
USING SCILAB/SCICOS WITH RTAI-LAB

Roberto Bucher
University of Applied Sciences of Southern Switzerland

Galleria 2, Manno 6928, C H

roberto.bucher@supsi.ch

1 Introduction

Computer Aided Control System Design (CACSD) subsumes a broad variety
of computational tools and environments for control system design, real time
simulation, with and without hardware in the loop, making the best use of
high desktop computer power, graphical capabilities and ease of interaction
with low hardware cost. Integrated CACSD software environments allow an
iteractive control system design process to be automated with respect to multi-
objective performances evaluation and multi-parameter synthesis tuning. Visual
decision support provides the engineer with the clues for interactively directing
an automated search process to achieve a well balanced design under many
conflicting objectives and constraints. Local/remote on line data down/upload
makes it possible a seamless interaction with the control system, in order to
supervise its operation and to adapt it to changing operational needs.

2 Installing the RTAI add-ons for Scilab/Scicos

2.1 Installing RTAI-Lab

2.1.1 Getting the files and the libraries

First of all you need RTAI-Lab. RTAI-Lab is an open project integrated in
the Linux RTAI distribution. In order to run RTAI-Lab you need the following
packages:

Linux RTAI download the last stable release from the RTAI homepage www.rtai.org

Mesa libraries download this libraries using the following steps:

1. Download MesaLib-5.0.1.tar.gz (from www.mesa3d.org) in a tempo-
rary directory (/tmp)

2. Untar the archive : tar xvzf MesaLib-5.0.1.tar.gz

3. cd /tmp/Mesa-5.0.1

4. ./configure –prefix=/usr/local –enable-static



5. make

6. make install

Compile and install the EFLTK package

1. Download EFLTK from CVS in a temporary directory (/tmp)
cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/ede login
(press ENTER when CVS asks for password)
cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/ede co efltk

2. cd /tmp/efltk

3. ./build.gcc –prefix=/usr/local –enable-xdbe –enable-opengl –enable-
threads

4. make install

5. /sbin/ldconfig

2.1.2 Installing RTAI and RTAI-Lab

Follow these steps in order to installa Linux RTAI

• Kernel

1. Get a ”vanilla” kernel from www.kernel.org

2. Unpack the kernel

3. Unpack Linux RTAI

4. Patch the kernel with the adeos patch (patch -p1 ¡ ¡rtaidir¿/rtai-
core/arch/i386/patches/¡kernel-version¿.patch

5. make xconfig

6. configure the kernel

7. make bzImage

8. make modules

9. make modules install

10. make install

11. fit lilo or grub for this new kernel

• install COMEDI : install comedi and comedilib from www.comedi.org

• install RTAI

1. Go to the RTAI directory

2. make xconfig

3. Check ”COMEDI support under LXRT” in the Add-ons submenu
and give the directory where you installed comedilib

4. Check ”RTAI-Lab” under the RTAI-Lab submenu and add the direc-
tory where you installed the efltk libraries (normally ”/usr/local”)

5. save and exit from xconfig

6. run ”make” and ”make install”

• IMPORTANT: Add ”/usr/realtime/bin” in your PATH environment vari-
able, by modify the ”/etc/profile” file or the ”.bashrc” in the user direcory



2.1.3 Installing Scilab

The first step is to download and install the full source Scilab-3.0 release from
”www.scilab.org”; it contains Scicos already. Install scicos:

1. Go in the directory ”/usr/local”

2. Unpack Scilab

3. cd scilab-3.0

4. ./configure

5. make all

2.1.4 Installing the RTAI add-ons for Scilab

Now follow these steps to properly install all the Scilab/Scicos add-ons for RTAI-
Lab:

1. become superuser

2. go in the ”macros” directory found here

3. modify eventually in the file ”Makefile” the line

SCILAB_DIR = /usr/local/scilab-3.0

to fit your SCILAB installation

4. run ”make install”

Each user who want to work with the Scilab/Scicos RTAI add-ons has to modify
his own ”.scilab” file. This operation can be done running as normal user ”make
user” in this ”macros” directory. This command add the following lines to the
user ”.scilab” file:

load(’SCI/macros/RTAI/lib’)

%scicos_menu($+1)=[’RTAI’,’RTAI CodeGen’]

scicos_pal($+1,:)=[’RTAI-Lib’,’SCI/macros/RTAI/RTAI-Lib.cosf’]

These lines add the menu ”RTAI→CodeGen” to the scicos window and the new
RTAI-Lib.cosf library with the RTAI specific blocks to the scicos palette.
At this point you are ready to generate code for RTAI, using the new menu
”RTAI→RTAICodeGen” in the scicos window.

