A Tool for RTF Processing
Release 1.10

Paul DuBois
duboi s@primate.wisc.edu

Wisconsin Rgional Primate Research Center
Revision date: 5 April 1994

Intr oduction

This document describes a general purpose tool for processidilBs—an RF reader which may be
configured in a well-defined manner to alli to be uised with a ariety of writers generating diérent out-
put formats. This provides a method for generating Rto-XXX translators.

| assume that you ka ©me fmiliarity with RTF syntax and semantics, and that yewvilling to study
the source code of theTR distritution described herelf you dont havethe RTF specification, you can
get it from the FTP site listed undéDistribution Availability’’ at the end of this documenReferences to
“the specificationrefer to the RF specification document.

If you use this tool and find that youMesan RTF file that won't pass through the sample translat2null,
or for whichrtf2null announces unkme symbols, please contact me so the tool can be wreghradt is
best if you can supply theTR file for which this behador is obsered.

Theory of Operation

Tr anslator Architecture

This is a brief description of otranslators are designeétor more details, see the documé&titF Tools
Trandator Architecture.

There are three components to arFRranslator: reader code, writer code, angeditode. Thesdreak
down as follavs.

reader
Responsible for peeling teks out of the input stream, classifying them, and causing the writer to
process them.

writer
Responsible for translating teks from the input stream into the required output format.

driver
Responsible for making sure the reader and writer are initialized, and for calling the teaalese
translation to occur

This architecture alles the reader to remain constant, so thdeiiht translators can beilt by supplying
different writer and dvier code. Also,for a given translatoy the reader and writer remain constant and the
translator can be ported tofeifent types of systems by supplying system-specifiedrode.

In practice, to bild a nev translatoryou supply anain() function and the writer code, and link in th&fR
reader main() includes the dvier code and is responsible to see that the fotig are done:

Revision date: 5 April 1994 Printed: 5April 1994

RTF Processing @ol -2- Release 1.10

* Determine which files are to be translated
» Configure the readewhich may ivolve:
— Reset the input stream if necessary

— Configure other reader behar, such as whether or not to process the font and color tables inter
nally

— Install writer callbacks into the reader so it Wsowhat functions to call whemakious kinds of
tokens occur

* Initialize the writer
» Call the reader to process the input stream
» Terminate the writer

A minimal translator (for a UNIX system) looks somethingg ltkis:

include <stdio.h>
i nclude "rtf.h"

int
main ()
{
RTFSetOpenLibFileProc (UnixOpenLibFile);
RTFInit ();
RTFRead ();
exit (0);
}

This installs a function that’alitable for opening RF library files on a UNIX system, initializes the
reader and calls it to readstdin (the de&ult input stream).The writer portion is null (i.e., there is no
writer), so all that happens is that the readeendtes the input and discards Tthat isnt very interesting;
most of the sample translators axamples of more elaborate translators.

Reader Operation

Each time a tofn is read, seral global \ariables are set:

rtfClass token class

rtfMajor token major number

rtfMinor token minor number

rtfParam token parameteralue

rtfTextBuf token text

rtfTextLen length of tolen (including parameterxg

Tokens are classified using up to three numbergrtaltass, and major and minor numbérke major and
minor numbers may be meaningless depending on the kindesf.tok

The class number can be:

rtflUnknown unrecognized takn

rtfGroup “{"or"}’

rtfText plain text character

rtfControl token beinning with \"’

rtfEOF fake dass number; indicates end of input stream

There are somexeeptions. Afew tokens bginning with\ actually belong to other classes, a tab character
is treated lile\tab , and unrecognized t@hs are put in claggflUnknown no matter what thelook like.

