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Generally speaking, the Xenomai technology first aims at helping applic-
ation designers relying on traditional RTOS to move as smoothly as pos-
sible to a GNU/Linux-based execution environment, without having to
rewrite their application entirely.

This paper discusses the motivations for proposing this framework, the
general observations concerning the traditional RTOS directing this tech-
nology, and some in-depth details about its implementation.

The Xenomai project has been launched in August 2001. It has merged
in 2003 with the RTAI project [http://www.gna.org/projects/rtai/] to pro-
duce an industrial-grade real-time Free Software platform for GNU/
Linux. Xenomai's emulation technology will notably aim at providing a
comfortable migration path from proprietary RTOS to RTAI.
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1. White paper
1.1. Introduction

A simpler migration path from traditional RTOS to GNU/Linux can favour a wider accept-
ance of the latter as a real-time embedded platform. Providing emulators to mimic the tra-
ditional RTOS APIs is one of the initiative the free software community can take to fill the
gap between the very fragmented traditional RTOS world and the GNU/Linux world, in
order for the application designers relying on traditional RTOS to move as smoothly as
possible to the GNU/

There is a lack of common software framework for developing these emulators, whereas
the behavioural similarities between the traditional RTOS are obvious.

The Xenomai technology aims at fulfilling this gap, by providing a consistent architecture-neut-
ral and generic emulation layer taking advantage of these similarities. It is also committed
to provide an increasing set of traditional RTOS emulators built on top of this layer.

Xenomai relies on the common features and behaviours found between many embedded
traditional RTOS, especially from the thread scheduling and synchronization standpoints.
These similarities are exploited to implement a nucleus exporting a set of generic services.
These services grouped in a high-level interface can be used in turn to implement emula-
tion modules of real-time application programming interfaces, which mimic the corres-
ponding real-time kernel APIs.

A similar approach was used for the CarbonKernel
[http://savannah.gnu.org/projects/carbonkernel/] project [1] in the simulation field, in
which RTOS simulation models are built on top of a generic virtual RTOS based on event-
driven techniques.

1.2. Porting traditional RTOS-based applications
to GNU/Linux

The idea of using GNU/Linux as an embedded system with real-time capabilities is not
novel. The reader can refer to Jerry Epplin's article in the October 97 issue of Embedded
Systems Programming for a discussion about GNU/Linux potential in the embedded field
[2].

Throughout this document, we will use the expression source RTOS to indicate the tradi-
tional real-time operating from which the application is to be ported, and target OS to in-
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dicate GNU/Linux or any other free operating system to which the application could be
ported.

1.2.1. Limited high-level code modification

Keeping the initial design and implementation of a hard real-time application when at-
tempting to port it to another architecture is obviously of the greatest interest. Reliability
and performance may have been obtained after a long, complex and costly engineering
process one does not want to compromise. Consequently, the best situation is to have the
closest possible equivalence between the source and destination RTOS programming inter-
faces, as far as both the syntax and the semantics are concerned.

An illustration of this can be taken from the support of a priority inheritance protocol [3]
by the mutual exclusion services. These services allow concurrent threads to protect them-
selves from race conditions that could occur into critical sections of code. The purpose of
this discussion is not to argue whether relying on priority inheritance for resolving priority
inversion problems is a major design flaw or a necessary safety belt for a real-time applica-
tion, but only to emphasize that any cases, if this feature is used in the source RTOS, but
not available from the target OS, the resource management strategy must be reevaluated
for the application, since priority inversion risks will exists.

1.2.2. RTOS behavioural compatibility

During the past years, major embedded RTOS, such as VRTX, VxWorks, pSOS+ and a
few others, have implemented a real-time kernel behaviour which has become a de facto
standard, notably for thread scheduling, inter-thread synchronization, and asynchronous
event management. To illustrate this, let us talk about a specific concern in the interrupt
service management.

A well-known behaviour of such RTOS is to lock the rescheduling procedure until the out-
er interrupt service routine (or ISR) - called first upon possibly nested interrupts - has ex-
ited, after which a global rescheduling is finally stated. This way, an interrupt service
routine can always assume that no synchronous thread activity may run until it has exited.
Moreover, all changes impacting the scheduling order of threads, due to actions taken by
any number of nested ISRs (e.g. signaling a synchronization object on which one or more
threads are pending) are considered once and conjunctively, instead of disjunctively.

