfully called prior to attempting to delete any VDIs.

	Description:
	Delete the specified VDI from the given SR.

	Result:
	Returns SUCCESS or FAILURE + error string. The operation IS idempotent and should succeed if the VDI exists and can be deleted or if the VDI does not exist.

	Examples:
	[LVM] – Verifies both the SR and VDI exist, and then attempts to delete the correspondingly named logical volume.

[NFS] – Verifies both the SR and VDi exist and are accessible. Checks for the existence of an active VDI lock and if none exists, deletes the corresponding VHD file.

	Relevant Error codes:
	ENODEV – No such SR/VDI
EBUSY – VDI in use, unable to delete

ENOSYS – Operation not available

vdi_attach()

N.B. This operation will also include the content-type information currently returned by the sr_content_type operation in the near future, at which point the sr_content_type operation will be deprecated

	Arguments:
	SR-UUID, VDI-UUID

	Description:
	Initiate local access to the VDI. Initialises any device state required to access the VDI.

	Result:
	Returns a SUCCESS or FAILURE return code with an XML string. If the operation succeeds the string contains a 'path' object. The operation IS idempotent and should succeed if the VDI can be attached or if the VDI is already attached.

	Examples:
	[LVM] – Verifies both the SR and VDI exist. Verifies that the SR is set to active and then also sets the VDI to active. The return string might look like:

<?xml version="1.0" ?>

<sr>

 <path>

 " /dev/VG_XenStorage-87b8646b-b800-9500-cb7b-af3b74e02f5c/LV-98de866e-b035-4b1a-a571-613bff542b89"

 </path>

</sr>

[ISCSI] – Verifies the host is attached to the iSCSI target and that the corresponding LUN identified by the one-way LUN scsi ID to uuid generator is also accessible. The return string might look like:

<?xml version="1.0" ?>

<sr>

 <path>

 " /dev/iscsi/iqn.1992-08.com.netapp:sn.84173391/LUN0"

 </path>

</sr>

	Relevant Error codes:
	ENODEV – No such SR/VDI

vdi_detach()

	Arguments:
	SR-UUID, VDI-UUID

	Description:
	Remove local access to the VDI. Destroys any device state initialised via the vdi_attach() command.

	Result:
	Returns SUCCESS or FAILURE + error string. The operation IS idempotent and will always return SUCCESS if the VDI can be detached from the system (e.g. all filehandles are closed) or if the VDI is already detached.

	Examples:
	[LVM] – Sets the corresponding Logical Volume to inactive if not already the case.

	Relevant Error codes:
	ENODEV – No such SR/VDI

EBUSY – VDI is in use, unable to detach

vdi_clone()

	Arguments:
	SR-UUID, source:VDI-UUID, dest:VDI-UUID

	Description:
	Create a mutable instance of the referenced VDI.

	Result:
	Returns SUCCESS or FAILURE + error string. The operation is not idempotent and will fail if the UUID already exists or if there is insufficient space. The SRC VDI must be in a detached state and unlocked. Upon successful creation of the clone, the clone vdi must be explicitly attached via the vdi_attach(). If the driver does not support cloning this operation should fail with an error code of EPERM.

	Examples:
	[LVM] - Returns an error of ENOSYS since the operation is not supported.

[NFS] – Renames the parent disk to the destination VDI UUID and creates two Copy-on-Write instances of the parent, one of which assumes the name of the source VDI UUID. The parent disk is subsequently listed as read-only.

	Relevant Error codes:
	ENODEV – No such SR/Source VDI

EEXIST – Destination VDI already exists

ENOSPC – Insufficient space on SR to create clones

vdi_snapshot()

	Arguments:
	SR-UUID, source:VDI-UUID, dest:VDI-UUID

	Description:
	Save an immutable copy of the referenced VDI.

	Result:
	Returns SUCCESS or FAILURE + error string. The operation IS NOT idempotent and will fail if the UUID already exists or if there is insufficient space. The vdi must be explicitly attached via the vdi_attach() command following creation. If the driver does not support snapshotting this operation should fail with an error code of EPERM.