Revision date: 5 April 1994 Printed: 5April 1994

Release 1.10 -3- RTF Processingdol

Within a class, toéns are assigned a major numlaad perhaps a minor numbefor thertfText class, the

major number is thealue of the input character (0..255), and the minor number is assigned a standard char
acter code.Text characters hae dfferent mappings in dérent R'F character sets, so tead the prob-

lems associated with this, the reader maps the character onto a standard character code using a charset-
dependent translation tabl&ranslators should generally use the standard character ca@idiimor rather

than the rev character code intfMajor. Character mapping issues are described further in the document

RTF Tools Character Mapping.

A “‘plain text” character can be a literal charactetharacter specified in Reotation { xx) or one of the
special escaped charactéfs (\} ,\\). Thesequenc& is treated as a plainxiecolon. This is aguably
wrong; the rationale is gén later under the description of tREFGetToken() function.

For the rtfControl class, most tadns hae oth a major and minor numbeFor instance, all paragraph
attribute control symbols va major numberrtfParAttr and a minor number indicating a paragraph format-
ting property such asrtfLeftindent or rtfSpaceBefore. A few oddball control tokns hae o minor number

Control symbols may lve a @arameter &lue, e.g.\margr720 specifies a right mgmn (in units of 720
twentieths of a point).

If no parameteralue is gven, rtfParam is rtfNoParam.

Ideally, there should ner be any tokens in thertfUnknown class, bt as the RF standard continues to
develop, unknavn tokens are ingtable.

To write a translatgryou’ll need to &miliarize yourself with the tan classification scheme by reading
rtf.h. A skeleton translatortfskel is included with the distrition and may be used as a basis fax ne
translators.

As of release 1.10, the reader alfoan 8-bit character set since the currerft Bpecification (grsion 1.2)
now allows 8-bit charactersFormerly, if the reader saan 8-bit characterit corverted the character to the
equiaent\” xx hex notation sequence and returned that as thentok

Generally a ranslator will configure the HE reader to call particular writer functions when certain kinds
of tokens are encountered in the input stredhese functions are knm asclass callbacks. Writer call-
backs can be gistered with the reader usikgFSetClassCallback() for each tokn class.

The reader reads each ¢éok classifies it, and sends it to agokouting functiorRTFRouteToken(), which
tries to find a writer callback function to process theetokTokens in a gien dass are ignored if no call-
back is rgistered for the class.

Class callbacks makit quite easy to recee rotification when certain types of teks occur in the input.
For instance, a crudeTR text extractor could be written by installing a callback function for ittigext
class! Whenever the function is imoked, rtfMajor will contain a \alue in the range 0..255 representing the
character alue.

include <stdio.h>
i nclude "rtf.h"

void
TextCallback ()
{

}

putchar (rtfMajor);

int
main ()

1 Reasons this is a crude translator are that: (i) soxteharacters occur in comts where the characters are not in-
tended to be output, e.g., font tables, stylesheets; (ii) some control syméttistlik represent output xé characters; (iii)
it writes output based on thewdnput character alue inrtfMajor rather than mapping the standard character code in
rtfMinor. The sample translatotf2text addresses these problems in a (slightly) more sophisticated manner

Revision date: 5 April 1994 Printed: 5April 1994

RTF Processing dol -4 - Release 1.10

RTFSetOpenLibFileProc (UnixOpenLibFile);
RTFInit ();
RTFSetClassCallback (rtfText, TextCallback);
RTFRead ();
exit (0);

}

Callbacks for thetfControl andrtfGroup classes typically operate by selecting on themotajor number
to determine the action to &k A callback for thetfGroup class usually will do something ékhis:

void

BraceCallback ()

{
switch (rtfMajor)

case rtfBeginGroup:
...push state...
break;

case rtfEndGroup:
...pop state...
break;

Destination Readers

Grouping in RF documents occurs within bracg5and “} . Onekind of group is thelestination. The
token immediately follwing the opening brace is a destination control symibbkese indicate such things
as headers, footers, footnotes, etc.

