GNU Readline Library

Edition 5.0, for Readline Library Version 5.0.
January 2004

Chet Ramey, Case Western Reserve University
Brian Fox, Free Software Foundation

This manual describes the GNU Readline Library (version 5.0, 28 January 2004), a library
which aids in the consistency of user interface across discrete programs which provide a
command line interface.

Copyright (© 1988-2004 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

Published by the Free Software Foundation
59 Temple Place, Suite 330,

Boston, MA 02111-1307

USA

Table of Contents

1 Command Line Editing 1
1.1 Introduction to Line Editing 1
1.2 Readline Interaction.............. 1

1.2.1 Readline Bare Essentials 1
1.2.2 Readline Movement Commands.................. 2
1.2.3 Readline Killing Commands 2
1.2.4 Readline Arguments 3
1.2.5 Searching for Commands in the History 3
1.3 Readlinelnit File 4
1.3.1 Readline Init File Syntax........................ 4
1.3.2 Conditional Init Constructs...................... 9
1.3.3 SampleInit File.............. 10
1.4 Bindable Readline Commands........................... 13
1.4.1 Commands For Moving 13
1.4.2 Commands For Manipulating The History 13
1.4.3 Commands For Changing Text 14
1.4.4 Killing And Yanking 16
1.4.5 Specifying Numeric Arguments 17
1.4.6 Letting Readline Type For You................. 17
1.4.7 Keyboard Macros.................iiii... 17
1.4.8 Some Miscellaneous Commands................. 18
1.5 ReadlineviMode i 19

2 Programming with GNU Readline......... 21
2.1 BasicBehavior............. ... 21
2.2 Custom Functions............. i, 22

2.2.1 Readline Typedefs......... 22
2.2.2 Writing a New Function........................ 23
2.3 Readline Variables 24
2.4 Readline Convenience Functions......................... 28
2.4.1 Naming a Function 28
2.4.2 Selectinga Keymap........................ .. 28
2.4.3 Binding Keys............ o 29
2.4.4 Associating Function Names and Bindings....... 31
2.4.5 Allowing Undoingoiiiiiii .. 31
246 Redisplayo 32
2.4.7 Modifying Text....... ... 34
2.4.8 Character Input 34
2.4.9 Terminal Management 35
2.4.10 Utility Functions 35
2.4.11 Miscellaneous Functions....................... 36
2.4.12 Alternate Interface 37
2.4.13 A Readline Example.......................... 38

ii GNU Readline Library

2.5 Readline Signal Handling 39
2.6 Custom Completers 41
2.6.1 How Completing Works 41
2.6.2 Completion Functions.......................... 42
2.6.3 Completion Variables.......................... 43
2.6.4 A Short Completion Example................... 47
Appendix A Copying This Manual 57
A.1 GNU Free Documentation License 57
A.1.1 ADDENDUM: How to use this License for your
documents 63
Concept Indexoiiiiiinn... 65

Function and Variable Index.................. 67

Chapter 1: Command Line Editing 1

1 Command Line Editing

This chapter describes the basic features of the GNU command line editing interface.
1.1 Introduction to Line Editing

The following paragraphs describe the notation used to represent keystrokes.

The text C-k is read as ‘Control-K’ and describes the character produced when the (&)
key is pressed while the Control key is depressed.

The text M-k is read as ‘Meta-K’ and describes the character produced when the Meta
key (if you have one) is depressed, and the () key is pressed. The Meta key is labeled
on many keyboards. On keyboards with two keys labeled (usually to either side of the
space bar), the on the left side is generally set to work as a Meta key. The key
on the right may also be configured to work as a Meta key or may be configured as some
other modifier, such as a Compose key for typing accented characters.

If you do not have a Meta or key, or another key working as a Meta key, the identical
keystroke can be generated by typing first, and then typing & . Either process is known
as metafying the &) key.

The text M-C-k is read as ‘Meta-Control-k’ and describes the character produced by
metafying C-k.

In addition, several keys have their own names. Specifically, (DEL), (ESC), (LFD), (SPC),
RET), and all stand for themselves when seen in this text, or in an init file (see
Section 1.3 [Readline Init File], page 4). If your keyboard lacks a key, typing
will produce the desired character. The key may be labeled or on some
keyboards.

1.2 Readline Interaction

Often during an interactive session you type in a long line of text, only to notice that the
first word on the line is misspelled. The Readline library gives you a set of commands for
manipulating the text as you type it in, allowing you to just fix your typo, and not forcing
you to retype the majority of the line. Using these editing commands, you move the cursor
to the place that needs correction, and delete or insert the text of the corrections. Then,
when you are satisfied with the line, you simply press (RET). You do not have to be at the
end of the line to press (RET); the entire line is accepted regardless of the location of the
cursor within the line.

1.2.1 Readline Bare Essentials

In order to enter characters into the line, simply type them. The typed character appears
where the cursor was, and then the cursor moves one space to the right. If you mistype a
character, you can use your erase character to back up and delete the mistyped character.

Sometimes you may mistype a character, and not notice the error until you have typed
several other characters. In that case, you can type C-b to move the cursor to the left, and
then correct your mistake. Afterwards, you can move the cursor to the right with C-f.

2 GNU Readline Library

When you add text in the middle of a line, you will notice that characters to the right
of the cursor are ‘pushed over’ to make room for the text that you have inserted. Likewise,
when you delete text behind the cursor, characters to the right of the cursor are ‘pulled
back’ to fill in the blank space created by the removal of the text. A list of the bare essentials
for editing the text of an input line follows.

C-b Move back one character.

Cc-f Move forward one character.

(DEL) or (Backspace)
Delete the character to the left of the cursor.

c-d Delete the character underneath the cursor.

Printing characters
Insert the character into the line at the cursor.

C-_or C-x C-u
Undo the last editing command. You can undo all the way back to an empty
line.

(Depending on your configuration, the key be set to delete the character to the
left of the cursor and the key set to delete the character underneath the cursor, like
C-d, rather than the character to the left of the cursor.)