For instance, if a suspended thread is first resumed by an ISR, then forcibly suspended
later by another part of the same ISR, the outcome will be that the thread will not run, and
remain suspended after the ISR has exited. In the other hand, if the RTOS sees ISRs as
non-specific code that can be preempted by threads, the considered thread will be given the
opportunity to execute immediately after it is resumed, until it is suspended anew. Obvi-
ously, the respective resulting situations won't be identical.

1.2.3. Reevaluation of the real-time constraints

Making GNU/Linux a hard real-time system is currently achieved by using a co-kernel ap-
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proach which takes control of the hardware interrupt management, and allows running
real-time tasks seamlessly aside of the hosting GNU/Linux system [4]. The 'regular' Linux
kernel is eventually seen as a low-priority, background of the small real-time executive.
The RTLinux [http://www.rtlinux.org] project is representative of this technical path.
However, this approach has a major drawback when it comes to port complex applications
from a foreign software platform: since the real-time tasks run outside the Linux kernel
control, the GNU/Linux programming model cannot be preserved when porting these ap-
plications. The result is an increased complexity in redesigning and debugging the ported
code.

In some cases, choosing a traditional RTOS to run an embedded application has been ini-
tially dictated by the memory constraints imposed by the target hardware, instead of actual
real-time constraints imposed by the application itself. Since embedded devices tend to ex-
hibit ever increasing memory and processing horsepower, it seems judicious to reevaluate
the need for real-time guarantee when considering the porting effort to GNU/Linux on a
new target hardware. This way, the best underlying software architecture can be selected.
In this respect, the following, the following criteria need to be considered:

• Determinism and criticality.

What is the worst case interrupt and dispatch latencies needed ?

Does a missed deadline lead to a catastrophic failure ?

• Programming model

What is the overall application complexity, provided taht the highest the complexity,
the greatest the need for powerful debugging aid and monitoring tools.

• Is there a need need for low-level hardware control ?

Is the real-time activity coupled to non real-time services, such as GUI or databases, re-
quiring sophisticated communications with the non real-time world ?

1.2.4. Some existing solutions

In order to get whether hard or soft real-time support, several GNU/Linux-based solutions
exist [5][6]. It is not the purpose of this paper to present them all exhaustively. We will
only consider a two fold approach based on free software solutions which is likely to be
suited for many porting taskings, depending on the actual real-time constraints imposed by
the application.

1.2.4.1. Partial rewriting using a real-time GNU/Linux extension

Real-time enabling GNU/Linux using RTAI. Strictly speaking Linux/RTAI [7] is not a real-
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time operating system but rather a real-time Linux kernel extension, which allows running
real-time tasks seamlessly aside of the hosting GNU/Linux system. The RTAI co-kernel
shares hardware interrupts and system-originated events like traps and faults with the
Linux kernel using the Adeos [http://www.adeos.org/] virtualization layer, which in turn
ensures RTAI low interrupt latencies. The native RTAI API provides the applications a
wealth of useful services, including counting semaphores, POSIX 1003.1-1996 facilities
such as pthreads, mutexes and condition variables, also adding remote procedure call facil-
ity, mailboxes, and precision timers. Most services are symmetrically available from kernel
module and user-space programs.

RTAI 2.x and 3.x provide a mean to execute hard real-time tasks in user-space context
(x86 only), but still outside the Linux kernel control, which is best described as running
'user-space kernel modules'. This feature, namely LXRT, is a major step toward a simpler
migration path from traditional RTOS, since programming errors occuring within real-time
tasks don't jeopardize the overall GNU/Linux system sanity, at the expense of a few micro-
seconds more latency.

Ad hoc services emulation. A first approach consists in emulating each real-time facility
needed by the application using a combination of the RTAI services. An ad hoc wrapping
interface has to be written to support the needed function calls. The benefit of the wrapping
approach lies in the limited modifications made to the original code. However, some RTAI
behaviours may not be compliant with the source operating system's. For the very same
reason, conflicts between the emulated and native RTAI services may occur in some way.

Complete port to RTAI. A second approach consists in fully porting the application over
the native RTAI API. In such a case, RTAI facilities are globally substituted from the facil-
ities from the source RTOS. This solution brings improved consistency at the expense of a
possible large-scale rewriting of the application, due to some fundamental behavioural dif-
ferences that may exist between the traditional RTOS and the native RTAI interface.