Three destinations which specify information for internal use (i.e., information wHiettsabutput bt
isn't itself written) are the font table, color table and stylesh8@ice these three destinations occur so
commonly and hae a pecial syntax, the R reader by delult gobbles them up itself when it recognizes
them. Thefunctions which do this are calleéstination readers and are probably the nearest thing in the
reader to what might be called parsefsiey are installed by defult so that translators can be written with-
out the lirden of understanding the syntax or digesting the contents of these destinatiohsof them
constructs a list of the entries specified in the destination and the reader includes funatidimg@ocess

to these lists.

Translators can turn obr override these defults withRTFSetDestinationCallback() if necessary To over-
ride one, pass the address of &edént destination reader functiofo turn one of, passNULL

Destination callbacks may be called foyatestination, not justtfFontTbl, rtfColorThl and rtfStyleSheet.
Destinations for which no callback igjistered are not treated specially

Other destinations for which there is aaiéf reader are the informatiokinfo), picture {pict), and
object fobject) destinations; all thedo is kip to the end of the group.

Using the Built-in Destination Readers

The font table, color table and stylesheet information is maintained inteamallyhe reader either acts on
that information itself, or alles itself to be queried by the writer about it, as describedabelihese
descriptions do not apply if the translator shut©obverrides the defult destination readers, of course.

Stylesheet—The reader acts on this itseNVhen the stylesheet destination is encountered, the style con-
tents are remembered hereafter whenever the writer receies rotification that a style number control
symbol {s nnn) has occurred, it can caRTFExpandStyle(rtfParam) to cause the style to bepmanded.

The reader consults contents of the stylesheet and eaghitothe style definition is routed in turn back to
the writer This efects a sort of macraxpansion.

Revision date: 5 April 1994 Printed: 5April 1994

Release 1.10 -5- RTF Processingdol

If the writer doesri’care about stylex@ansion, it simply refrains from callifgrFExpandStyle().
If the writer wants information about a style, it can dIIFGetStyl&().

Font table—For each entry in the font table, the font numkigpe and name are maintained by the reader
The writer finds out that a font number has been specified in the input when its control class callback is
invoked and rtfMajor = rtfCharAttr andrtfMinor = rtfFontNum. To obtain a pointer to the approprid®@F-

Font structure, the reader functi®TFGetFont(rtfParam) may be called.

Color table—For each entry in the color table, the color number is maintained along with the red, green
and blue alues. Thewriter finds out that a color number has been specified in the input when its control
class callback is iroked and rtfMajor = rtfCharAttr andrtfMinor = rtfColorNum. To obtain a pointer to

the appropriat&TFColor structure, the reader functiGffFGetColor (rtfParam) may be called.

One subtle point about theiili-in destination readers: destinations cannot be recognizedaftetilthe
occurrence of the{’ symbol that bgins the destinationThis means the writeif it maintains a state
stack, will already hae pushed a stateln order to allav the writer to properly pop that state in response to
the *} ’, these destination readers feed thie€ back into the tokn router after thepull it from the input
stream. Whathe writer actually sees is ‘@ * followed immediately by d}' °.

Applications that maintain a state stack may find it necessary to do something similgarsiftply their
own destination readers.

Programming Interface

Source files using theTR reader should #includ#f.h. The library files common to all translators are used
to kuild a librarylibrtf.a in the distritution’s lib directory This library should be part of the final applica-
tion link.

The best ey to learn ha these source filesark is to study the sample translators, whielnyvin com-
plexity from very simple (e.g.rtf2text, rtfwc), to wretchedly messy (e.gtf2troff). You should besare
that one implication of the ay the translators arauiit (callbacks and switch statements) is that dflite
easy to bild them incrementally You can start with aery bare-bones model, and start plugging in call-
backs as you progresyVithin the callbacks, your switch statements can progedgsiandle more cases.

An alternatve gproach is to start with a cppf rtfskel, which includes a full set of class callbacks and
complete switch statements for all émls. Eaclcase is empty; you simply add code for those cases you
want to handle.You can also rip out the code for the cases youtdmame about.