1.2.2 Readline Movement Commands

The above table describes the most basic keystrokes that you need in order to do editing
of the input line. For your convenience, many other commands have been added in addition
to C-b, C-f, C-d, and (DEL). Here are some commands for moving more rapidly about the
line.

C-a Move to the start of the line.

C-e Move to the end of the line.

M-f Move forward a word, where a word is composed of letters and digits.
M-b Move backward a word.

C-1 Clear the screen, reprinting the current line at the top.

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on
words.

1.2.3 Readline Killing Commands

Killing text means to delete the text from the line, but to save it away for later use,
usually by yanking (re-inserting) it back into the line. (‘Cut’ and ‘paste’ are more recent
jargon for ‘kill’ and ‘yank’.)

If the description for a command says that it ‘kills’ text, then you can be sure that you
can get the text back in a different (or the same) place later.

Chapter 1: Command Line Editing 3

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it all. The
kill ring is not line specific; the text that you killed on a previously typed line is available
to be yanked back later, when you are typing another line.

Here is the list of commands for killing text.
C-k Kill the text from the current cursor position to the end of the line.

M-d Kill from the cursor to the end of the current word, or, if between words, to the
end of the next word. Word boundaries are the same as those used by M-f.

M-(DEL) Kill from the cursor the start of the current word, or, if between words, to the
start of the previous word. Word boundaries are the same as those used by
M-b.

C-w Kill from the cursor to the previous whitespace. This is different than M-(DEL)
because the word boundaries differ.

Here is how to yank the text back into the line. Yanking means to copy the most-
recently-killed text from the kill buffer.

C-y Yank the most recently killed text back into the buffer at the cursor.

M-y Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is C-y or M-y.

1.2.4 Readline Arguments

You can pass numeric arguments to Readline commands. Sometimes the argument acts
as a repeat count, other times it is the sign of the argument that is significant. If you
pass a negative argument to a command which normally acts in a forward direction, that
command will act in a backward direction. For example, to kill text back to the start of
the line, you might type ‘M-- C-k’.

The general way to pass numeric arguments to a command is to type meta digits before
the command. If the first ‘digit’ typed is a minus sign (‘-’), then the sign of the argument
will be negative. Once you have typed one meta digit to get the argument started, you
can type the remainder of the digits, and then the command. For example, to give the C-d
command an argument of 10, you could type ‘M-1 0 C-d’, which will delete the next ten
characters on the input line.

1.2.5 Searching for Commands in the History

Readline provides commands for searching through the command history for lines con-
taining a specified string. There are two search modes: incremental and non-incremental.

Incremental searches begin before the user has finished typing the search string. As each
character of the search string is typed, Readline displays the next entry from the history
matching the string typed so far. An incremental search requires only as many characters as
needed to find the desired history entry. To search backward in the history for a particular
string, type C-r. Typing C-s searches forward through the history. The characters present
in the value of the isearch-terminators variable are used to terminate an incremental

4 GNU Readline Library

search. If that variable has not been assigned a value, the and C-J characters will
terminate an incremental search. C-g will abort an incremental search and restore the
original line. When the search is terminated, the history entry containing the search string
becomes the current line.

To find other matching entries in the history list, type C-r or C-s as appropriate. This
will search backward or forward in the history for the next entry matching the search string
typed so far. Any other key sequence bound to a Readline command will terminate the
search and execute that command. For instance, a will terminate the search and accept
the line, thereby executing the command from the history list. A movement command will
terminate the search, make the last line found the current line, and begin editing.

Readline remembers the last incremental search string. If two C-rs are typed without
any intervening characters defining a new search string, any remembered search string is
used.

Non-incremental searches read the entire search string before starting to search for
matching history lines. The search string may be typed by the user or be part of the
contents of the current line.

1.3 Readline Init File

Although the Readline library comes with a set of Emacs-like keybindings installed
by default, it is possible to use a different set of keybindings. Any user can customize
programs that use Readline by putting commands in an inputrc file, conventionally in his
home directory. The name of this file is taken from the value of the environment variable
INPUTRC. If that variable is unset, the default is *~/.inputrc’.

When a program which uses the Readline library starts up, the init file is read, and the
key bindings are set.

In addition, the C-x C-r command re-reads this init file, thus incorporating any changes
that you might have made to it.

1.3.1 Readline Init File Syntax

There are only a few basic constructs allowed in the Readline init file. Blank lines are
ignored. Lines beginning with a ‘#’ are comments. Lines beginning with a ‘¢’ indicate
conditional constructs (see Section 1.3.2 [Conditional Init Constructs|, page 9). Other lines
denote variable settings and key bindings.

Variable Settings
You can modify the run-time behavior of Readline by altering the values of
variables in Readline using the set command within the init file. The syntax
is simple:
set variable value

Here, for example, is how to change from the default Emacs-like key binding to
use vi line editing commands:

set editing-mode vi

Chapter 1: Command Line Editing 5

Variable names and values, where appropriate, are recognized without regard
to case.

A great deal of run-time behavior is changeable with the following variables.

bell-style
Controls what happens when Readline wants to ring the termi-
nal bell. If set to ‘none’, Readline never rings the bell. If set to
‘visible’, Readline uses a visible bell if one is available. If set to
‘audible’ (the default), Readline attempts to ring the terminal’s
bell.

comment-begin
The string to insert at the beginning of the line when the insert-
comment command is executed. The default value is "#".

completion-ignore-case
If set to ‘on’, Readline performs filename matching and completion
in a case-insensitive fashion. The default value is ‘off’.

completion-query-items
The number of possible completions that determines when the user
is asked whether the list of possibilities should be displayed. If the
number of possible completions is greater than this value, Readline
will ask the user whether or not he wishes to view them; otherwise,
they are simply listed. This variable must be set to an integer value
greater than or equal to 0. The default limit is 100.

convert-meta
If set to ‘on’; Readline will convert characters with the eighth bit set
to an ASCII key sequence by stripping the eighth bit and prefixing an
character, converting them to a meta-prefixed key sequence.
The default value is ‘on’.

disable-completion
If set to ‘On’, Readline will inhibit word completion. Completion
characters will be inserted into the line as if they had been mapped
to self-insert. The default is ‘off’.

editing-mode
The editing-mode variable controls which default set of key bind-
ings is used. By default, Readline starts up in Emacs editing mode,
where the keystrokes are most similar to Emacs. This variable can
be set to either ‘emacs’ or ‘vi’.

enable-keypad
When set to ‘on’, Readline will try to enable the application keypad
when it is called. Some systems need this to enable the arrow keys.
The default is ‘off’.

expand-tilde
If set to ‘on’, tilde expansion is performed when Readline attempts
word completion. The default is ‘off’.