1.2.4.2. Unconstrained user-space emulations

A few traditional RTOS emulators exists in the free software world. There are generally
designed on top of the GNU/Linux POSIX 1003.1-1996 layer, and allow to emulate the
source RTOS API in a user-space execution context, under the control of the Linux kernel.

Once one of the most proeminent effort in this area used to be the Legacy2linux project
[8]. This project, sponsored by Montavista Software, aimed at providing ["a series of
Linux-resident emulators for various legacy RTOS kernels."] Just like Xenomai, [these
emulators are designed to ease the task of porting legacy RTOS code to an embedded
Linux environment".] Two emulators have been made available by this project, respect-
ively mimicking the APIs of WindRiver's pSOS+ and VxWorks real-time operating sys-
tems. However, this project has stalled due to a lack of maintenance and contribution.

The benefits of this approach is mainly to keep the development process in the GNU/Linux
user-space environment, instead of moving to a rather 'hostile' kernel/supervisor mode con-
text. This way, the rich set of existing tools such as debuggers, code profilers, and monitors
usable in this context are immediatly available to the application developer. Moreover, the
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standard GNU/Linux programming model is preserved, allowing the application to use the
full set of of facilities existing in the user space (e.g. full POSIX support, including inter-
process communication). Last but not least, programming errors occuring in this context
don't jeopardize the overall GNU/Linux system stability, unlike what can happen if a bug
is encountered on behalf of a hard real-time RTAI task which could cause serious damages
to the running Linux kernel.

However, we can see at least three problems in using these emulators, depending on the
application constraints:

• First, the emulated API they provide is usually incomplete for an easy port from the
source RTOS. In other words, only a limited syntactic compatibility is available.

• Second, the exact behaviour of the source RTOS is not reproduced for all the function-
al areas. In other words, the semantic compatibility might not be guaranteed.

• These emulators don't share any common code base for implementing the fundamental
real-time behaviours, even so both pSOS+ and VxWorks share most of them. The res-
ulting situation leads to redundant implementation efforts, without any benefit one can
see in code mutualization.

• And finally, even combined to the latest Linux 2.6 features like fine-grain kernel pree-
mption and low latency efforts, these emulators cannot deliver deterministic real-time
performance.

1.3. A common emulation framework

1.3.1. Common traditional RTOS behaviours

In order to build a generic and versatile framework for emulating traditional RTOS, we
chose to concentrate on a set of common behaviours they all exhibit. A limited set of spe-
cific RTOS features which are not so common, but would be more efficiently implemented
into the nucleus than into the emulators, has also been retained. The basic behaviours se-
lected cover four distinct fields:

1.3.1.1. Multi-threading

Multi-threading provides the fundamental mechanism for an application to control and re-
act to multiple, discrete external events. The nucleus provides the basic multi-threading en-
vironment.

Thread states. The nucleus has to maintain the current state of each thread in the system. A
state transition from one state to another may occur as the result of specific nucleus ser-
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vices called by the RTOS emulator. The fundamental thread states defined by the nucleus
are:

• DORMANT and SUSPENDED states are cumulative, meaning that the newly created
thread will still remain in a suspended state after being resumed from the DORMANT
state.

• PENDING and SUSPENDED states are cumulative too, meaning that a thread can be
forcibly suspended by another thread or service routine while pending on a synchroniz-
ation resource (e.g. semaphore, message queue). In such a case, the resource is dis-
patched to it, but it remains suspended until explicitely resumed by the proper nucleus
service.

• PENDING and DELAYED states may be combined to express a timed wait on a re-
source. In such a case, the time the thread can be blocked is bound to a limit enforced
by a watchdog.

Scheduling policies. By default, threads are scheduled according to a fixed priority value,
using a preemptive algorithm. There is also a support for round-robin scheduling among a
group of threads having the same priority, allowing them to run during a given time slice,
in rotation. Moreover, each thread undergoing the round-robin scheduling is given an indi-
vidual time quantum.

