
uthash User Guide
i

uthash User Guide

uthash User Guide
ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

1.9.5 November 2011 TDH

uthash User Guide
iii

Contents

1 A hash in C 1

1.1 What can it do? . 1

1.2 Is it fast? . 1

1.3 Is it a library? . 1

1.4 C/C++ and platforms . 1

1.4.1 Test suite . 2

1.5 BSD licensed . 2

1.6 Obtaining uthash . 2

1.7 Getting help . 2

1.8 Resources . 2

1.9 Who’s using it? . 2

2 Your structure 2

2.1 The key . 3

2.1.1 Unique keys . 3

2.2 The hash handle . 3

3 Hash operations 3

3.1 Declare the hash . 3

3.2 Add item . 4

3.2.1 Key must not be modified while in-use . 4

3.3 Find item . 4

3.4 Delete item . 5

3.4.1 uthash never frees your structure . 5

3.4.2 Delete can change the pointer . 5

3.4.3 Iterative deletion . 5

3.4.4 All-at-once deletion . 5

3.5 Count items . 5

3.6 Iterating and sorting . 6

3.6.1 Deletion-safe iteration . 6

3.6.2 Sorted iteration . 6

3.7 A complete example . 7

4 Standard key types 9

4.1 Integer keys . 9

4.2 String keys . 9

4.2.1 String within structure . 10

4.2.2 String pointer in structure . 10

4.3 Pointer keys . 11

4.4 Structure keys . 11

uthash User Guide
iv

5 Advanced Topics 12

5.1 Compound keys . 12

5.2 Multi-level hash tables . 14

5.3 Items in several hash tables . 15

5.4 Items with alternative keys . 15

5.5 Several sort orders . 16

5.6 Bloom filter (faster misses) . 16

5.7 Select . 17

5.8 Built-in hash functions . 18

5.8.1 Which hash function is best? . 18

5.8.2 keystats column reference . 19

5.8.3 ideal% . 19

5.9 hashscan . 20

5.9.1 hashscan column reference . 20

5.10 Expansion internals . 21

5.10.1 Normal expansion . 21

Per-bucket expansion threshold . 21

5.10.2 Inhibited expansion . 22

5.11 Hooks . 22

5.11.1 malloc/free . 22

5.11.2 Out of memory . 22

5.11.3 Internal events . 23

Expansion . 23

Expansion-inhibition . 23

5.12 Debug mode . 23

5.13 Thread safety . 24

6 Macro reference 24

6.1 Convenience macros . 24

6.2 General macros . 25

6.2.1 Argument descriptions . 25

uthash User Guide
1 / 26

1 A hash in C

This document is written for C programmers. Since you’re reading this, chances are that you know a hash is used for looking up
items using a key. In scripting languages like Perl, hashes are used all the time. In C, hashes don’t exist in the language itself.
This software provides a hash table for C structures.

1.1 What can it do?

This software supports these operations on items in a hash table:

1. add

2. find

3. delete

4. count

5. iterate

6. sort

7. select (explained later)

1.2 Is it fast?

Add, find and delete are normally constant-time operations. This is influenced by your key domain and the hash function.

This hash aims to be minimalistic and efficient. It’s around 900 lines of C. It inlines automatically because it’s implemented as
macros. It’s fast as long as the hash function is suited to your keys. You can use the default hash function, or easily compare
performance and choose from among several other built-in hash functions.

1.3 Is it a library?

No, it’s just a single header file: uthash.h. All you need to do is copy the header file into your project, and:

#include "uthash.h"

Since uthash is a header file only, there is no library code to link against.

1.4 C/C++ and platforms

This software can be used in C and C++ programs. It has been tested on:

• Linux

• Mac OS X

• Windows using Visual Studio 2008 and 2010

• Solaris

• OpenBSD

• FreeBSD

uthash User Guide
2 / 26

1.4.1 Test suite

To run the test suite, enter the tests directory. Then,

• on Unix platforms, run make

• on Windows, run the "do_tests_win32.cmd" batch file. (You may edit the batch file if your Visual Studio is installed in a
non-standard location).

1.5 BSD licensed

This software is made available under the revised BSD license. It is free and open source.

1.6 Obtaining uthash

Please follow the link to download on the uthash website at http://uthash.sourceforge.net.

A number of platforms include uthash in their package repositories. For example, Debian/Ubuntu users may simply aptitude
install uthash-dev.

1.7 Getting help

Feel free to email the author at tdh@tkhanson.net.

1.8 Resources

Users of uthash may wish to follow the news feed for information about new releases. Also, there are some extra bonus headers
included with uthash.

News
The author has a news feed for software updates (RSS).

Extras included with uthash
uthash ships with these "extras"-- independent headers similar to uthash. First utlist.h provides linked list macros for C
structures. Second, utarray.h implements dynamic arrays using macros. Third, utstring.h implements a basic dynamic
string.

1.9 Who’s using it?

Since releasing uthash in 2006, it has been downloaded thousands of times, incorporated into commercial software, academic
research, and into other open-source software.

2 Your structure

In uthash, a hash table is comprised of structures. Each structure represents a key-value association. One or more of the structure
fields constitute the key. The structure pointer itself is the value.

Defining a structure that can be hashed

#include "uthash.h"

struct my_struct {
int id; /* key */
char name[10];
UT_hash_handle hh; /* makes this structure hashable */

};

file:license.html
http://uthash.sourceforge.net
http://uthash.sourceforge.net
mailto:tdh@tkhanson.net
mailto:tdh@tkhanson.net
http://troydhanson.wordpress.com/
file:utlist.html
file:utarray.html
file:utstring.html

uthash User Guide
3 / 26

Note that, in uthash, your structure will never be moved or copied into another location when you add it into a hash table. This
means that you can keep other data structures that safely point to your structure-- regardless of whether you add or delete it from
a hash table during your program’s lifetime.

2.1 The key

There are no restrictions on the data type or name of the key field. The key can also comprise multiple contiguous fields, having
any names and data types.

Any data type. . . really?

Yes, your key and structure can have any data type. Unlike function calls with fixed prototypes, uthash consists of macros--
whose arguments are untyped-- and thus able to work with any type of structure or key.

2.1.1 Unique keys

As with any hash, every item must have a unique key. Your application must enforce key uniqueness. Before you add an item to
the hash table, you must first know (if in doubt, check!) that the key is not already in use. You can check whether a key already
exists in the hash table using HASH_FIND.