GNU Readline Library

If set to ‘on’, the history code attempts to place point at the same
location on each history line retrieved with previous-history or
next-history.

horizontal-scroll-mode
This variable can be set to either ‘on’ or ‘off’. Setting it to ‘on’
means that the text of the lines being edited will scroll horizontally
on a single screen line when they are longer than the width of the
screen, instead of wrapping onto a new screen line. By default, this
variable is set to ‘off’.

input-meta
If set to ‘on’, Readline will enable eight-bit input (it will not clear
the eighth bit in the characters it reads), regardless of what the
terminal claims it can support. The default value is ‘off’. The
name meta-flag is a synonym for this variable.

isearch-terminators
The string of characters that should terminate an incremental
search without subsequently executing the character as a command
(see Section 1.2.5 [Searching|, page 3). If this variable has not
been given a value, the characters and C-J will terminate an
incremental search.

keymap Sets Readline’s idea of the current keymap for key binding com-
mands. Acceptable keymap names are emacs, emacs-standard,
emacs-meta, emacs-ctlx, vi, vi-move, vi-command, and
vi-insert. vi is equivalent to vi-command; emacs is equivalent
to emacs-standard. The default value is emacs. The value of the
editing-mode variable also affects the default keymap.

mark-directories
If set to ‘on’, completed directory names have a slash appended.
The default is ‘on’.

mark-modified-lines
This variable, when set to ‘on’, causes Readline to display an as-
terisk (‘*’) at the start of history lines which have been modified.
This variable is ‘off’ by default.

mark-symlinked-directories
If set to ‘on’, completed names which are symbolic links to di-
rectories have a slash appended (subject to the value of mark-
directories). The default is ‘off’.

match-hidden-files
This variable, when set to ‘on’, causes Readline to match files whose
names begin with a ‘.’ (hidden files) when performing filename
completion, unless the leading ‘.’ is supplied by the user in the
filename to be completed. This variable is ‘on’ by default.

Chapter 1: Command Line Editing 7

output-meta
If set to ‘on’, Readline will display characters with the eighth bit
set directly rather than as a meta-prefixed escape sequence. The
default is ‘off’.

page—-completions
If set to ‘on’, Readline uses an internal more-like pager to display
a screenful of possible completions at a time. This variable is ‘on’
by default.

print-completions-horizontally
If set to ‘on’, Readline will display completions with matches sorted
horizontally in alphabetical order, rather than down the screen.
The default is ‘off’.

show-all-if-ambiguous
This alters the default behavior of the completion functions. If set
to ‘on’, words which have more than one possible completion cause
the matches to be listed immediately instead of ringing the bell.
The default value is ‘off’.

show-all-if-unmodified
This alters the default behavior of the completion functions in a
fashion similar to show-all-if-ambiguous. If set to ‘on’, words which
have more than one possible completion without any possible par-
tial completion (the possible completions don’t share a common
prefix) cause the matches to be listed immediately instead of ring-
ing the bell. The default value is ‘off’.

visible-stats
If set to ‘on’, a character denoting a file’s type is appended to the
filename when listing possible completions. The default is ‘off’.

Key Bindings
The syntax for controlling key bindings in the init file is simple. First you
need to find the name of the command that you want to change. The following
sections contain tables of the command name, the default keybinding, if any,
and a short description of what the command does.

Once you know the name of the command, simply place on a line in the init
file the name of the key you wish to bind the command to, a colon, and then
the name of the command. The name of the key can be expressed in different
ways, depending on what you find most comfortable.

In addition to command names, readline allows keys to be bound to a string
that is inserted when the key is pressed (a macro).

keyname: function-name or macro
keyname is the name of a key spelled out in English. For example:
Control-u: universal-argument
Meta-Rubout: backward-kill-word
Control-o: "> output"

GNU Readline Library

In the above example, C-u is bound to the function universal-
argument, M-DEL is bound to the function backward-kill-word,
and C-o is bound to run the macro expressed on the right hand
side (that is, to insert the text ‘> output’ into the line).

A number of symbolic character names are recognized while pro-
cessing this key binding syntax: DEL, ESC, ESCAPE, LFD, NEW-
LINE, RET, RETURN, RUBOUT, SPACE, SPC, and TAB.

"keyseq": function-name or macro

keyseq differs from keyname above in that strings denoting an en-
tire key sequence can be specified, by placing the key sequence in
double quotes. Some GNU Emacs style key escapes can be used, as
in the following example, but the special character names are not
recognized.

"\C-u": universal-argument

"\C-x\C-r": re-read-init-file

"\e[11™": "Function Key 1"
In the above example, C-u is again bound to the function
universal-argument (just as it was in the first example), ‘C-x
C-r’ is bound to the function re-read-init-file, and ‘(SC) ()
® @® O’ is bound to insert the text ‘Function Key 1’.