Types

Most types are pretty standariihe one of note iIRTFFuncPtr, a generic function pointer which is defined
like s0:

typedef void (*RTFFuncPtr) ();

That is, its a pinter to a function that tals no aguments and returns nalue.
Global variables

The global HF reader ariables are:

Revision date: 5 April 1994 Printed: 5April 1994

RTF Processing @ol -6 - Release 1.10

int rtfClass; token class

int rtfMajor; token major number

int rtfMinor; token minor number

int rtfParam; parameteralue for control symbols
char *rtfTextBuf; token text

int rtfTextLen; lengthof token text

These wariables alays apply to the todn with which the writer should be concerndthis may be either
the last token read or the current tek within a style which is being reprocessed.

Warning: rtfTextBuf is NULL until RTFInit() has been called.

Two other global @riables which may be of interest pide the current input line number and position
within the line:

long rtfLineNum; current input line
int rtfLinePos; position within current line

These wariables can be used to pide feedback to the user when a problem is found in an input file as to
the location of the problenilhey indicate the position immediately after the lasetokead.

Functions

void
RTFInit ()
Initialize the R'F reader This should be called once for each input file to be pro-

cessed. Iperforms some initialization such as computing hashes for the toén
lookup table and installation of someilb-in destination and tan class readers.

RTFInit() may be called multiple timesEach ivocation resets the readerdate
completely except that the input stream is not disturbed.

void

RTFRead ()
RTFRead() calls RTFGetToken() to tokenize the input stream amTFRouteToken()

to process each teh, until input is ehausted. WheRTFRead() returns, input has
been completely read and the writer can perforyncleanup or termination needed.

If you want to read multiple files peniacation of your translatpyou should do the
following for each file: calRTFInit(), install callbacks, etc., then c&TFRead().

void

RTFRouteToken ()
This routine decides what to do with the currentetoland routes it to the correct
place for processingUsually this is directly to the writer via a class callbadkhe

token isnot passed to the writer (i.e., the class callback is bypassed) when it is a desti-
nation tolen for which a reader callback is installed.

By default, hiilt-in readers are installed for font table, color table, stylesheet and
information and picture group destinatiorihe luilt-in readers can be disabled if the
writer wants to see all ta@as directly

Revision date: 5 April 1994 Printed: 5April 1994

Release 1.10 -7- RTF Processingdol

int

RTFGetToken ()
Reads one tan from the input stream, classifies it, sets the gloaaables, and
returns the class numbelf the class istfEOF the end of the input stream has been
reached. Nelines (n), carriage returns\r(), and nulls are silently discarded by
RTFGetToken(), as they haveno meaning.All are passed to the tek hook if one is
installed, havever.

The sequenck s treated as a plaindiecharacterwith rtfClass set tortfText and
rtftMajor set to the colon ASCII codestrictly speaking): is the control wrd for an
index subentry but some ersions of Microsoft \WWrd write out plain tet colons with

a preceding backslash, while others donThis unfortunate ambiguity results in an
ugly dilemma. It seems the lesseufalen to require translators to recognize that plain
text colons shouldfeally” be treated as indesubentry indicators while inside of an
index entry destination, than to recognize that an insléentry control wrd should
“really” be treated as a plainxecolon eerywhere else.

Writer code usually does not c&ITFGetToken() directly except within specialized
destination reader®river code usually does not cdTFGetToken() if it calls RTF-
Read(). Howeva, the following loop is an alternatée o RTFRead():

while (RTFGetToken () != rtfEOF)
{

}

If a driver wants to rgan control after reading each tk, this loop may be prefer
able toRTFRead().

int

RTFUngetToken ()

Pushes the last tek back on the input stream so tR&AFGetToken() returns it agin.
You can't put back the same tek twice unless you read itag in the interim.