3 A simple example

3.1 Scheme

In the following, a simple example will be analized. The system is represented
by a transfer function

Gs(s) =
20

s2 + 4s



with unity feedback,
The system has been implemented as discrete-time transfer function

Gz(z) = 10−6
9.987z + 9.973

z2
− 1.996z + 0.996

with a sampling time of 1ms. Different signals are sent to scopes, meters, and
leds.
The model is saved with the name ”test”.

3.2 Implementation under Scilab

3.2.1 Designing the scheme

First of all we have to design the system using scicos. We can get the different
blocks from the scicos palettes in order to obtain the desired system. By the
next step we have to integrate some I/O into our scheme. We implemented
three methods:

• I/O can be choosed from a specific RTAI Library

• I/O were configured using an external application

• I/O were configured by hand

These methods can be mixed together.

3.2.2 Implementing I/O using the RTAI palette

Figure 1 represents the Scicos scheme of the example in this case.

FIGURE 1: Scicos scheme

It is important to give to each I/O input and output a different Port nr:



• RTAI scope: 1

• RTAI meter: 2

• RTAI led: 3

• RTAI square: 1

In order to generate the code this scheme must be transformed into a ”Super
Block” which can be used to generate the code. The menu ”Diagramm” ”Region
to Super Block” allows to select a part of the scheme and to put it into a ”Super
Block”. We can access to the Super Block scheme simply by clicking on it. A
good idea is to open the ”Super Block” and to rename it (”Diagram” ”Rename”)
to ”test”. This will be the name of the generated model and of the directory
where the generated files are stored.
Now we can simply choose the menu ”RTAI” ”RTAICodeGen” to generate and
compile the realtime code.
A dialog Box asks about some compilation parameters: the most important are

• the sampling time (the proposed value have been read from the clock block
connected to the superblock).

• the name of the configuration file (default is ”config”).

After ”OK” scicos performs the code generation and the compilation of the
generated modules.

3.2.3 Implementing I/O using the external utility

Figure 2 represents the Scicos scheme of the example.

FIGURE 2: Scicos scheme

In order to generate the code this scheme must be transformed into a ”Super
Block” which can be used to generate the code. The menu ”Diagramm” ”Region
to Super Block” allows to select a part of the scheme and to put it into a ”Super
Block”. We can access to the Super Block scheme simply by clicking on it. A
good idea is to open the ”Super Block” and to rename it (”Diagram” ”Rename”)



to ”test”. This will be the name of the generated model and of the directory
where the generated files are stored.
Now we can simply choose the menu ”RTAI” ”RTAICodeGen” to generate and
compile the realtime code.
After the first dialog box you are asked about the creation of the IO configuration
file. There are 3 possible choices here:

Yes scicos open ”xgenconfig” to create or modify the IO configuration file,
generates the <model io>.c file and generates the standalone executable.

No scicos try to use an already created IO configuration file to genearate the
<model io>.c file or leave it empty, and then performs the compilation of
the standalone executable.

Cancel scicos stops the code generation.

If you give ”Yes” a graphical application is open and you can configure the
inputs and the outputs of the scheme. In this case you can give the following
I/O:

• Input port 1: square

– Amplitude: 1

– Period: 10

– Pulse width: 5

– Bias: 0

– Delay: 0

• Output port 1: rtai scope

– Number of signals: 2

– Scope name: IO

• Output port 2: rtai scope

– Number of signals: 1

– Scope name: U

• Output port 3: rtai led

– Number of leds: 1

– Led name: LED

• Output port 4: rtai meter

– Meter name: METER

All this operations can be performed in a linux shell too:

xgenconfig a graphical environment to create IO configuration files. Simply
run ”xgenconfig -iN -oM -f<config name> to create the <config name>
configuration file with N input and M output.