2.2 The hash handle

The UT_hash_handle field must be present in your structure. It is used for the internal bookkeeping that makes the hash
work. It does not require initialization. It can be named anything, but you can simplify matters by naming it hh. This allows you
to use the easier "convenience" macros to add, find and delete items.

3 Hash operations

This section introduces the uthash macros by example. For a more succinct listing, see Macro Reference.

Convenience vs. general macros:

The uthash macros fall into two categories. The convenience macros can be used with integer, pointer or string keys (and
require that you chose the conventional name hh for the UT_hash_handle field). The convenience macros take fewer
arguments than the general macros, making their usage a bit simpler for these common types of keys.

The general macros can be used for any types of keys, or for multi-field keys, or when the UT_hash_handle has been
named something other than hh. These macros take more arguments and offer greater flexibility in return. But if the
convenience macros suit your needs, use them-- your code will be more readable.

3.1 Declare the hash

Your hash must be declared as a NULL-initialized pointer to your structure.

struct my_struct *users = NULL; /* important! initialize to NULL */

uthash User Guide
4 / 26

3.2 Add item

Allocate and initialize your structure as you see fit. The only aspect of this that matters to uthash is that your key must be
initialized to a unique value. Then call HASH_ADD. (Here we use the convenience macro HASH_ADD_INT, which offers
simplified usage for keys of type int).

Add an item to a hash

void add_user(int user_id, char *name) {
struct my_struct *s;

s = malloc(sizeof(struct my_struct));
s->id = user_id;
strcpy(s->name, name);
HASH_ADD_INT(users, id, s); /* id: name of key field */

}

The first parameter to HASH_ADD_INT is the hash table, and the second parameter is the name of the key field. Here, this is id.
The last parameter is a pointer to the structure being added.

Wait.. the field name is a parameter?

If you find it strange that id, which is the name of a field in the structure, can be passed as a parameter, welcome to the
world of macros. Don’t worry- the C preprocessor expands this to valid C code.

3.2.1 Key must not be modified while in-use

Once a structure has been added to the hash, do not change the value of its key. Instead, delete the item from the hash, change
the key, and then re-add it.

3.3 Find item

To look up a structure in a hash, you need its key. Then call HASH_FIND. (Here we use the convenience macro HASH_FIND_INT
for keys of type int).

Find a structure using its key

struct my_struct *find_user(int user_id) {
struct my_struct *s;

HASH_FIND_INT(users, &user_id, s); /* s: output pointer */
return s;

}

Here, the hash table is users, and &user_id points to the key (an integer in this case). Last, s is the output variable of
HASH_FIND_INT. The final result is that s points to the structure with the given key, or is NULL if the key wasn’t found in the
hash.

Note
The middle argument is a pointer to the key. You can’t pass a literal key value to HASH_FIND. Instead assign the literal value
to a variable, and pass a pointer to the variable.

uthash User Guide
5 / 26

3.4 Delete item

To delete a structure from a hash, you must have a pointer to it. (If you only have the key, first do a HASH_FIND to get the
structure pointer).

Delete an item from a hash

void delete_user(struct my_struct *user) {
HASH_DEL(users, user); /* user: pointer to deletee */
free(user); /* optional; it’s up to you! */

}

Here again, users is the hash table, and user is a pointer to the structure we want to remove from the hash.

3.4.1 uthash never frees your structure

Deleting a structure just removes it from the hash table-- it doesn’t free it. The choice of when to free your structure is entirely
up to you; uthash will never free your structure.

3.4.2 Delete can change the pointer

The hash table pointer (which initially points to the first item added to the hash) can change in response to HASH_DEL (i.e. if
you delete the first item in the hash table).

3.4.3 Iterative deletion

The HASH_ITER macro is a deletion-safe iteration construct which expands to a simple for loop.

Delete all items from a hash

void delete_all() {
struct my_struct *current_user, *tmp;

HASH_ITER(hh, users, current_user, tmp) {
HASH_DEL(users,current_user); /* delete; users advances to next */
free(current_user); /* optional- if you want to free */

}
}

3.4.4 All-at-once deletion

If you only want to delete all the items, but not free them or do any per-element clean up, you can do this more efficiently in a
single operation:

HASH_CLEAR(hh,users);

Afterward, the list head (here, users) will be set to NULL.

3.5 Count items

The number of items in the hash table can be obtained using HASH_COUNT:

Count of items in the hash table

unsigned int num_users;
num_users = HASH_COUNT(users);
printf("there are %u users\n", num_users);

Incidentally, this works even the list (users, here) is NULL, in which case the count is 0.

uthash User Guide
6 / 26

3.6 Iterating and sorting

You can loop over the items in the hash by starting from the beginning and following the hh.next pointer.

Iterating over all the items in a hash

void print_users() {
struct my_struct *s;

for(s=users; s != NULL; s=s->hh.next) {
printf("user id %d: name %s\n", s->id, s->name);

}
}

There is also an hh.prev pointer you could use to iterate backwards through the hash, starting from any known item.

3.6.1 Deletion-safe iteration

In the example above, it would not be safe to delete and free s in the body of the for loop, (because s is derefenced each time the
loop iterates). This is easy to rewrite correctly (by copying the s->hh.next pointer to a temporary variable before freeing s),
but it comes up often enough that a deletion-safe iteration macro, HASH_ITER, is included. It expands to a for-loop header.
Here is how it could be used to rewrite the last example:

struct my_struct *s, *tmp;

HASH_ITER(hh, users, s, tmp) {
printf("user id %d: name %s\n", s->id, s->name);
/* ... it is safe to delete and free s here */

}

A hash is also a doubly-linked list.

Iterating backward and forward through the items in the hash is possible because of the hh.prev and hh.next fields.
All the items in the hash can be reached by repeatedly following these pointers, thus the hash is also a doubly-linked list.

If you’re using uthash in a C++ program, you need an extra cast on the for iterator, e.g., s=(struct my_struct*)s->hh.next.

3.6.2 Sorted iteration

The items in the hash are, by default, traversed in the order they were added ("insertion order") when you follow the hh.next
pointer. But you can sort the items into a new order using HASH_SORT. E.g.,

HASH_SORT(users, name_sort);

The second argument is a pointer to a comparison function. It must accept two arguments which are pointers to two items to
compare. Its return value should be less than zero, zero, or greater than zero, if the first item sorts before, equal to, or after the
second item, respectively. (Just like strcmp).