The following GNU Emacs style escape sequences are available when specifying
key sequences:

\C-
\M-

\e
\\
\"
\’

control prefix

meta prefix

an escape character
backslash

(M, a double quotation mark

{0, a single quote or apostrophe

In addition to the GNU Emacs style escape sequences, a second set of backslash
escapes is available:

\a
\b
\d
\f
\n
\r
\t
\v

alert (bell)
backspace
delete

form feed
newline
carriage return
horizontal tab

vertical tab

Chapter 1: Command Line Editing 9

\nnn

\xHH

the eight-bit character whose value is the octal value nnn (one to
three digits)

the eight-bit character whose value is the hexadecimal value HH
(one or two hex digits)

When entering the text of a macro, single or double quotes must be used to
indicate a macro definition. Unquoted text is assumed to be a function name. In
the macro body, the backslash escapes described above are expanded. Backslash
will quote any other character in the macro text, including ‘"’ and ‘’’. For
example, the following binding will make ‘C-x \’ insert a single ‘\’ into the line:

"\C‘X\\ ". n\\u

1.3.2 Conditional Init Constructs

Readline implements a facility similar in spirit to the conditional compilation features
of the C preprocessor which allows key bindings and variable settings to be performed as
the result of tests. There are four parser directives used.

$if

$endif
$else

The $if construct allows bindings to be made based on the editing mode, the
terminal being used, or the application using Readline. The text of the test
extends to the end of the line; no characters are required to isolate it.

mode

term

The mode= form of the $if directive is used to test whether Readline
is in emacs or vi mode. This may be used in conjunction with the
‘set keymap’ command, for instance, to set bindings in the emacs-
standard and emacs-ctlx keymaps only if Readline is starting out
in emacs mode.

The term= form may be used to include terminal-specific key bind-
ings, perhaps to bind the key sequences output by the terminal’s
function keys. The word on the right side of the ‘=" is tested against
both the full name of the terminal and the portion of the terminal
name before the first ‘=’. This allows sun to match both sun and
sun-cmd, for instance.

application

The application construct is used to include application-specific set-
tings. Each program using the Readline library sets the application
name, and you can test for a particular value. This could be used to
bind key sequences to functions useful for a specific program. For
instance, the following command adds a key sequence that quotes
the current or previous word in Bash:

$if Bash

Quote the current or previous word

II\C_qul . "\eb\ll\ef\" n

$endif

This command, as seen in the previous example, terminates an $if command.

Commands in this branch of the $if directive are executed if the test fails.

10 GNU Readline Library

$include This directive takes a single filename as an argument and reads commands
and bindings from that file. For example, the following directive reads from
‘/etc/inputrc’:

$include /etc/inputrc

1.3.3 Sample Init File

Here is an example of an inputrc file. This illustrates key binding, variable assignment,
and conditional syntax.

Chapter 1: Command Line Editing

This file controls the behaviour of line input editing for
programs that use the GNU Readline library. Existing
programs include FTP, Bash, and GDB.

You can re-read the inputrc file with C-x C-r.

First, include any systemwide bindings and variable
assignments from /etc/Inputrc
include /etc/Inputrc

#

#
#
#
#
#
Lines beginning with ’#’ are comments.
#
#
#
$

Set various bindings for emacs mode.

set editing-mode emacs

$if mode=emacs

Meta-Control-h:

#

Arrow keys
#

#"\M-0D":
#"\M-0C":
#"\M-0A":
#"\M-0B" :

#

Arrow keys
#

"\M-[D":
"\M-[C":
II\M_ [AH .
"\M-[B":

#

Arrow keys
"\M-\C-0D":
M-\C-0C":
M-\C-0A":
M-\C-0B":

\
ll\
ll\
\

Arrow keys
"\M-\C-[D":

#
#
#
#
#
#
#
#
#"\

#"\M-\C-[C":

in

in

in

in

backward-kill-word Text after the function name is

keypad mode

backward-char
forward-char
previous-history
next-history

ANSI mode

backward-char
forward-char
previous-history
next-history

8 bit keypad mode
backward-char
forward-char
previous-history
next-history

8 bit ANSI mode

backward-char
forward-char

11

ignoredj]

GNU Readline Library

#"\M-\C-[A": previous-history
#"\M-\C-[B": next-history

C-q: quoted-insert
$endif

An old-style binding. This happens to be the default.
TAB: complete

Macros that are convenient for shell interaction
$if Bash

edit the path

"\C-xp": "PATH=${PATH}\e\C-e\C-a\ef\C-f"

prepare to type a quoted word —-

insert open and close double quotes

and move to just after the open quote

"NC-x\"": "\"\"\C-b"

insert a backslash (testing backslash escapes

in sequences and macros)

"\C-x\\": "\

Quote the current or previous word

"\C-xq": "\eb\"\ef\""

Add a binding to refresh the line, which is unbound
"\C-xr": redraw-current-line

Edit variable on current line.

"\M-\C-v": "\C-a\C-k$\C-y\M-\C-e\C-a\C-y="

$endif

use a visible bell if one is available
set bell-style visible

don’t strip characters to 7 bits when reading
set input-meta on

allow iso-latinl characters to be inserted rather
than converted to prefix-meta sequences
set convert-meta off

display characters with the eighth bit set directly
rather than as meta-prefixed characters
set output-meta on

if there are more than 150 possible completions for
a word, ask the user if he wants to see all of them
set completion-query-items 150

Chapter 1: Command Line Editing 13

For FTP

$if Ftp

"\C-xg": "get \M-7"
"\C-xt": "put \M-7"
"\M-.": yank-last-arg
$endif

1.4 Bindable Readline Commands

This section describes Readline commands that may be bound to key sequences. Com-
mand names without an accompanying key sequence are unbound by default.

In the following descriptions, point refers to the current cursor position, and mark refers
to a cursor position saved by the set-mark command. The text between the point and
mark is referred to as the region.

1.4.1 Commands For Moving

beginning-of-line (C-a)

Move to the start of the current line.
end-of-line (C-e)

Move to the end of the line.

forward-char (C-f)
Move forward a character.

backward-char (C-b)
Move back a character.

forward-word (M-f)
Move forward to the end of the next word. Words are composed of letters and
digits.

backward-word (M-b)

Move back to the start of the current or previous word. Words are composed
of letters and digits.

clear-screen (C-1)
Clear the screen and redraw the current line, leaving the current line at the top
of the screen.

redraw-current-line ()
Refresh the current line. By default, this is unbound.