RTFRouteToken ();

int
RTFPeekToken ()

Reads a toén from the input stream and sets the globatrolariables, bt does not
remove the tolen from the input stream.

void

RTFSetToken (class, major, minor, param, text)
int class, major, minor, param;
char *text;

It is sometimes useful to constructakd token and run it through the tek router to
cause the &dcts of the tokn to be appliedRTFSetToken() allows you to do this, by
setting the reades’dobal variables to the alues suppliedIf param is rtfNoParam,
the tolen tet rtfTextBuf is constructed frontext and param, otherwisertfTextBuf is
just copied fromntext.

Revision date: 5 April 1994 Printed: 5April 1994

RTF Processing @ol -8- Release 1.10

void
RTFSetReadHook (f)
RTFFuncPtrf;

Install a function to be called bRTFGetToken() after each toén is read from the
input stream.The function taks no agyuments and returns nalue. Wthin the func-
tion, information about the current &k can be obtained from the globakiables.
This function is for tokn examination purposes onlgnd should not modify those
variables.

RTFFuncPtr
RTFGetReadHook ()

Returns a pointer to the current read hool\OLL if there isnt one.

void

RTFSkipGroup ()
This function can be called to skip to the end of the current group (includjragilan
groups). Its wseful for explicitly ignoring *\ dest groups, wherelest is an unrecog-
nized destination, or for causing groups that you tdeant to deal with to éctively
“ disappeai’f rom the input stream.

Calling this function in the middle ofkxpanding a style may cause problenisow-
eva, it is typically called when you Iva just seen a destination symbol, whiconi
happen during a stylxpansion—I think.

Be careful with this function if your writer maintains a state stack, because you will
already hae pushed a state when the opening group braae seen After RTFSKip-
Group() returns, the group closing brace has been read, antll yeed to pop a state.

All global token \ariables will still be set to the closing brace, so you may only need
to callRTFRouteToken() to cause the state to be unsttk

void
RTFExpandStyle (num)
int num;

Performs style xpansion of the gen syle number or does nothing if there is no
such style.The writer should call this when it notices that the currergriak a style
number indicator

void
RTFSetStream (stream)
FILE *stream;

Redirects the RF reader to the gen g¢ream. Thisshould be called before yanead-
ing is done.The deéult input stream istdin. An dternatve b RTFSetStream() is to
simply freopen() the input file orstdin (that’s what all the sample translators do).

The input stream isot modified byRTFInit().

void
RTFSetClassCallback (class, callback)
int class;

RTFFuncPtrcallback;
Installs a writer callback function for thevgn token class.The first agument is a

Revision date: 5 April 1994 Printed: 5April 1994

Release 1.10 -9- RTF Processingdol

class numberthe second is the function to call whendnk from that class are
encountered in the input strearmhis will causeRTFRouteToken() to invoke the call-
back when it encounters a @k in the class.If callback is NULL (which is the
default for all classes), t@ns in the class are ignored, i.e., discarded.

The callback should takno arguments and return ncalue. Wthin the callback,
information about the current tek can be obtained from the globaliables.

Installing a callback for thetfEOF “ class’ i s dlly and has no dééct.

RTFFuncPtr
RTFGetClassCallback (class)
int class;

Returns a pointer to the callback function for theagitoken class, oNULL if there
isn’t one.

void

RTFSetDestinationCallback (dest, callback)

int dest;
RTFFuncPtrcallback;

Installs a callback function for thevgn destination ¢est is a tolen minor number).
WhenRTFRouteToken() sees a tadn with classtfControl and major numbentfDes-
tination, it checks whether there is a callback for the destination indicated by the
minor number If so, it invokes it. If callback is NULL, the gven destination is not
treated specially (the control class callback v®ked as usual). Bydefault, destina-

tion callbacks are installed for the font table, color table, stylesheet, and information
and picture group.