Sorting the items in the hash

int name_sort(struct my_struct *a, struct my_struct *b) {
return strcmp(a->name,b->name);

}

int id_sort(struct my_struct *a, struct my_struct *b) {
return (a->id - b->id);

}

uthash User Guide
7 / 26

void sort_by_name() {
HASH_SORT(users, name_sort);

}

void sort_by_id() {
HASH_SORT(users, id_sort);

}

When the items in the hash are sorted, the first item may change position. In the example above, users may point to a different
structure after calling HASH_SORT.

3.7 A complete example

We’ll repeat all the code and embellish it with a main() function to form a working example.

If this code was placed in a file called example.c in the same directory as uthash.h, it could be compiled and run like this:

cc -o example example.c
./example

Follow the prompts to try the program, and type Ctrl-C when done.

A complete program

#include <stdio.h> /* gets */
#include <stdlib.h> /* atoi, malloc */
#include <string.h> /* strcpy */
#include "uthash.h"

struct my_struct {
int id; /* key */
char name[10];
UT_hash_handle hh; /* makes this structure hashable */

};

struct my_struct *users = NULL;

void add_user(int user_id, char *name) {
struct my_struct *s;

s = malloc(sizeof(struct my_struct));
s->id = user_id;
strcpy(s->name, name);
HASH_ADD_INT(users, id, s); /* id: name of key field */

}

struct my_struct *find_user(int user_id) {
struct my_struct *s;

HASH_FIND_INT(users, &user_id, s); /* s: output pointer */
return s;

}

void delete_user(struct my_struct *user) {
HASH_DEL(users, user); /* user: pointer to deletee */
free(user);

}

void delete_all() {

uthash User Guide
8 / 26

struct my_struct *current_user, *tmp;

HASH_ITER(hh, users, current_user, tmp) {
HASH_DEL(users,current_user); /* delete it (users advances to next) */
free(current_user); /* free it */

}
}

void print_users() {
struct my_struct *s;

for(s=users; s != NULL; s=s->hh.next) {
printf("user id %d: name %s\n", s->id, s->name);

}
}

int name_sort(struct my_struct *a, struct my_struct *b) {
return strcmp(a->name,b->name);

}

int id_sort(struct my_struct *a, struct my_struct *b) {
return (a->id - b->id);

}

void sort_by_name() {
HASH_SORT(users, name_sort);

}

void sort_by_id() {
HASH_SORT(users, id_sort);

}

int main(int argc, char *argv[]) {
char in[10];
int id=1;
struct my_struct *s;
unsigned num_users;

while (1) {
printf("1. add user\n");
printf("2. find user\n");
printf("3. delete user\n");
printf("4. delete all users\n");
printf("5. sort items by name\n");
printf("6. sort items by id\n");
printf("7. print users\n");
printf("8. count users\n");
gets(in);
switch(atoi(in)) {

case 1:
printf("name?\n");
add_user(id++, gets(in));
break;

case 2:
printf("id?\n");
s = find_user(atoi(gets(in)));
printf("user: %s\n", s ? s->name : "unknown");
break;

case 3:
printf("id?\n");
s = find_user(atoi(gets(in)));
if (s) delete_user(s);

uthash User Guide
9 / 26

else printf("id unknown\n");
break;

case 4:
delete_all();
break;

case 5:
sort_by_name();
break;

case 6:
sort_by_id();
break;

case 7:
print_users();
break;

case 8:
num_users=HASH_COUNT(users);
printf("there are %u users\n", num_users);
break;

}
}

}

This program is included in the distribution in tests/example.c. You can run make example in that directory to compile
it easily.

4 Standard key types

This section goes into specifics of how to work with different kinds of keys. You can use nearly any type of key-- integers,
strings, pointers, structures, etc.

A note about float
You can use floating point keys. This comes with the same caveats as with any program that tests floating point equality. In
other words, even the tiniest difference in two floating point numbers makes them distinct keys.

4.1 Integer keys

The preceding examples demonstrated use of integer keys. To recap, use the convenience macros HASH_ADD_INT and HASH_FIND_INT
for structures with integer keys. (The other operations such as HASH_DELETE and HASH_SORT are the same for all types of
keys).

4.2 String keys

If your structure has a string key, the operations to use depend on whether your structure points to the key (char *) or the
string resides within the structure (char a[10]). This distinction is important. As we’ll see below, you need to use
HASH_ADD_KEYPTR when your structure points to a key (that is, the key itself is outside of the structure); in contrast, use
HASH_ADD_STR for a string key that is contained within your structure.

char[] vs. char*
The string is within the structure in the first example below-- name is a char[10] field. In the second example, the key
is outside of the structure-- name is a char *. So the first example uses HASH_ADD_STR but the second example uses
HASH_ADD_KEYPTR. For information on this macro, see the Macro reference.

uthash User Guide
10 / 26

4.2.1 String within structure

A string-keyed hash (string within structure)

#include <string.h> /* strcpy */
#include <stdlib.h> /* malloc */
#include <stdio.h> /* printf */
#include "uthash.h"

struct my_struct {
char name[10]; /* key (string is WITHIN the structure) */
int id;
UT_hash_handle hh; /* makes this structure hashable */

};

int main(int argc, char *argv[]) {
char **n, *names[] = { "joe", "bob", "betty", NULL };
struct my_struct *s, *users = NULL;
int i=0;

for (n = names; *n != NULL; n++) {
s = malloc(sizeof(struct my_struct));
strcpy(s->name, *n);
s->id = i++;
HASH_ADD_STR(users, name, s);

}

HASH_FIND_STR(users, "betty", s);
if (s) printf("betty’s id is %d\n", s->id);

}

This example is included in the distribution in tests/test15.c. It prints:

betty’s id is 2

4.2.2 String pointer in structure

Now, here is the same example but using a char * key instead of char []:

A string-keyed hash (structure points to string)

#include <string.h> /* strcpy */
#include <stdlib.h> /* malloc */
#include <stdio.h> /* printf */
#include "uthash.h"

struct my_struct {
char *name; /* key (structure POINTS TO string */
int id;
UT_hash_handle hh; /* makes this structure hashable */

};

int main(int argc, char *argv[]) {
char **n, *names[] = { "joe", "bob", "betty", NULL };
struct my_struct *s, *users = NULL;
int i=0;

for (n = names; *n != NULL; n++) {
s = (struct my_struct*)malloc(sizeof(struct my_struct));

uthash User Guide
11 / 26

s->name = *n;
s->id = i++;
HASH_ADD_KEYPTR(hh, users, s->name, strlen(s->name), s);

}

HASH_FIND_STR(users, "betty", s);
if (s) printf("betty’s id is %d\n", s->id);
return 0;

}

4.3 Pointer keys

Your key can be a pointer. To be very clear, this means the pointer itself can be the key (in contrast, if the thing pointed to is the
key, this is a different use case handled by HASH_ADD_KEYPTR).