	Examples:
	[LVM] - Returns an error of ENOSYS since the operation is not supported.

[NFS] – Renames the parent disk to the destination VDI UUID and creates a Copy-on-Write instance of the parent which assumes the name of the source VDI UUID. The parent disk is subsequently listed as read-only.

	Relevant Error codes:
	ENODEV – No such SR/Source VDI

EEXIST – Destination VDI already exists

ENOSPC – Insufficient space on SR to create snapshot

vdi_resize()

	Arguments:
	SR-UUID, VDI-UUID, new-size

	Precondition:
	The agent will ensure that vdi_resize is only called on inactive disks.

	Description:
	Resize the given VDI to size <new-size> Bytes. Size can be any valid disk size greater than the current value.

	Result:
	Returns SUCCESS or FAILURE + error string. The operation IS idempotent and should succeed if the VDI can be resized to the specified value or if the VDI is already the specified size. This operation does not modify the contents on the disk such as the filesystem. Responsibility for resizing the FS is left to the VM administrator. Disk contents should always be backed up in advance.

	Examples:
	[LVM] – Verifies the SR and VDI exist, and then uses the lvresize utility to increase the size of the corresponding logical volume.

[NFS] – Verifies the SR and VDI exist and then opens the VHD file and adjusts the virtual Block Allocation Tables to reflect the new size, adding unallocated blocks to the end of the disk.

	Relevant Error codes:
	ENODEV – No such SR/Source VDI

EBUSY - VDI is in use

ENOSPC – Insufficient space on SR to resize VDI

vdi_lock()

	Arguments:
	SR-UUID, VDI-UUID, Force, Unique user generated string

	Description:
	Allocate a persistent VDI lock on the storage device for this VDI. The user string may be stored in the VBD string list as on-disk metadata. The 'Force' parameter contains a boolean value of TRUE or FALSE.

	Result:
	Returns SUCCESS or FAILURE + error string. The operation IS NOT idempotent and will fail if the VDI does not exist. If the locking feature is not supported on the substrate this operation will fail with an error code of ENOSYS. If the disk is already locked by another user and the Force flag is set to TRUE, the driver will attempt to break the lock and reclaim it for this user. The Force flag should be used *very* sparingly and only after confirmation by administrator or during controlled migration of VMs between hosts.

	Examples:
	[LVM] - Returns an error of ENOSYS since the operation is not supported.

[NFS] – Using the special purpose NFS-safe persistent lock utility on the XE host (‘/usr/sbin/lock-util’), the driver attempts to acquire an exclusive lock or refresh an existing lock that it already holds, identified by the unique user string. If either operation fails, the driver returns ENOLCK.

	Relevant Error codes:
	ENODEV – No such SR/VDI

ENOLCK – Unable to acquire lock

vdi_unlock()

	Arguments:
	SR-UUID, VDI-UUID, Unique user generated string

	Description:
	Remove the persistent VDI lock on the storage device for this VDI. The stored user string is matched and the lock removed for the VDI.

	Result:
	Returns SUCCESS or FAILURE + error string. It is idempotent in that a call to unlock an unlocked VDI will always succeed. If locking is not supported on the substrate, this operation will fail with an error code of ENOSYS. If the disk is locked by another user, the unique user string does not match or the mode value is incorrect, the operation will fail with ENOLCK. If the specified VDI does not exist this will return ENODEV.

	Examples:
	[LVM] - Returns an error of ENOSYS since the operation is not supported.

[NFS] – Using the special purpose NFS-safe persistent lock utility on the XE host (‘/usr/sbin/lock-util’), the driver attempts to release the exclusive lock corresponding to the VDI. If the operation succeeds or there is no existing lock the driver returns success.