1.4.2 Commands For Manipulating The History

accept-line (Newline or Return)
Accept the line regardless of where the cursor is. If this line is non-empty, it
may be added to the history list for future recall with add_history(). If this
line is a modified history line, the history line is restored to its original state.

14 GNU Readline Library

previous-history (C-p)
Move ‘back’ through the history list, fetching the previous command.

next-history (C-n)
Move ‘forward’ through the history list, fetching the next command.

beginning-of-history (M-<)
Move to the first line in the history.

end-of-history (M->)
Move to the end of the input history, i.e., the line currently being entered.

reverse-search-history (C-r)
Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary. This is an incremental search.

forward-search-history (C-s)
Search forward starting at the current line and moving ‘down’ through the the
history as necessary. This is an incremental search.

non-incremental-reverse-search-history (M-p)
Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary using a non-incremental search for a string supplied by the
user.

non-incremental-forward-search-history (M-n)
Search forward starting at the current line and moving ‘down’ through the the
history as necessary using a non-incremental search for a string supplied by the
user.

history-search-forward ()
Search forward through the history for the string of characters between the
start of the current line and the point. This is a non-incremental search. By
default, this command is unbound.

history-search-backward ()
Search backward through the history for the string of characters between the
start of the current line and the point. This is a non-incremental search. By
default, this command is unbound.

yank-nth-arg (M-C-y)
Insert the first argument to the previous command (usually the second word on
the previous line) at point. With an argument n, insert the nth word from the
previous command (the words in the previous command begin with word 0). A
negative argument inserts the nth word from the end of the previous command.

yank-last-arg (M-. or M-_)
Insert last argument to the previous command (the last word of the previous
history entry). With an argument, behave exactly like yank-nth-arg. Succes-
sive calls to yank-last-arg move back through the history list, inserting the
last argument of each line in turn.

Chapter 1: Command Line Editing 15

1.4.3 Commands For Changing Text

delete-char (C-d)
Delete the character at point. If point is at the beginning of the line, there
are no characters in the line, and the last character typed was not bound to
delete-char, then return EOF.

backward-delete-char (Rubout)
Delete the character behind the cursor. A numeric argument means to kill the
characters instead of deleting them.

forward-backward-delete-char ()
Delete the character under the cursor, unless the cursor is at the end of the
line, in which case the character behind the cursor is deleted. By default, this
is not bound to a key.

quoted-insert (C-q or C-v)
Add the next character typed to the line verbatim. This is how to insert key
sequences like C-q, for example.

tab-insert (M-)

Insert a tab character.

self-insert (a, b, A, 1, !, ...)
Insert yourself.

transpose-chars (C-t)
Drag the character before the cursor forward over the character at the cursor,
moving the cursor forward as well. If the insertion point is at the end of the
line, then this transposes the last two characters of the line. Negative arguments
have no effect.

transpose-words (M-t)
Drag the word before point past the word after point, moving point past that
word as well. If the insertion point is at the end of the line, this transposes the
last two words on the line.

upcase-word (M-u)
Uppercase the current (or following) word. With a negative argument, upper-
case the previous word, but do not move the cursor.

downcase-word (M-1)
Lowercase the current (or following) word. With a negative argument, lowercase
the previous word, but do not move the cursor.

capitalize-word (M-c)
Capitalize the current (or following) word. With a negative argument, capitalize
the previous word, but do not move the cursor.

overwrite-mode ()
Toggle overwrite mode. With an explicit positive numeric argument, switches
to overwrite mode. With an explicit non-positive numeric argument, switches to

16 GNU Readline Library

insert mode. This command affects only emacs mode; vi mode does overwrite
differently. Each call to readline() starts in insert mode.

In overwrite mode, characters bound to self-insert replace the text at point
rather than pushing the text to the right. Characters bound to backward-
delete-char replace the character before point with a space.

By default, this command is unbound.

1.4.4 Killing And Yanking

kill-line (C-k)
Kill the text from point to the end of the line.

backward-kill-line (C-x Rubout)
Kill backward to the beginning of the line.

unix-line-discard (C-u)
Kill backward from the cursor to the beginning of the current line.

kill-whole-line ()
Kill all characters on the current line, no matter where point is. By default,
this is unbound.

kill-word (M-4)
Kill from point to the end of the current word, or if between words, to the end
of the next word. Word boundaries are the same as forward-word.

backward-kill-word (M—-(DEL))
Kill the word behind point. Word boundaries are the same as backward-word.

unix-word-rubout (C-w)
Kill the word behind point, using white space as a word boundary. The killed
text is saved on the kill-ring.

unix-filename-rubout ()
Kill the word behind point, using white space and the slash character as the
word boundaries. The killed text is saved on the kill-ring.

delete-horizontal-space ()
Delete all spaces and tabs around point. By default, this is unbound.

kill-region ()
Kill the text in the current region. By default, this command is unbound.

copy-region-as-kill ()
Copy the text in the region to the kill buffer, so it can be yanked right away.
By default, this command is unbound.

copy-backward-word ()
Copy the word before point to the kill buffer. The word boundaries are the
same as backward-word. By default, this command is unbound.

copy-forward-word ()
Copy the word following point to the kill buffer. The word boundaries are the
same as forward-word. By default, this command is unbound.

Chapter 1: Command Line Editing 17

yank (C-y)

Yank the top of the kill ring into the buffer at point.

yank-pop (M-y)

Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is yank or yank-pop.

1.4.5 Specifying Numeric Arguments

digit-argument (M-0, M-1, ... M--)

universal-

Add this digit to the argument already accumulating, or start a new argument.
M-- starts a negative argument.

argument ()

This is another way to specify an argument. If this command is followed by one
or more digits, optionally with a leading minus sign, those digits define the ar-
gument. If the command is followed by digits, executing universal-argument
again ends the numeric argument, but is otherwise ignored. As a special case,
if this command is immediately followed by a character that is neither a digit
or minus sign, the argument count for the next command is multiplied by four.
The argument count is initially one, so executing this function the first time
makes the argument count four, a second time makes the argument count six-
teen, and so on. By default, this is not bound to a key.