Here is a simple example where a structure has a pointer member, called key.

A pointer key

#include <stdio.h>
#include <stdlib.h>
#include "uthash.h"

typedef struct {
void *key;
int i;
UT_hash_handle hh;

} el_t;

el_t *hash = NULL;
char *someaddr = NULL;

int main() {
el_t *d;
el_t *e = (el_t*)malloc(sizeof(el_t));
if (!e) return -1;
e->key = (void*)someaddr;
e->i = 1;
HASH_ADD_PTR(hash,key,e);
HASH_FIND_PTR(hash, &someaddr, d);
if (d) printf("found\n");
free(e);
return 0;

}

4.4 Structure keys

Your key field can have any data type. To uthash, it is just a sequence of bytes. Therefore, even a nested structure can be used as
a key. We’ll use the general macros HASH_ADD and HASH_FIND to demonstrate.

Note
Structures contain padding (wasted internal space used to fulfill alignment requirements for the members of the structure).
These padding bytes must be zeroed before adding an item to the hash or looking up an item. Therefore always zero the whole
structure before setting the members of interest. The example below does this-- see the two calls to memset.

A key which is a structure

uthash User Guide
12 / 26

#include <stdlib.h>
#include <stdio.h>
#include "uthash.h"

typedef struct { /* this structure will be our key */
char a;
int b;

} record_key_t;

typedef struct { /* the hash is comprised of these */
record_key_t key;
/* ... other data ... */
UT_hash_handle hh;

} record_t;

int main(int argc, char *argv[]) {
record_t l, *p, *r, *records = NULL;

r = (record_t*)malloc(sizeof(record_t));
memset(r, 0, sizeof(record_t)); /* zero fill! */
r->key.a = ’a’;
r->key.b = 1;
HASH_ADD(hh, records, key, sizeof(record_key_t), r);

memset(&l, 0, sizeof(record_t)); /* zero fill! */
l.key.a = ’a’;
l.key.b = 1;
HASH_FIND(hh, records, &l.key, sizeof(record_key_t), p);

if (p) printf("found %c %d\n", p->key.a, p->key.b);
return 0;

}

This usage is nearly the same as use of a compound key explained below.

Note that the general macros require the name of the UT_hash_handle to be passed as the first argument (here, this is hh).
The general macros are documented in Macro Reference.

5 Advanced Topics

5.1 Compound keys

Your key can even comprise multiple contiguous fields.

A multi-field key

#include <stdlib.h> /* malloc */
#include <stddef.h> /* offsetof */
#include <stdio.h> /* printf */
#include <string.h> /* memset */
#include "uthash.h"

#define UTF32 1

typedef struct {
UT_hash_handle hh;
int len;
char encoding; /* these two fields */
int text[]; /* comprise the key */

uthash User Guide
13 / 26

} msg_t;

int main(int argc, char *argv[]) {
int keylen;
msg_t *msg, *msgs = NULL;
struct { char encoding; int text[]; } *lookup_key;

int beijing[] = {0x5317, 0x4eac}; /* UTF-32LE for 北京 */

/* allocate and initialize our structure */
msg = malloc(sizeof(msg_t) + sizeof(beijing));
memset(msg, 0, sizeof(msg_t)+sizeof(beijing)); /* zero fill */
msg->len = sizeof(beijing);
msg->encoding = UTF32;
memcpy(msg->text, beijing, sizeof(beijing));

/* calculate the key length including padding, using formula */
keylen = offsetof(msg_t, text) /* offset of last key field */

+ sizeof(beijing) /* size of last key field */
- offsetof(msg_t, encoding); /* offset of first key field */

/* add our structure to the hash table */
HASH_ADD(hh, msgs, encoding, keylen, msg);

/* look it up to prove that it worked :-) */
msg=NULL;

lookup_key = malloc(sizeof(*lookup_key) + sizeof(beijing));
memset(lookup_key, 0, sizeof(*lookup_key) + sizeof(beijing));
lookup_key->encoding = UTF32;
memcpy(lookup_key->text, beijing, sizeof(beijing));
HASH_FIND(hh, msgs, &lookup_key->encoding, keylen, msg);
if (msg) printf("found \n");
free(lookup_key);

}

This example is included in the distribution in tests/test22.c.

If you use multi-field keys, recognize that the compiler pads adjacent fields (by inserting unused space between them) in order
to fulfill the alignment requirement of each field. For example a structure containing a char followed by an int will normally
have 3 "wasted" bytes of padding after the char, in order to make the int field start on a multiple-of-4 address (4 is the length of
the int).

Calculating the length of a multi-field key:

To determine the key length when using a multi-field key, you must include any intervening structure padding the compiler
adds for alignment purposes.

An easy way to calculate the key length is to use the offsetof macro from <stddef.h>. The formula is:

key length = offsetof(last_key_field)
+ sizeof(last_key_field)
- offsetof(first_key_field)

In the example above, the keylen variable is set using this formula.

When dealing with a multi-field key, you must zero-fill your structure before HASH_ADD’ing it to a hash table, or using its fields
in a HASH_FIND key.

In the previous example, memset is used to initialize the structure by zero-filling it. This zeroes out any padding between the
key fields. If we didn’t zero-fill the structure, this padding would contain random values. The random values would lead to

uthash User Guide
14 / 26

HASH_FIND failures; as two "identical" keys will appear to mismatch if there are any differences within their padding.

5.2 Multi-level hash tables

A multi-level hash table arises when each element of a hash table contains its own secondary hash table. There can be any number
of levels. In a scripting language you might see:

$items{bob}{age}=37

The C program below builds this example in uthash: the hash table is called items. It contains one element (bob) whose own
hash table contains one element (age) with value 37. No special functions are necessary to build a multi-level hash table.

While this example represents both levels (bob and age) using the same structure, it would also be fine to use two different
structure definitions. It would also be fine if there were three or more levels instead of two.