Priority management. It is possible to use whether an increasing or decreasing thread pri-
ority ordering, depending on an initial configuration. In other words, numerically highest
priority values could whether represent highest or lowest scheduling priorities depending
on the configuration choosen. This feature is motivated by the existence of this two pos-
sible ordering among traditional RTOS. For instance, VxWorks, VRTX, ThreadX and
Chorus O/S use a reversed priority management scheme, where the highest the value, the
lowest the priority. pSOS+ instead uses the opposite ordering, in which the highest the
value, the highest the priority.

Running thread. At any given time, the highest priority thread which has been ready to run
for the longuest time among the currently runnable threads (i.e. not currently blocked by
any delay or resource wait) is elected to run by the scheduler.

Preemption. When preempted by a more prioritary thread, the running thread is put at front
of the ready thread queue waiting for the processor resource, provided it has not been sus-
pended or blocked in any way. Thus it is expected to regain the processor resource as soon
as no other prioritary activity (i.e. a thread having a higher priority level, or an interrupt
service routine) is eligible for running.

Manual round-robin. As a side-effect of attempting to resume an already runnable thread
or the running thread itself, this thread is moved at the end of its priority group in the ready
thread queue. This operation is functionally equivalent to a manual round-robin schedul-

Xenomai - Implementing a RTOS emula-
tion framework on GNU/Linux

7



ing.

Even if they are not as widespread as those above in traditional RTOS, the following fea-
tures are also retained for the sake of efficiency in the implementation of some emulators:

Priority inversion. In order to provide support for preventing priority inversion when using
inter-thread synchronization services, the priority inheritance protocol is supported.

Signaling. A support for sending signals to threads and running asynchronous service
routines to process them is available. The asynchronous service routine is run on behalf of
the signaled thread context the next time it returns from the nucleus level of execution, as
soon as one or more signals are pending.

Disjunctive wait. A thread is able to wait in a disjunctive manner on multiple resources.
The nucleus unblocks the thread when at least one among the pended resources is avail-
able.

1.3.1.2. Thread synchronization

Traditional RTOS provide a large spectrum of inter-thread communication facilities in-
volving thread synchronization, such as semaphores, message queues, event flags or mail-
boxes. Looking at them closely, we can define the characteristics of a basic mechanism
which will be usable in turn to build these facilities.

Pending mode. The thread synchronization facility provides a mean for threads to pend
either by priority or FIFO ordering. Multiple threads should be able to pend on a single re-
source.

Priority inheritance protocol. In order to prevent priority inversion problems, the thread
synchronization facility implements a priority inheritance protocol in conjunction with the
thread scheduler. The implementation allows for supporting the priority ceiling protocol as
a derivative of the priority inheritance protocol.

Time-bounded wait. The thread synchronization facility provides a mean to limit the time a
thread waits for a given resource using a watchdog.

Forcible deletion. It is legal to destroy a resource while threads are pending on it. This ac-
tion resumes all waiters atomically.

1.3.1.3. Interrupt management

Since the handling of interrupts is one of the least well defined areas in RTOS design, the
nucleus focuses on providing a simple mechanism with sufficient hooks for specific imple-
mentations to be built onto according to the emulated RTOS flavour.

Nesting. Interrupt management code is reentrant in order to support interrupt nesting
safely.
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Atomicity. Interrupts are associated with dedicated service routines called ISRs. In order
for these routines not to be preempted by thread execution, the rescheduling procedure is
locked until the outer ISR has exited (i.e. in case of nested interrupts).

Priority. ISRs is always considered as prioritary over thread execution. Interrupt prioritiza-
tion is left to the underlying hardware.

1.3.1.4. Time management

Traditional RTOS usually represent time in units of ticks. These are clock-specific time
units and are usually the period of the hardware timer interrupt, or a multiple thereof. Since
it needs to support both periodic and aperiodic time sources, the nucleus transparently
switches from periodic jiffies to time-stamp counter values depending on the current timer
operating mode.

Software timer support. A watchdog facility is provided to manage time-bound operations
by the nucleus.

Absolute and relative clock. The nucleus keeps a global clock value which can be set by
the RTOS emulator as being the system-defined epoch.

Some RTOS like pSOS+ also provide support for date-based timing, but conversion of
ticks into conventional time and date units is an uncommon need that should be taken in
charge by the RTOS emulator itself.

1.3.2. An architecture-neutral abstraction layer

After having selected the basic behaviours shared by traditional RTOS, we have imple-
mented them in a nucleus exporting a few service classes. These generic services will then
serve as a founding layer for developing each emulated RTOS API, according to their own
flavour and semantics.