1.4.6 Letting Readline Type For You

complete ((TAB))

Attempt to perform completion on the text before point. The actual completion
performed is application-specific. The default is filename completion.

possible-completions (M-7)

List the possible completions of the text before point.

insert-completions (M-*)

Insert all completions of the text before point that would have been generated
by possible-completions.

menu-complete ()

Similar to complete, but replaces the word to be completed with a single match
from the list of possible completions. Repeated execution of menu-complete
steps through the list of possible completions, inserting each match in turn.
At the end of the list of completions, the bell is rung (subject to the setting
of bell-style) and the original text is restored. An argument of n moves n
positions forward in the list of matches; a negative argument may be used to
move backward through the list. This command is intended to be bound to
(TAB), but is unbound by default.

delete-char-or-list ()

Deletes the character under the cursor if not at the beginning or end of the line
(like delete-char). If at the end of the line, behaves identically to possible-
completions. This command is unbound by default.

18 GNU Readline Library

1.4.7 Keyboard Macros

start-kbd-macro (C-x ()
Begin saving the characters typed into the current keyboard macro.

end-kbd-macro (C-x))
Stop saving the characters typed into the current keyboard macro and save the
definition.

call-last-kbd-macro (C-x e)
Re-execute the last keyboard macro defined, by making the characters in the
macro appear as if typed at the keyboard.

1.4.8 Some Miscellaneous Commands

re-read-init-file (C-x C-r)
Read in the contents of the inputrc file, and incorporate any bindings or variable
assignments found there.

abort (C-g)
Abort the current editing command and ring the terminal’s bell (subject to the
setting of bell-style).

do-uppercase-version (M-a, M-b, M-x, ...)
If the metafied character x is lowercase, run the command that is bound to the
corresponding uppercase character.

prefix-meta ((ESC))
Metafy the next character typed. This is for keyboards without a meta key.

Typing ‘(ESC) f’ is equivalent to typing M-f.

undo (C-_ or C-x C-u)
Incremental undo, separately remembered for each line.

revert-line (M-r)
Undo all changes made to this line. This is like executing the undo command
enough times to get back to the beginning.

tilde-expand (M-~)
Perform tilde expansion on the current word.

set-mark (C-Q)
Set the mark to the point. If a numeric argument is supplied, the mark is set
to that position.

exchange-point-and-mark (C-x C-x)
Swap the point with the mark. The current cursor position is set to the saved
position, and the old cursor position is saved as the mark.

character-search (C-])
A character is read and point is moved to the next occurrence of that character.
A negative count searches for previous occurrences.

Chapter 1: Command Line Editing 19

character-search-backward (M-C-])
A character is read and point is moved to the previous occurrence of that
character. A negative count searches for subsequent occurrences.

insert-comment (M-#)
Without a numeric argument, the value of the comment-begin variable is in-
serted at the beginning of the current line. If a numeric argument is supplied,
this command acts as a toggle: if the characters at the beginning of the line
do not match the value of comment-begin, the value is inserted, otherwise the
characters in comment-begin are deleted from the beginning of the line. In
either case, the line is accepted as if a newline had been typed.

dump-functions ()
Print all of the functions and their key bindings to the Readline output stream.
If a numeric argument is supplied, the output is formatted in such a way that
it can be made part of an inputrc file. This command is unbound by default.

dump-variables ()
Print all of the settable variables and their values to the Readline output stream.
If a numeric argument is supplied, the output is formatted in such a way that
it can be made part of an inputrc file. This command is unbound by default.

dump-macros ()
Print all of the Readline key sequences bound to macros and the strings they
output. If a numeric argument is supplied, the output is formatted in such a
way that it can be made part of an inputrc file. This command is unbound by
default.

emacs-editing-mode (C-e)
When in vi command mode, this causes a switch to emacs editing mode.

vi-editing-mode (M-C-j)
When in emacs editing mode, this causes a switch to vi editing mode.

1.5 Readline vi Mode

While the Readline library does not have a full set of vi editing functions, it does contain
enough to allow simple editing of the line. The Readline vi mode behaves as specified in
the PosIX 1003.2 standard.

In order to switch interactively between emacs and vi editing modes, use the command
M-C-j (bound to emacs-editing-mode when in vi mode and to vi-editing-mode in emacs
mode). The Readline default is emacs mode.

When you enter a line in vi mode, you are already placed in ‘insertion’ mode, as if you
had typed an ‘i’. Pressing switches you into ‘command’ mode, where you can edit the
text of the line with the standard vi movement keys, move to previous history lines with
‘k’ and subsequent lines with ‘j’, and so forth.

20

GNU Readline Library

Chapter 2: Programming with GNU Readline 21

2 Programming with GNU Readline

This chapter describes the interface between the GNU Readline Library and other pro-
grams. If you are a programmer, and you wish to include the features found in GNU Readline
such as completion, line editing, and interactive history manipulation in your own programs,
this section is for you.

2.1 Basic Behavior

Many programs provide a command line interface, such as mail, ftp, and sh. For such
programs, the default behaviour of Readline is sufficient. This section describes how to use
Readline in the simplest way possible, perhaps to replace calls in your code to gets() or
fgets().

The function readline() prints a prompt prompt and then reads and returns a single
line of text from the user. If prompt is NULL or the empty string, no prompt is displayed.
The line readline returns is allocated with malloc(); the caller should free() the line
when it has finished with it. The declaration for readline in ANSI C is

char *readline (const char *prompt) ;
So, one might say
char *line = readline ("Enter a line: ");

in order to read a line of text from the user. The line returned has the final newline removed,
so only the text remains.

If readline encounters an EOF while reading the line, and the line is empty at that
point, then (char *)NULL is returned. Otherwise, the line is ended just as if a newline had
been typed.

If you want the user to be able to get at the line later, (with for example), you must
call add_history() to save the line away in a history list of such lines.

add_history (line);
For full details on the GNU History Library, see the associated manual.