Multi-level hash table

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "uthash.h"

/* hash of hashes */
typedef struct item {

char name[10];
struct item *sub;
int val;
UT_hash_handle hh;

} item_t;

item_t *items=NULL;

int main(int argc, char *argvp[]) {
item_t *item1, *item2, *tmp1, *tmp2;

/* make initial element */
item_t *i = malloc(sizeof(*i));
strcpy(i->name, "bob");
i->sub = NULL;
i->val = 0;
HASH_ADD_STR(items, name, i);

/* add a sub hash table off this element */
item_t *s = malloc(sizeof(*s));
strcpy(s->name, "age");
s->sub = NULL;
s->val = 37;
HASH_ADD_STR(i->sub, name, s);

/* iterate over hash elements */
HASH_ITER(hh, items, item1, tmp1) {
HASH_ITER(hh, item1->sub, item2, tmp2) {

printf("$items{%s}{%s} = %d\n", item1->name, item2->name, item2->val);
}

}

return 0;
}

The example above is included in tests/test59.c. By adding a few lines we can delete and free all the elements in the
multi-level hash:

uthash User Guide
15 / 26

/* iterate over hash elements, deleting and freeing them */
HASH_ITER(hh, items, item1, tmp1) {

HASH_ITER(hh, item1->sub, item2, tmp2) {
HASH_DEL(item1->sub, item2);
free(item2);

}
HASH_DEL(items, item1);
free(item1);

}

5.3 Items in several hash tables

A structure can be added to more than one hash table. A few reasons you might do this include:

• each hash table may use an alternative key;

• each hash table may have its own sort order;

• or you might simply use multiple hash tables for grouping purposes. E.g., you could have users in an admin_users and a
users hash table.

Your structure needs to have a UT_hash_handle field for each hash table to which it might be added. You can name them
anything. E.g.,

UT_hash_handle hh1, hh2;

5.4 Items with alternative keys

You might create a hash table keyed on an ID field, and another hash table keyed on username (if usernames are unique). You
can add the same user structure to both hash tables (without duplication of the structure), allowing lookup of a user structure by
their name or ID. The way to achieve this is to have a separate UT_hash_handle for each hash to which the structure may be
added.

A structure with two alternative keys

struct my_struct {
int id; /* usual key */
char username[10]; /* alternative key */
UT_hash_handle hh1; /* handle for first hash table */
UT_hash_handle hh2; /* handle for second hash table */

};

In the example above, the structure can now be added to two separate hash tables. In one hash, id is its key, while in the other
hash, username is its key. (There is no requirement that the two hashes have different key fields. They could both use the same
key, such as id).

Notice the structure has two hash handles (hh1 and hh2). In the code below, notice that each hash handle is used exclusively with
a particular hash table. (hh1 is always used with the users_by_id hash, while hh2 is always used with the users_by_name
hash table).

Two keys on a structure

struct my_struct *users_by_id = NULL, *users_by_name = NULL, *s;
int i;
char *name;

s = malloc(sizeof(struct my_struct));
s->id = 1;
strcpy(s->username, "thanson");

uthash User Guide
16 / 26

/* add the structure to both hash tables */
HASH_ADD(hh1, users_by_id, id, sizeof(int), s);
HASH_ADD(hh2, users_by_name, username, strlen(s->username), s);

/* lookup user by ID in the "users_by_id" hash table */
i=1;
HASH_FIND(hh1, users_by_id, &i, sizeof(int), s);
if (s) printf("found id %d: %s\n", i, s->username);

/* lookup user by username in the "users_by_name" hash table */
name = "thanson";
HASH_FIND(hh2, users_by_name, name, strlen(name), s);
if (s) printf("found user %s: %d\n", name, s->id);

5.5 Several sort orders

It comes as no suprise that two hash tables can have different sort orders, but this fact can also be used advantageously to sort the
same items in several ways. This is based on the ability to store a structure in several hash tables.

Extending the previous example, suppose we have many users. We have added each user structure to the users_by_id hash
table and the users_by_name hash table. (To reiterate, this is done without the need to have two copies of each structure).
Now we can define two sort functions, then use HASH_SRT.

int sort_by_id(struct my_struct *a, struct my_struct *b) {
if (a->id == b->id) return 0;
return (a->id < b->id) ? -1 : 1;

}

int sort_by_name(struct my_struct *a, struct my_struct *b) {
return strcmp(a->username,b->username);

}

HASH_SRT(hh1, users_by_id, sort_by_id);
HASH_SRT(hh2, users_by_name, sort_by_name);

Now iterating over the items in users_by_id will traverse them in id-order while, naturally, iterating over users_by_name
will traverse them in name-order. The items are fully forward-and-backward linked in each order. So even for one set of users,
we might store them in two hash tables to provide easy iteration in two different sort orders.

5.6 Bloom filter (faster misses)

Programs that generate a fair miss rate (HASH_FIND that result in NULL) may benefit from the built-in Bloom filter support.
This is disabled by default, because programs that generate only hits would incur a slight penalty from it. Also, programs that do
deletes should not use the Bloom filter. While the program would operate correctly, deletes diminish the benefit of the filter. To
enable the Bloom filter, simply compile with -DHASH_BLOOM=n like:

-DHASH_BLOOM=27

where the number can be any value up to 32 which determines the amount of memory used by the filter, as shown below. Using
more memory makes the filter more accurate and has the potential to speed up your program by making misses bail out faster.

uthash User Guide
17 / 26

Table 1: Bloom filter sizes for selected values of n

n Bloom filter size (per hash table)
16 8 kilobytes
20 128 kilobytes
24 2 megabytes
28 32 megabytes
32 512 megabytes

Bloom filters are only a performance feature; they do not change the results of hash operations in any way. The only way to
gauge whether or not a Bloom filter is right for your program is to test it. Reasonable values for the size of the Bloom filter are
16-32 bits.

5.7 Select

An experimental select operation is provided that inserts those items from a source hash that satisfy a given condition into a
destination hash. This insertion is done with somewhat more efficiency than if this were using HASH_ADD, namely because the
hash function is not recalculated for keys of the selected items. This operation does not remove any items from the source hash.
Rather the selected items obtain dual presence in both hashes. The destination hash may already have items in it; the selected
items are added to it. In order for a structure to be usable with HASH_SELECT, it must have two or more hash handles. (As
described here, a structure can exist in many hash tables at the same time; it must have a separate hash handle for each one).

user_t *users=NULL, *admins=NULL; /* two hash tables */

typedef struct {
int id;
UT_hash_handle hh; /* handle for users hash */
UT_hash_handle ah; /* handle for admins hash */

} user_t;

Now suppose we have added some users, and want to select just the administrator users who have id’s less than 1024.