Simply run ”gen io < mode > <config name> to create the <model io>.c file
and compile the executable ”< model >” with the command

make -f <model>_Makefile <model>



4 I/O Blocks

4.1 Basics

I/O blocks are implemented in a library (libsciblk.a). There are 3 kind of I/O
blocks:

1. Blocks which can be connected to an input or an output port (ex. rtai comedi data)

2. Blocks which can be connected only to an input port (ex. step)

3. Blocks which can be connectes only to an output port (ex. rtai scope)

For each block in the config file the following (block dependent) items have been
defined:

• the type (example: rtai scope)

• input (inp) or output (out) port (where the block is connected)

• the port number to which the block is connected

• an identifier, a channel number or a maximal number of channels/signals
for this block

• a name

• 5 parameters

4.2 Available blocks

The following IO Blocks have been implemented:

sinus creates a sinus input signal

square creates a square inpit signal

step creates a step input signal

rtai scope sends signal(s) to the Rtai-Lab scope widget

rtai led sends signal(s) to the Rtai-Lab leds widget

rtai meter sends signal to the Rtai-Lab meter widget

mem allows to connect an output port to an input port of the scicos modul

rtai comedi data allows to connect COMEDI drivers for analog signals to the
scicos modul (input or output)

rtai comedi dio allows to connect COMEDI drivers for digital signals to the
scicos modul (input or output)

extdata gets the data from a file and creates a periodic input signal

pcan allows to connect the scicos modul to a Maxon driver through a bus can
using a Peaks epp-dongle



cioquad4 build an input signal getting data from a Computer Boards CIO-
QUAD4 digital encoder card

mbx receive if asynchronous receiver from a named mailbox (not blocking)
for distributed systems

mbx receive receiver from a named mailbox (blocking) for distributed systems

mbx ovrwr send sender to a named mailbox for distributed systems

These blocks are implemented both in the Scicos palette RTAI-Lib.cosf and for
the xgenconfig utility.
The tables 1 . . . 17 show the parameters description of the IO Block.

io inp
port port Nr.
ch not used
name not used
sParam not used yet
p1 Amplitude
p2 Frequency
p3 Phase
p4 Bias
p5 Delay

Table 1: Parameters for the IO block: sinus

io inp
port port Nr.
ch not used
name not used
sParam not used yet
p1 Amplitude
p2 Period
p3 Impulse width
p4 Bias
p5 Delay

Table 2: Parameters for the IO block: square

5 Implementation of new user blocks

5.1 Implementing the code for a IO device

Different tools facilitate the implementation of new blocks. In order to imple-
ment new drivers some skeletons are provided:

• ”template.c”

• ”devtmpl.h”



io inp
port port Nr.
ch not used
name not used
sParam not used yet
p1 Amplitude
p2 Delay
p3 not used
p4 not used
p5 not used

Table 3: Parameters for the IO block: step

io out
port port Nr.
ch number of signals
name Scope name
sParam not used yet
p1 not used
p2 not used
p3 not used
p4 not used
p5 not used

Table 4: Parameters for the IO block: rtai scope

Using the command

gen_dev <model>

a file ”<model>.c” will be created. This file contains all the needed functions
to implement the driver as ”input” and ”output” driver. The utility ”gen dev”
fills the file ”devices.h” too.
The file ”devstruct.h” contains the description of the structure used to store the
block specific datas.

typedef struct devStr{

int nch;

char IOName[20];

char sName[20];

char sParam[20];

double dParam[5];

int i1;

long l1;

long l2;

void * ptr;

}devStr;

A structure for input (inpDevStr) and a structure for output (outDevStr) are
provided in ”rtmain.c”. Basically, the channel information can be stored under
the field ”nch”, the name under ”sName” and the 5 parameters p1...p5 into the



io out
port port Nr.
ch number of leds (1 . . . 16)
name Led name
sParam not used yet
p1 not used
p2 not used
p3 not used
p4 not used
p5 not used

Table 5: Parameters for the IO block: rtai led

io out
port port Nr.
ch not used
name Meter name
sParam not used yet
p1 not used
p2 not used
p3 not used
p4 not used
p5 not used

Table 6: Parameters for the IO block: rtai meter

field ”dParam”. The field IOName is used to store the name of the IO Block
needed by the online parameter modification.
The function interfaces in the generated file reflect the call implemented in
<model io.c> after calling ”gen io”. Now the user can simply implement the
code for the IO block.