It is preferable to avoid saving empty lines on the history list, since users rarely have a
burning need to reuse a blank line. Here is a function which usefully replaces the standard
gets () library function, and has the advantage of no static buffer to overflow:

/* A static variable for holding the line. */
static char *line_read = (char *)NULL;

/* Read a string, and return a pointer to it.
Returns NULL on EOF. */

char *

rl_gets ()

{
/* If the buffer has already been allocated,

return the memory to the free pool. */

if (line_read)

{

22 GNU Readline Library

free (line_read);
line_read = (char *)NULL;
}

/* Get a line from the user. */
line_read = readline ("");

/* If the line has any text in it,
save it on the history. */
if (line_read && *line_read)
add_history (line_read);

return (line_read);
}

This function gives the user the default behaviour of completion: completion on file
names. If you do not want Readline to complete on filenames, you can change the binding
of the key with r1_bind_key ().

int rl_bind_key (int key, rl_command_func_t *function);

rl_bind_key() takes two arguments: key is the character that you want to bind, and
function is the address of the function to call when key is pressed. Binding to rl_
insert () makes insert itself. r1l_bind_key() returns non-zero if key is not a valid
ASCII character code (between 0 and 255).

Thus, to disable the default behavior, the following suffices:
rl_bind_key (’\t’, rl_insert);
This code should be executed once at the start of your program; you might write a func-

tion called initialize_readline() which performs this and other desired initializations,
such as installing custom completers (see Section 2.6 [Custom Completers|, page 41).

2.2 Custom Functions

Readline provides many functions for manipulating the text of the line, but it isn’t possi-
ble to anticipate the needs of all programs. This section describes the various functions and
variables defined within the Readline library which allow a user program to add customized
functionality to Readline.

Before declaring any functions that customize Readline’s behavior, or using any func-
tionality Readline provides in other code, an application writer should include the file
<readline/readline.h> in any file that uses Readline’s features. Since some of the defi-
nitions in readline.h use the stdio library, the file <stdio.h> should be included before
readline.h.

readline.h defines a C preprocessor variable that should be treated as an integer, RL_
READLINE_VERSION, which may be used to conditionally compile application code depending
on the installed Readline version. The value is a hexadecimal encoding of the major and
minor version numbers of the library, of the form OxMMmm. MM is the two-digit major
version number; mm is the two-digit minor version number. For Readline 4.2, for example,
the value of RL_READLINE_VERSION would be 0x0402.

Chapter 2: Programming with GNU Readline 23

2.2.1 Readline Typedefs

For readabilty, we declare a number of new object types, all pointers to functions.

The reason for declaring these new types is to make it easier to write code describing
pointers to C functions with appropriately prototyped arguments and return values.

For instance, say we want to declare a variable func as a pointer to a function which
takes two int arguments and returns an int (this is the type of all of the Readline bindable
functions). Instead of the classic C declaration

int (xfunc) O);

or the ANSI-C style declaration
int (x*func) (int, int);

we may write
rl_command_func_t *func;

The full list of function pointer types available is

typedef int rl_command_func_t (int, int);

typedef char *rl_compentry_func_t (const char *, int);
typedef char **rl_completion_func_t (const char *, int, int);
typedef char *rl_quote_func_t (char *, int, char *);
typedef char *rl_dequote_func_t (char *, int);
typedef int rl_compignore_func_t (char **);

typedef void rl_compdisp_func_t (char *x, int, int);
typedef int rl_hook_func_t (void);

typedef int rl_getc_func_t (FILE *);

typedef int rl_linebuf_func_t (char *, int);

typedef int rl_intfunc_t (int);

#define rl_ivoidfunc_t r1_hook_func_t

typedef int rl_icpfunc_t (char *);

typedef int rl_icppfunc_t (char *x);

typedef void rl_voidfunc_t (void);

typedef void rl_vintfunc_t (int);

typedef void rl_vcpfunc_t (char *);

typedef void rl_vcppfunc_t (char *x);

2.2.2 Writing a New Function

In order to write new functions for Readline, you need to know the calling conventions
for keyboard-invoked functions, and the names of the variables that describe the current
state of the line read so far.

The calling sequence for a command foo looks like
int foo (int count, int key)

where count is the numeric argument (or 1 if defaulted) and key is the key that invoked
this function.

It is completely up to the function as to what should be done with the numeric argument.
Some functions use it as a repeat count, some as a flag, and others to choose alternate

24 GNU Readline Library

behavior (refreshing the current line as opposed to refreshing the screen, for example).
Some choose to ignore it. In general, if a function uses the numeric argument as a repeat
count, it should be able to do something useful with both negative and positive arguments.
At the very least, it should be aware that it can be passed a negative argument.

A command function should return 0 if its action completes successfully, and a non-zero
value if some error occurs.

2.3 Readline Variables

These variables are available to function writers.

char * rl_line_buffer [Variable]
This is the line gathered so far. You are welcome to modify the contents of the line,
but see Section 2.4.5 [Allowing Undoing], page 32. The function rl_extend_line_
buffer is available to increase the memory allocated to r1_line_buffer.

int rl_point [Variable]
The offset of the current cursor position in r1_line_buffer (the point).

int rl_end [Variable]
The number of characters present in r1_line_buffer. When rl1_point is at the end
of the line, r1_point and rl_end are equal.

int rl_mark [Variable]
The mark (saved position) in the current line. If set, the mark and point define a
TEGLON.

int rl_done [Variable]

Setting this to a non-zero value causes Readline to return the current line immediately.

int rl_num_chars_to_read [Variable]
Setting this to a positive value before calling readline() causes Readline to return
after accepting that many characters, rather than reading up to a character bound
to accept-line.

int rl_pending_input [Variable]
Setting this to a value makes it the next keystroke read. This is a way to stuff a single
character into the input stream.

int rl_dispatching [Variable]
Set to a non-zero value if a function is being called from a key binding; zero otherwise.
Application functions can test this to discover whether they were called directly or
by Readline’s dispatching mechanism.

int rl_erase_empty_line [Variable]
Setting this to a non-zero value causes Readline to completely erase the current
line, including any prompt, any time a newline is typed as the only character on
an otherwise-empty line. The cursor is moved to the beginning of the newly-blank
line.