#define is_admin(x) (((user_t*)x)->id < 1024)
HASH_SELECT(ah,admins,hh,users,is_admin);

The first two parameters are the destination hash handle and hash table, the second two parameters are the source hash handle
and hash table, and the last parameter is the select condition. Here we used a macro is_admin() but we could just as well
have used a function.

int is_admin(void *userv) {
user_t *user = (user_t*)userv;
return (user->id < 1024) ? 1 : 0;

}

If the select condition always evaluates to true, this operation is essentially a merge of the source hash into the destination hash.
Of course, the source hash remains unchanged under any use of HASH_SELECT. It only adds items to the destination hash
selectively.

The two hash handles must differ. An example of using HASH_SELECT is included in tests/test36.c.

uthash User Guide
18 / 26

5.8 Built-in hash functions

Internally, a hash function transforms a key into a bucket number. You don’t have to take any action to use the default hash
function, currently Jenkin’s.

Some programs may benefit from using another of the built-in hash functions. There is a simple analysis utility included with
uthash to help you determine if another hash function will give you better performance.

You can use a different hash function by compiling your program with -DHASH_FUNCTION=HASH_xyz where xyz is one of
the symbolic names listed below. E.g.,

cc -DHASH_FUNCTION=HASH_BER -o program program.c

Table 2: Built-in hash functions

Symbol Name
JEN Jenkins (default)
BER Bernstein
SAX Shift-Add-Xor
OAT One-at-a-time
FNV Fowler/Noll/Vo
SFH Paul Hsieh
MUR MurmurHash v3 (see note)

MurmurHash
A special symbol must be defined if you intend to use MurmurHash. To use it, add
-DHASH_USING_NO_STRICT_ALIASING to your CFLAGS. And, if you are using the gcc compiler with optimiza-
tion, add -fno-strict-aliasing to your CFLAGS.

5.8.1 Which hash function is best?

You can easily determine the best hash function for your key domain. To do so, you’ll need to run your program once in a
data-collection pass, and then run the collected data through an included analysis utility.

First you must build the analysis utility. From the top-level directory,

cd tests/
make

We’ll use test14.c to demonstrate the data-collection and analysis steps (here using sh syntax to redirect file descriptor 3 to
a file):

Using keystats

% cc -DHASH_EMIT_KEYS=3 -I../src -o test14 test14.c
% ./test14 3>test14.keys
% ./keystats test14.keys
fcn ideal% #items #buckets dup% fl add_usec find_usec del-all usec
--- ------ ---------- ---------- ----- -- ---------- ---------- ------------
SFH 91.6% 1219 256 0% ok 92 131 25
FNV 90.3% 1219 512 0% ok 107 97 31
SAX 88.7% 1219 512 0% ok 111 109 32
OAT 87.2% 1219 256 0% ok 99 138 26
JEN 86.7% 1219 256 0% ok 87 130 27
BER 86.2% 1219 256 0% ok 121 129 27

uthash User Guide
19 / 26

Note
The number 3 in -DHASH_EMIT_KEYS=3 is a file descriptor. Any file descriptor that your program doesn’t use for its own
purposes can be used instead of 3. The data-collection mode enabled by -DHASH_EMIT_KEYS=x should not be used in
production code.

Usually, you should just pick the first hash function that is listed. Here, this is SFH. This is the function that provides the most
even distribution for your keys. If several have the same ideal%, then choose the fastest one according to the find_usec
column.

5.8.2 keystats column reference

fcn
symbolic name of hash function

ideal%
The percentage of items in the hash table which can be looked up within an ideal number of steps. (Further explained
below).

#items
the number of keys that were read in from the emitted key file

#buckets
the number of buckets in the hash after all the keys were added

dup%
the percent of duplicate keys encountered in the emitted key file. Duplicates keys are filtered out to maintain key unique-
ness. (Duplicates are normal. For example, if the application adds an item to a hash, deletes it, then re-adds it, the key is
written twice to the emitted file.)

flags
this is either ok, or nx (noexpand) if the expansion inhibited flag is set, described in Expansion internals. It is not
recommended to use a hash function that has the noexpand flag set.

add_usec
the clock time in microseconds required to add all the keys to a hash

find_usec
the clock time in microseconds required to look up every key in the hash

del-all usec
the clock time in microseconds required to delete every item in the hash

5.8.3 ideal%

What is ideal%?

The n items in a hash are distributed into k buckets. Ideally each bucket would contain an equal share (n/k) of the items.
In other words, the maximum linear position of any item in a bucket chain would be n/k if every bucket is equally used.
If some buckets are overused and others are underused, the overused buckets will contain items whose linear position
surpasses n/k. Such items are considered non-ideal.

As you might guess, ideal% is the percentage of ideal items in the hash. These items have favorable linear positions in
their bucket chains. As ideal% approaches 100%, the hash table approaches constant-time lookup performance.

uthash User Guide
20 / 26

5.9 hashscan

Note
This utility is only available on Linux, and on FreeBSD (8.1 and up).

A utility called hashscan is included in the tests/ directory. It is built automatically when you run make in that directory.
This tool examines a running process and reports on the uthash tables that it finds in that program’s memory. It can also save the
keys from each table in a format that can be fed into keystats.

Here is an example of using hashscan. First ensure that it is built:

cd tests/
make

Since hashscan needs a running program to inspect, we’ll start up a simple program that makes a hash table and then sleeps
as our test subject:

./test_sleep &
pid: 9711

Now that we have a test program, let’s run hashscan on it:

./hashscan 9711
Address ideal items buckets mc fl bloom/sat fcn keys saved to
------------------ ----- -------- -------- -- -- --------- --- -------------
0x862e038 81% 10000 4096 11 ok 16 14% JEN

If we wanted to copy out all its keys for external analysis using keystats, add the -k flag:

./hashscan -k 9711
Address ideal items buckets mc fl bloom/sat fcn keys saved to
------------------ ----- -------- -------- -- -- --------- --- -------------
0x862e038 81% 10000 4096 11 ok 16 14% JEN /tmp/9711-0.key

Now we could run ./keystats /tmp/9711-0.key to analyze which hash function has the best characteristics on this set
of keys.