In order for this layer to be architecture neutral, the needed support for hardware control
and real-time capabilities will be obtained from an underlying host software architecture,
through a rather simple standardized interface. Thus, porting the nucleus to a new real-time
architecture will solely consist in implementing this low-level interface for the target plat-
form.

1.3.3. Real-time capabilities

The host software architecture is expected to provide the primary real-time capabilities to
the RTOS abstraction layer. Basically, the host real-time layer must handle at least the fol-
lowing tasks:

• Start/stop dispatching on request the external interrupts to a specialized handler ;
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• Provide a mean to mask and unmask interrupts ;

• Provide a mean to create new threads of control in their simplest form ;

• Provide support for periodic and aperiodic interrupt sources used in timer management
;

• Provide support for allocating chunks of non-pageable memory.

1.3.4. Benefits

Xenomai aims at helping application designers relying on traditional RTOS to move as
smoothly as possible to a GNU/Linux-based execution environment, without having to re-
write their applications entirely. Aside of the advantages of using GNU/Linux as an em-
bedded system, the benefits expected from the described approach is mainly a reduced
complexity in designing new RTOS emulations. The architecture-neutral abstraction layer
provides the foundation for developing accurate emulations of traditional RTOS API, sav-
ing the burden of implementing each time their fundamental real-time behaviours. Since
the abstraction layer also favours code sharing and mutualization, we can expect the RTOS
emulations to take advantage of them in terms of code stability and reliability.

1.4. Nucleus description
RTOS emulations are software modules which connect to the nucleus through the pod ab-
straction. The pod is responsible for the critical housekeeping chores, and the real-time
scheduling of threads.

1.4.1. Multi-threading support

The nucleus provides thread object (xnthread) and pod (xnpod) abstractions which exhibit
the following characteristics:

• Threads are scheduled according to a 32bit integer priority value, using a preemptive
algorithm. Priority ordering can be increasing or decreasing depending on the pod con-
figuration.

• A thread can be either waiting for initialization, forcibly suspended, pending on a re-
source, delayed for a count of ticks, ready-to-run or running.

• Timed wait for a resource can be bounded by a per-thread watchdog.

• The priority inheritance protocol is supported to prevent thread priority inversion when
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it is detected by a synchronization object.

• A group of threads having the same base priority can undergo a round-robin schedul-
ing, each of them being given an individual time quantum.

• A support for sending signals to threads and running asynchronous service routines
(ASR) to process them is built-in.

• FPU support can be optionally enabled or disabled for any thread at creation time.

• Each thread can enter a disjunctive wait on multiple resources.

1.4.2. Basic synchronization support

The nucleus provides a synchronization object abstraction (xnsynch) aimed at implement-
ing the common behaviour of RTOS resources, which has the following characteristics:

• Support for the priority inheritance protocol, in order to prevent priority inversion
problems. The implementation is shared with the scheduler code.

• Support for time-bounded wait and forcible deletion with waiters awakening.

1.4.3. Timer and clock management

The nucleus needs a time source to provide the time-related services to the upper inter-
faces. The timer hardware so that a user-defined routine is called according to a given fre-
quency. On architectures that provide a oneshot-programmable time source, the system
timer can operate either in aperiodic or periodic mode. Using the aperiodic mode still al-
lows to run periodic nucleus timers over it: the underlying hardware will simply be repro-
grammed after each tick by the timer manager using the appropriate interval value.

Each incoming clock tick is announced to the timer manager which fires in turn the
timeout handlers of elapsed timers. The scheduler itself uses per-thread watchdogs to wake
up threads undergoing a bounded time wait, while waiting for a resource availability or be-
ing delayed.

A special care has been taken to offer bounded worst-case time for starting, stopping and
maintaining timers. The timer facility is based on the timer wheel algorithm[11] described
by Adam M. Costello and George Varghese, which is implemented in the NetBSD operat-
ing system for instance.

1.4.4. Basic memory allocation
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Xenomai's nucleus provides dynamic memory allocation support with real-time guarantee,
based on McKusick's and Karels' proposal for a general purpose memory allocator[10].
Any number of memory heaps can be maintained dynamically by Xenomai, only limited
by the actual amount of system memory.
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