	Relevant Error codes:
	ENODEV – No such SR/VDI

ENOLCK – Unable to release lock

Error Codes

SUCCESS is defined as a zero return code. FAILURE can comprise any one of the following subset of generic system error codes:

	Code Name
	Error Code Value
	Description

	EPERM
	1
	Operation not permitted

	EIO
	5
	I/O error

	EBUSY
	16
	Device or resource busy

	EEXIST
	17
	File exists

	ENODEV
	19
	No such device

	EINVAL
	22
	Invalid argument

	ENOSPC
	28
	No space left on device

	ENOLCK
	37
	No record locks available

	ENOSYS
	38
	Function not implemented

Current Driver Parameters

Each driver type takes a custom set of parameters that must be provided in the dconf string. The default set of drivers included in the current XE product are:

Ext – the EXTSR.py driver uses a whole disk or partition to contain a file-based SR

File – the FileSR.py driver uses a local, user-specified directory to contain a file-based SR

Lvm – the LVMSR.py driver creates a Volume Group with the SR UUID and generates a Logical Volume for each VDI.

Iscsi – the ISCSISR.py driver identifies an SR as all the LUNs that are accessible on an iSCSI target. Each LUN is uniquely identified with a UUID and, by default, is not made active in the host database. The host admin must explicitly enable LUNs that are to be used.

Lvmoiscsi – the LVMoISCSISR.py (LVM over ISCSI) driver takes one or more LUNs as a parameter and creates a Volume Group across all the devices. VDI’s are then managed the same way as the default LVM driver.

Extoiscsi – the EXToISCSISR.py (File-based EXT over ISCSI) driver takes a single LUN as a parameter, formats the disk and attaches it as a single file-based SR. VDI operations are then handled the same way as the EXT driver.

The driver-specific parameters that should be included in the dconf string are outlined below:

	Driver Type
	Parameters

	Ext
	device

The device node on which the filesystem SR should be inserted

	File
	location

The filesystem path on which the SR should be inserted

	Nfs
	server

The target NFS server

Serverpath

The target source directory

	Lvm
	device

The device node(s) on which the Volume Group SR should be inserted. Multiple devices are comma separated.

	Iscsi
	target

The iSCSI target node

targetIQN

The IQN record identifier of the target

localIQN

The IQN that should be advertised by this host to the target

chapuser

[Optional] CHAP authentication username

chappassword

[Optional] CHAP authentication password

port

[Optional] Target connection port

usediscoverynumber

[Optional] For multi-homed targets that advertise connections with the same IQN more than once for different interfaces, you can specify a particular record to use.

	Lvmoiscsi
	target

The iSCSI target node

targetIQN

The IQN record identifier of the target

localIQN

The IQN that should be advertised by this host to the target

LUNid

A comma separated list of LUNs on which the Volume Group should be created

chapuser

[Optional] CHAP authentication username

chappassword

[Optional] CHAP authentication password

port

[Optional] Target connection port

usediscoverynumber

[Optional] For multi-homed targets that advertise connections with the same IQN more than once for different interfaces, you can specify a particular record to use.

	Extoiscsi
	target

The iSCSI target node

targetIQN

The IQN record identifier of the target

localIQN

The IQN that should be advertised by this host to the target

LUNid

A single LUN id on which the File system should be created

chapuser

[Optional] CHAP authentication username

chappassword

[Optional] CHAP authentication password

port

[Optional] Target connection port

usediscoverynumber

[Optional] For multi-homed targets that advertise connections with the same IQN more than once for different interfaces, you can specify a particular record to use.

Attached SR: The SR is connected to the host and is ready to create/attach VDIs to the host

sr_detach()

Existing SR

sr_attach()

Detached SR: The SR was initialised either internally via the sr_create() call or externally on the managed substrate.

Detached VDI: The VDI was initialised either internally via the vdi_create() call or externally on the managed substrate.

Locked VDI: The agent requested a lock on the VDI and the exclusive lock was successfully acquired.

Attached VDI: The VDI is connected to the host and is ready to be attached to the VM

vdi_unlock()

vdi_lock()

vdi_attach()

vdi_detach()

Existing VDI