5.9.1 hashscan column reference

Address
virtual address of the hash table

ideal
The percentage of items in the table which can be looked up within an ideal number of steps. See Section 5.8.3 in the
keystats section.

items
number of items in the hash table

buckets
number of buckets in the hash table

mc
the maximum chain length found in the hash table (uthash usually tries to keep fewer than 10 items in each bucket, or in
some cases a multiple of 10)

uthash User Guide
21 / 26

fl
flags (either ok, or NX if the expansion-inhibited flag is set)

bloom/sat
if the hash table uses a Bloom filter, this is the size (as a power of two) of the filter (e.g. 16 means the filter is 2ˆ16 bits
in size). The second number is the "saturation" of the bits expressed as a percentage. The lower the percentage, the more
potential benefit to identify cache misses quickly.

fcn
symbolic name of hash function

keys saved to
file to which keys were saved, if any

How hashscan works

When hashscan runs, it attaches itself to the target process, which suspends the target process momentarily. During this
brief suspension, it scans the target’s virtual memory for the signature of a uthash hash table. It then checks if a valid
hash table structure accompanies the signature and reports what it finds. When it detaches, the target process resumes
running normally. The hashscan is performed "read-only"-- the target process is not modified. Since hashscan is analyzing
a momentary snapshot of a running process, it may return different results from one run to another.

5.10 Expansion internals

Internally this hash manages the number of buckets, with the goal of having enough buckets so that each one contains only a
small number of items.

Why does the number of buckets matter?

When looking up an item by its key, this hash scans linearly through the items in the appropriate bucket. In order for
the linear scan to run in constant time, the number of items in each bucket must be bounded. This is accomplished by
increasing the number of buckets as needed.

5.10.1 Normal expansion

This hash attempts to keep fewer than 10 items in each bucket. When an item is added that would cause a bucket to exceed this
number, the number of buckets in the hash is doubled and the items are redistributed into the new buckets. In an ideal world,
each bucket will then contain half as many items as it did before.

Bucket expansion occurs automatically and invisibly as needed. There is no need for the application to know when it occurs.

Per-bucket expansion threshold

Normally all buckets share the same threshold (10 items) at which point bucket expansion is triggered. During the process
of bucket expansion, uthash can adjust this expansion-trigger threshold on a per-bucket basis if it sees that certain buckets are
over-utilized.

When this threshold is adjusted, it goes from 10 to a multiple of 10 (for that particular bucket). The multiple is based on how
many times greater the actual chain length is than the ideal length. It is a practical measure to reduce excess bucket expansion in
the case where a hash function over-utilizes a few buckets but has good overall distribution. However, if the overall distribution
gets too bad, uthash changes tactics.

uthash User Guide
22 / 26

5.10.2 Inhibited expansion

You usually don’t need to know or worry about this, particularly if you used the keystats utility during development to select
a good hash for your keys.

A hash function may yield an uneven distribution of items across the buckets. In moderation this is not a problem. Normal bucket
expansion takes place as the chain lengths grow. But when significant imbalance occurs (because the hash function is not well
suited to the key domain), bucket expansion may be ineffective at reducing the chain lengths.

Imagine a very bad hash function which always puts every item in bucket 0. No matter how many times the number of buckets
is doubled, the chain length of bucket 0 stays the same. In a situation like this, the best behavior is to stop expanding, and accept
O(n) lookup performance. This is what uthash does. It degrades gracefully if the hash function is ill-suited to the keys.

If two consecutive bucket expansions yield ideal% values below 50%, uthash inhibits expansion for that hash table. Once
set, the bucket expansion inhibited flag remains in effect as long as the hash has items in it. Inhibited expansion may cause
HASH_FIND to exhibit worse than constant-time performance.

5.11 Hooks

You don’t need to use these hooks- they are only here if you want to modify the behavior of uthash. Hooks can be used to change
how uthash allocates memory, and to run code in response to certain internal events.

5.11.1 malloc/free

By default this hash implementation uses malloc and free to manage memory. If your application uses its own custom
allocator, this hash can use them too.

Specifying alternate memory management functions

#include "uthash.h"

/* undefine the defaults */
#undef uthash_malloc
#undef uthash_free

/* re-define, specifying alternate functions */
#define uthash_malloc(sz) my_malloc(sz)
#define uthash_free(ptr,sz) my_free(ptr)

...

Notice that uthash_free receives two parameters. The sz parameter is for convenience on embedded platforms that manage
their own memory.

5.11.2 Out of memory

If memory allocation fails (i.e., the malloc function returned NULL), the default behavior is to terminate the process by calling
exit(-1). This can be modified by re-defining the uthash_fatal macro.

#undef uthash_fatal
#define uthash_fatal(msg) my_fatal_function(msg);

The fatal function should terminate the process or longjmp back to a safe place. Uthash does not support "returning a failure"
if memory cannot be allocated.

uthash User Guide
23 / 26

5.11.3 Internal events

There is no need for the application to set these hooks or take action in response to these events. They are mainly for diagnostic
purposes.

These two hooks are "notification" hooks which get executed if uthash is expanding buckets, or setting the bucket expansion
inhibited flag. Normally both of these hooks are undefined and thus compile away to nothing.

Expansion

There is a hook for the bucket expansion event.

Bucket expansion hook

#include "uthash.h"

#undef uthash_expand_fyi
#define uthash_expand_fyi(tbl) printf("expanded to %d buckets\n", tbl->num_buckets)

...

Expansion-inhibition

This hook can be defined to code to execute in the event that uthash decides to set the bucket expansion inhibited flag.

Bucket expansion inhibited hook

#include "uthash.h"

#undef uthash_noexpand_fyi
#define uthash_noexpand_fyi printf("warning: bucket expansion inhibited\n");

...

5.12 Debug mode

If a program that uses this hash is compiled with -DHASH_DEBUG=1, a special internal consistency-checking mode is activated.
In this mode, the integrity of the whole hash is checked following every add or delete operation. This is for debugging the uthash
software only, not for use in production code.

In the tests/ directory, running make debug will run all the tests in this mode.

In this mode, any internal errors in the hash data structure will cause a message to be printed to stderr and the program to exit.

The UT_hash_handle data structure includes next, prev, hh_next and hh_prev fields. The former two fields determine
the "application" ordering (that is, insertion order-- the order the items were added). The latter two fields determine the "bucket
chain" order. These link the UT_hash_handles together in a doubly-linked list that is a bucket chain.

Checks performed in -DHASH_DEBUG=1 mode:

• the hash is walked in its entirety twice: once in bucket order and a second time in application order

• the total number of items encountered in both walks is checked against the stored number

• during the walk in bucket order, each item’s hh_prev pointer is compared for equality with the last visited item

• during the walk in application order, each item’s prev pointer is compared for equality with the last visited item

uthash User Guide
24 / 26

Macro debugging:

Sometimes it’s difficult to interpret a compiler warning on a line which contains a macro call. In the case of uthash, one
macro can expand to dozens of lines. In this case, it is helpful to expand the macros and then recompile. By doing so, the
warning message will refer to the exact line within the macro.