The callback should takno aguments and return ncalwe. Whenthe functon is
invoked, the current tagn will be the destination tek folloving the destinatios’
initial opening bracd . (For optional destinations, the destination eokfollowvs the
* symbol.)

RTFFuncPtr

RTFGetDestinationCallback (dest)

int dest;
Returns a pointer to the callback function for theegitoken class, oNULL if there
isn’t one.

RTFStyle *

RTFGetStyle (num)

int num;
Returns a pointer to thBRTFStyle structure for the gen syle number The *Nor-
mal” style number is 0.Pass —1 to get a pointer to the first style in the IBtyles are
not stored in anparticular order

Be sure to check the result; it mighte/LL

This function is meaningless if the daft stylesheet destination reader veradden.

Revision date: 5 April 1994 Printed: 5April 1994

RTF Processing @ol -10 - Release 1.10

RTFFont *
RTFGetFont (num)

int

num;

Returns a pointer to tHeTFFont structure for the gen font number Pass -1 to get a
pointer to the first font in the list-onts are not stored in yparticular order

Be sure to check the result; it might N&JLL In particulat you might think that
passing the number specified with tideff (default font) control symbol auld
always yield a walid font structure, ot thats not true. The deéult font might not be
listed in the font table.

This function is meaningless if the deaft font table destination reader i\geidden.

RTFColor *
RTFGetColor (num)

int

int

num;j;

Returns a pointer to theTFColor structure for the gen color number Pass -1 to
get a pointer to the first color in the lis€olors are not stored in aparticular order
If the color \alues in the entry are —1, the delt color should be usedhe deéult
color is translatedependent.

Be sure to check the result; it might REJ)LL | think this means you should use the
default color

This function is meaningless if the daft color table destination reader iswidden.

RTFCheckCM (class, major)

int

int

class, major;

Returns non-zero iftfClass andrtfMajor are equal talass and major, respectiely,
zero otherwise.

RTFCheckCMM (class, major, minor)

int

int

class, major, minor;

Returns non-zero iftfClass, rtfMajor and rtfMinor are equal taclass, major and
minor, respectiely, zero otherwise.

RTFCheckMM (major, minor)

int

major, minor;

Returns non-zero iftftMajor andrtfMinor are equal tanajor andminor, respectiely,
zero otherwise.

char *
RTFAlloc (size)

int

size;

Returns a pointer to a block of memarge bytes long, oNULL if insufficient mem-
ory was &ailable.

Revision date: 5 April 1994 Printed: 5April 1994

Release 1.10 -11 - RTF Processingdol

char *
RTFStrSave (s)
char *s;

Allocates a block of memory big enough for ayxopthe gven gring (including ter
minating null byte), copies the string into it, and returns a pointer to thg cop
ReturnsNULL if insufficient memory vas &ailable.

void
RTFFree (p)
char *p;

Frees the block of memory pointed to pywhich should hee keen allocated by
RTFAlloc() or RTFSrSave(). It is safe to pas®lULL to this routine.

void
RTFCharToHex (c)
char c;

Returns 0..15 for the characters ‘0°..'9",'a’..'f".
void
RTFHexToChar (i)
int i
Returns the characters ‘0..'9",'a"..f' for 0..15.
int
RTFReadCharSetMap (file, csld)
char *file;
int csld;

Reads a charset map file into the charset map indicatesldyywhich should be
eitherrtfCSGeneral or rtfCSSymbol. Returns non-zero for success, zero otherwise.

void

RTFSetCharSetMap (file, csld)
char *file;

int csld;

Specify the name of the file to be read for the charset map indicatstidoyvhich
should be eithertfCSGeneral or rtfCSSymbol) when auto-charset-file reading is
done. Thiscan be used to verride the dedult charset map namesRTF-
SetChar SetMap() should be called aftaRTFInit() but before you bgin reading an
input.

void
RTFSetCharSet (csld)
int csld;

Switches to the charset mapvan by csld, which should be eithentfCSGeneral or
rtfCSSymbol.

int
RTFGetCharSet ()

Returns the id of the current charset map, eitti€SGeneral or rtfCSSymbol.

