
swish++.index(4) swish++.index(4)

NAME
swish++.index − SWISH++ index file format

SYNOPSIS
long num_words;
off_t word_offset[num_words];
long num_stop_words;
off_t stop_word_offset[num_stop_words];
long num_directories;
off_t directory_offset[num_directories];
long num_files;
off_t file_offset[num_files];
long num_meta_names;
off_t meta_name_offset[num_meta_names];

word index
stop-word index
directory index
file index
meta-name index

DESCRIPTION
The index file format used by SWISH++ is as shown above. Every word_offset is an offset into the
word index pointing at the first character of a word entry; similarly, every stop_word_offset is an off-
set into thestop-word index pointing at the first character of a stop-word entry; similarly, every direc-
tory_offset is an offset into thedirectory index pointing at the first character of a directory entry; simi-
larly, every file_offset is an offset into thefile index pointing at the first byte of a file entry; finally,
ev ery meta_name_offset is an offset into themete-name index pointing at the first character of a meta-
name entry.

The index file is written as it is so that it can be mapped into memory via themmap(2) Unix system call
enabling ‘‘instantaneous’’ access.

BCD Integers
All integers in an index file are stored in BCD (binary coded decimal) format for compactness.A BCD
integer that has an odd number of digits is terminated by a low-order nybble with the value\xA; an integer
that has an even number of digits is terminated by a a byte with the value\xAA. (These values were cho-
sen because they are invalid BCD. All other values\xA0 through\xFE are reserved for future use.)

For example, the integers 1−9 are stored as single bytes of\x1A−\x9A, respectively; the integer 10 is
stored as the two bytes of\x10AA; the integer 1967 is stored as the three bytes of\x1967AA.

Since most integer values in an index file are less than 10000, using BCD results in approximately a 25%
storage reduction.

Word Entries
Every word entry in theword index is of the form:

word0{data}...FF

that is: a null-terminated word followed by one or moredataentries followed by anFF byte where adata
entry is:

I[EE{M}...EE]OR

that is: a file-index (I) followed by zero or more meta-IDs (M) surrounded by\xEE bytes followed by the
number of occurrences in the file (O) followed by a rank (R) followed by an\xFF byte. Thefile-index is
an index into thefile_offset table; themeta-IDs, if present, are unique integers identifying which
meta name(s) a word is associated with in the meta-name index.

SWISH++ July3, 2001 1

swish++.index(4) swish++.index(4)

Stop-Word Entries
Every stop-word entry in thestop-word index is of the form:

stop-word0

that is: every word is null-terminated.

Directory Entries
Every directory entry in thedirectory index is of the form:

directory-path0

that is: a null-terminated full pathname of a directory (not including the trailing slash).The pathnames are
relative to where the indexing was performed (unless absolute paths were used).

File Entries
Every file entry in thefile index is of the form:

{D}file-name0{S}{W}file-title0

that is: the file’s directory index (D) followed by a null-terminated file name followed by the file’s size in
bytes (S) followed by the number of words in the file (W) followed by the file’s null-terminated title.

For an HTML or XHTML file, the title is what is between<TITLE> ... </TITLE> pairs. For a mail or
news file, the title is the value of theSubject header. For a Unix manual page file, the title is the contents
of the first line within theNAME section. Ifa file is not one of those types of files, or is but does not have a
title, the title is simply the file (not path) name.

Meta-Name Entries
Every meta-name entry in themeta-name index is of the form:

meta-name0{I}

that is: a null-terminated meta-name followed by the ID (I).

CAVEATS
Generated index files are machine-dependent (size of data types and byte-order).

SEE ALSO
index(1), search(1)

AUTHOR
Paul J. Lucas <pauljlucas@mac.com>

SWISH++ July3, 2001 2