Here is an example of how to expand the macros and then recompile. This uses the test1.c program in the tests/
subdirectory.

gcc -E -I../src test1.c > /tmp/a.c
egrep -v ’^#’ /tmp/a.c > /tmp/b.c
indent /tmp/b.c
gcc -o /tmp/b /tmp/b.c

The last line compiles the original program (test1.c) with all macros expanded. If there was a warning, the referenced line
number can be checked in /tmp/b.c.

5.13 Thread safety

You can use uthash in a threaded program. But you must do the locking. Use a read-write lock to protect against concurrent
writes. It is ok to have concurrent readers (since uthash 1.5).

For example using pthreads you can create an rwlock like this:

pthread_rwlock_t lock;
if (pthread_rwlock_init(&lock,NULL) != 0) fatal("can’t create rwlock");

Then, readers must acquire the read lock before doing any HASH_FIND calls or before iterating over the hash elements:

if (pthread_rwlock_rdlock(&lock) != 0) fatal("can’t get rdlock");
HASH_FIND_INT(elts, &i, e);
pthread_rwlock_unlock(&lock);

Writers must acquire the exclusive write lock before doing any update. Add, delete, and sort are all updates that must be locked.

if (pthread_rwlock_wrlock(&lock) != 0) fatal("can’t get wrlock");
HASH_DEL(elts, e);
pthread_rwlock_unlock(&lock);

If you prefer, you can use a mutex instead of a read-write lock, but this will reduce reader concurrency to a single thread at a
time.

An example program using uthash with a read-write lock is included in tests/threads/test1.c.

6 Macro reference

6.1 Convenience macros

The convenience macros do the same thing as the generalized macros, but require fewer arguments.

In order to use the convenience macros,

1. the structure’s UT_hash_handle field must be named hh, and

2. for add or find, the key field must be of type int or char[] or pointer

uthash User Guide
25 / 26

Table 3: Convenience macros

macro arguments
HASH_ADD_INT (head, keyfield_name, item_ptr)
HASH_FIND_INT (head, key_ptr, item_ptr)
HASH_ADD_STR (head, keyfield_name, item_ptr)
HASH_FIND_STR (head, key_ptr, item_ptr)
HASH_ADD_PTR (head, keyfield_name, item_ptr)
HASH_FIND_PTR (head, key_ptr, item_ptr)
HASH_DEL (head, item_ptr)
HASH_SORT (head, cmp)
HASH_COUNT (head)

6.2 General macros

These macros add, find, delete and sort the items in a hash. You need to use the general macros if your UT_hash_handle is
named something other than hh, or if your key’s data type isn’t int or char[].

Table 4: General macros

macro arguments
HASH_ADD (hh_name, head, keyfield_name, key_len, item_ptr)
HASH_ADD_KEYPTR (hh_name, head, key_ptr, key_len, item_ptr)
HASH_FIND (hh_name, head, key_ptr, key_len, item_ptr)
HASH_DELETE (hh_name, head, item_ptr)
HASH_SRT (hh_name, head, cmp)
HASH_CNT (hh_name, head)
HASH_CLEAR (hh_name, head)
HASH_SELECT (dst_hh_name, dst_head, src_hh_name, src_head, condition)
HASH_ITER (hh_name, head, item_ptr, tmp_item_ptr)

Note
HASH_ADD_KEYPTR is used when the structure contains a pointer to the key, rather than the key itself.

6.2.1 Argument descriptions

hh_name
name of the UT_hash_handle field in the structure. Conventionally called hh.

head
the structure pointer variable which acts as the "head" of the hash. So named because it initially points to the first item that
is added to the hash.

keyfield_name
the name of the key field in the structure. (In the case of a multi-field key, this is the first field of the key). If you’re new to
macros, it might seem strange to pass the name of a field as a parameter. See note.

key_len
the length of the key field in bytes. E.g. for an integer key, this is sizeof(int), while for a string key it’s strlen(key).
(For a multi-field key, see the notes in this guide on calculating key length).

uthash User Guide
26 / 26

key_ptr
for HASH_FIND, this is a pointer to the key to look up in the hash (since it’s a pointer, you can’t directly pass a literal
value here). For HASH_ADD_KEYPTR, this is the address of the key of the item being added.

item_ptr
pointer to the structure being added, deleted, or looked up, or the current pointer during iteration. This is an input parameter
for HASH_ADD and HASH_DELETE macros, and an output parameter for HASH_FIND and HASH_ITER. (When using
HASH_ITER to iterate, tmp_item_ptr is another variable of the same type as item_ptr, used internally).

cmp
pointer to comparison function which accepts two arguments (pointers to items to compare) and returns an int specifying
whether the first item should sort before, equal to, or after the second item (like strcmp).

condition
a function or macro which accepts a single argument-- a void pointer to a structure, which needs to be cast to the appropriate
structure type. The function or macro should return (or evaluate to) a non-zero value if the structure should be "selected"
for addition to the destination hash.

	A hash in C
	What can it do?
	Is it fast?
	Is it a library?
	C/C++ and platforms
	Test suite

	BSD licensed
	Obtaining uthash
	Getting help
	Resources
	Who's using it?

	Your structure
	The key
	Unique keys

	The hash handle

	Hash operations
	Declare the hash
	Add item
	Key must not be modified while in-use

	Find item
	Delete item
	uthash never frees your structure
	Delete can change the pointer
	Iterative deletion
	All-at-once deletion

	Count items
	Iterating and sorting
	Deletion-safe iteration
	Sorted iteration

	A complete example

	Standard key types
	Integer keys
	String keys
	String within structure
	String pointer in structure

	Pointer keys
	Structure keys

	Advanced Topics
	Compound keys
	Multi-level hash tables
	Items in several hash tables
	Items with alternative keys
	Several sort orders
	Bloom filter (faster misses)
	Select
	Built-in hash functions
	Which hash function is best?
	keystats column reference
	ideal%

	hashscan
	hashscan column reference

	Expansion internals
	Normal expansion
	Per-bucket expansion threshold

	Inhibited expansion

	Hooks
	malloc/free
	Out of memory
	Internal events
	Expansion
	Expansion-inhibition

	Debug mode
	Thread safety

	Macro reference
	Convenience macros
	General macros
	Argument descriptions