Revision date: 5 April 1994 Printed: 5April 1994

RTF Processing @ol -12 - Release 1.10

int
RTFMapChar (c)
int C;
Maps in input character onto a standard character code.
int
RTFStdCharCode (name)
char *name;

Given a dandard character name, returns the standard code corresponding to the
name, or —1 if the name is unkmo.

char *
RTFStdCharName (code)
int code;

Given a dandard character code, returns a string pointing to the standard character
name, oNULL if the code is unknan.

int

RTFReadOutputMap (file, outMap, reinit)

char *file;
char *outMapl[];
int reinit;

Reads an output map from the named file miidap. If reinit is non-zero, the map
is cleared first.See the documeRTF Tools Character Mapping for further details.

Generally the output map needs to be read only once.

void

RTFSetinputName (name)
char *name;

void

RTFSetOutputName (name)
char *name;

These functions tell theT¥ library the input or output file name$hey’re called by
driver code so that writer code can determine the names by c&lirgsetl nput-
Name() and RTFGetOutputName(). Since RTFInit() sets the names tNULL, the
driver should set the names after calliRgFInit() but before calling the writer to tell
it to set up for a ne file.

char *
RTFGetinputName ()

char *
RTFGetOutputName ()

These functions return pointers to the current input and output file names, assuming
the driver has set them upThe caller should maka ©py of the strings returned if it
wants to modify them.

void

RTFMsg (args ...)

Revision date: 5 April 1994 Printed: 5April 1994

Release 1.10 -13 - RTF Processingdol

This function generates a diagnostic messdigiakesprintf()-like aguments.
See the description &TFSetMsgProc().

void
RTFPanic (args ...)

This function generates an error message and terminates the préicégkes
printf()-like aguments.

See the description &TFSetPanicProc().

FILE *

RTFOpenLibFile (name, mode)
char *name;

char *mode;

This function opens a library file and returnBIBRE pointer to it, oNULL if the file
could not be opened.

See the description &TFSetOpenLibFileProc().

void
RTFSetMsgProc (proc)
void (*proc) 0;

This function installs a function for use BTFMsg(); see RTF Tools Trandlator
Architecture for details.

void
RTFSetPanicProc (proc)
void (*proc) 0;

This function installs a function for use BTFPanic(); see RTF Tools Translator
Architecture for details.

void
RTFSetOpenLibFileProc (proc)
FILE *(*proc) 0;

This function installs a function that the library will use to open library filEse
driver must call this when it starts up BTFOpenLibFile() will always returnNULL

The function should taka lbrary file basename and open mode, open the file, and
return theFILE pointer or NULLIf the file could not be found and opened.

Distrib ution Availability

This software may be redistnitted without restriction and used forygmrpose whatsaer.

The RIF Tools distrilution is aailable for anogmousftp access orftp.primatewisc.edu. Look in the
/pub/RTF directory Updates appear there asytecome wailable.

A version of the RF specification is\ailable in this directoryas a hnhex<'ed Word for Macintosh docu-
ment and in RF and PostScript formats.

The softvare and documentation may also be accessed using gopher by connecting to
gopher.primate.wisc.edu or using Wrld Wide Web by connecting tamw.primate.wisc.edu using the URL
http:/mww.primatewisc.edu/. In both cases, look undePrimate Center Softare Archves”.

Revision date: 5 April 1994 Printed: 5April 1994

RTF Processing @ol -14 - Release 1.10

If you do not hae Internet access, send requestsoftware@primate.wisc.edu. Bug reports and questions
should be sent to this address as well.

If you use this softare as the basis for a translater not included in the current collection, please send me a
description that indicates Wwdt may be obtained andll’'add the description to the arghiste.

Revision date: 5 April 1994 Printed: 5April 1994