5.2 Create the new library file

In order to generate the new library file with the new implemented IO Block,
the user must modify the ”Makefile.am” file, adding <model>.c to the list
of the files to be compiled (libsciblk a SOURCES). The user have to launch
”automake rtai-lab/scilab/devices/Makefile” from the RTAI root directory, fol-
lowed by ”./config.status”. Now he can run ”make” and ”make install’ in the
scilab/devices directory. The libsciblk.a file will be created and copied in the
library directory.

5.3 Adapting the ”genconfig” and ”xgenconfig” utility

The ”genconfig” and ”xgenconfig” utilities must now be modified to include the
question for the new device parameters. This can be done by modifying the
file ”config data.h”, which contains two matrices of strings with the different
questions. Simply increment the number of blocks (input or output or both)
changing the values of the two ”#define”, and add a line to the repectives matrix
providing the following strings:



io inp or out
port port Nr.
ch id (0,1,2,...)
name not used
sParam not used yet
p1 not used
p2 not used
p3 not used
p4 not used
p5 not used

Table 7: Parameters for the IO block: mem

io inp or out
port port Nr.
ch ch or number of signals (device dependent)
name ”comediX”
sParam not used yet
p1 range (device dependent)
p2 aref (device dependent)
p3 not used
p4 not used
p5 not used

Table 8: Parameters for the IO block: rtai comedi data

1. the name of the block

2. the question to the ”nch” parameter

3. the question to the ”sName” parameter

4. the question to the ”sParam” parameter

5. the questions to the ”p1”...”p5” parameters

Now we can simply run ”make” and ”make install’ to generate and install the
new ’xgenconfig” files.



io inp
port port Nr.
ch ch or number of signals (device dependent)
name ”comediX”
sParam not used yet
p1 not used
p2 not used
p3 not used
p4 not used
p5 not used

Table 9: Parameters for the IO block: rtai comedi dio

io out
port port Nr.
ch ch or number of signals (device dependent)
name ”comediX”
sParam not used yet
p1 threshold
p2 not used
p3 not used
p4 not used
p5 not used

Table 10: Parameters for the IO block: rtai comedi dio

io inp
port port Nr.
ch number of values
name file name
sParam not used yet
p1 not used
p2 not used
p3 not used
p4 not used
p5 not used

Table 11: Parameters for the IO block: extdata

io inp
port port Nr.
ch not used
name CAN id (hex)
sParam not used yet
p1 Proportional driver gain (PI)
p2 Integral driver gain (PI)
p3 not used
p4 not used
p5 not used

Table 12: Parameters for the IO block: pcan



io out
port port Nr.
ch not used
name CAN id (hex)
sParam not used yet
p1 Proportional driver gain (PI)
p2 Integral driver gain (PI)
p3 not used
p4 not used
p5 not used

Table 13: Parameters for the IO block: pcan

io inp
port port Nr.
ch modul number
name Base Card Address
sParam not used yet
p1 Resolution
p2 Precision (1,2,4)
p3 Rotation (-1,+1)
p4 Initial (0) or continous reset (1)
p5 not used

Table 14: Parameters for the IO block: cioquad4

io inp
port port Nr.
ch number of signals
name IP Address
sParam MBX Name
p1 not used
p2 not used
p3 not used
p4 not used
p5 not used

Table 15: Parameters for the IO block: mbx receive if



io inp
port port Nr.
ch number of signals
name IP Address
sParam MBX Name
p1 not used
p2 not used
p3 not used
p4 not used
p5 not used

Table 16: Parameters for the IO block: mbx receive

io out
port port Nr.
ch number of signals
name IP Address
sParam MBX Name
p1 not used
p2 not used
p3 not used
p4 not used
p5 not used

Table 17: Parameters for the IO block: mbx ovrwr send