Chapter 2: Programming with GNU Readline 25

char * rl_prompt [Variable]
The prompt Readline uses. This is set from the argument to readline (), and should
not be assigned to directly. The r1_set_prompt () function (see Section 2.4.6 [Redis-
play], page 32) may be used to modify the prompt string after calling readline().

int rl_already_prompted [Variable]
If an application wishes to display the prompt itself, rather than have Readline do
it the first time readline () is called, it should set this variable to a non-zero value
after displaying the prompt. The prompt must also be passed as the argument to
readline() so the redisplay functions can update the display properly. The calling
application is responsible for managing the value; Readline never sets it.

const char * rl_library_version [Variable]
The version number of this revision of the library.

int rl_readline_version [Variable]
An integer encoding the current version of the library. The encoding is of the form
0xMMmm, where MM is the two-digit major version number, and mm is the two-
digit minor version number. For example, for Readline-4.2, r1_readline_version
would have the value 0x0402.

int rl_gnu_readline_p [Variable]
Always set to 1, denoting that this is GNU readline rather than some emulation.

const char * rl_terminal_name [Variable]
The terminal type, used for initialization. If not set by the application, Readline sets
this to the value of the TERM environment variable the first time it is called.

const char * rl_readline_name [Variable]
This variable is set to a unique name by each application using Readline. The value
allows conditional parsing of the inputrc file (see Section 1.3.2 [Conditional Init Con-
structs], page 9).

FILE * rl_instream [Variable]
The stdio stream from which Readline reads input. If NULL, Readline defaults to
stdin.

FILE * rl_outstream [Variable]
The stdio stream to which Readline performs output. If NULL, Readline defaults to
stdout.

rl_command_func_t * rl_last_func [Variable]

The address of the last command function Readline executed. May be used to test
whether or not a function is being executed twice in succession, for example.

rl_hook_func_t * rl_startup_hook [Variable]
If non-zero, this is the address of a function to call just before readline prints the
first prompt.

rl_hook_func_t * rl_pre_input_hook [Variable]
If non-zero, this is the address of a function to call after the first prompt has been
printed and just before readline starts reading input characters.

26 GNU Readline Library

rl_hook_func_t * rl_event_hook [Variable]
If non-zero, this is the address of a function to call periodically when Readline is
waiting for terminal input. By default, this will be called at most ten times a second
if there is no keyboard input.

rl_getc_func_t * rl_getc_function [Variable]
If non-zero, Readline will call indirectly through this pointer to get a character from
the input stream. By default, it is set to rl_getc, the default Readline character
input function (see Section 2.4.8 [Character Input], page 34).

rl_voidfunc_t * rl_redisplay_function [Variable]
If non-zero, Readline will call indirectly through this pointer to update the display
with the current contents of the editing buffer. By default, it is set to r1_redisplay,
the default Readline redisplay function (see Section 2.4.6 [Redisplay]|, page 32).

rl_vintfunc_t * rl_prep_term_function [Variable]
If non-zero, Readline will call indirectly through this pointer to initialize the terminal.
The function takes a single argument, an int flag that says whether or not to use
eight-bit characters. By default, this is set to rl_prep_terminal (see Section 2.4.9
[Terminal Management], page 35).

rl_voidfunc_t * rl_deprep_term_function [Variable]
If non-zero, Readline will call indirectly through this pointer to reset the terminal.
This function should undo the effects of r1_prep_term_function. By default, this
is set to r1_deprep_terminal (see Section 2.4.9 [Terminal Management|, page 35).

Keymap rl_executing_keymap [Variable]
This variable is set to the keymap (see Section 2.4.2 [Keymaps]|, page 28) in which
the currently executing readline function was found.

Keymap rl_binding_keymap [Variable]
This variable is set to the keymap (see Section 2.4.2 [Keymaps|, page 28) in which
the last key binding occurred.

char * rl_executing_macro [Variable]
This variable is set to the text of any currently-executing macro.

int rl_readline_state [Variable]
A variable with bit values that encapsulate the current Readline state. A bit is set
with the RL_SETSTATE macro, and unset with the RL_UNSETSTATE macro. Use the
RL_ISSTATE macro to test whether a particular state bit is set. Current state bits
include:

RL_STATE_NONE
Readline has not yet been called, nor has it begun to intialize.

RL_STATE_INITIALIZING
Readline is initializing its internal data structures.

RL_STATE_INITIALIZED
Readline has completed its initialization.

Chapter 2: Programming with GNU Readline 27

RL_STATE_TERMPREPPED
Readline has modified the terminal modes to do its own input and redis-

play.

RL_STATE_READCMD
Readline is reading a command from the keyboard.

RL_STATE_METANEXT
Readline is reading more input after reading the meta-prefix character.

RL_STATE_DISPATCHING
Readline is dispatching to a command.

RL_STATE_MOREINPUT
Readline is reading more input while executing an editing command.

RL_STATE_ISEARCH
Readline is performing an incremental history search.

RL_STATE_NSEARCH
Readline is performing a non-incremental history search.

RL_STATE_SEARCH
Readline is searching backward or forward through the history for a string.

RL_STATE_NUMERICARG
Readline is reading a numeric argument.

RL_STATE_MACROINPUT
Readline is currently getting its input from a previously-defined keyboard
macro.

RL_STATE_MACRODEF
Readline is currently reading characters defining a keyboard macro.

RL_STATE_OVERWRITE
Readline is in overwrite mode.

RL_STATE_COMPLETING
Readline is performing word completion.

RL_STATE_SIGHANDLER
Readline is currently executing the readline signal handler.

RL_STATE_UNDOING
Readline is performing an undo.

RL_STATE_DONE
Readline has read a key sequence bound to accept-1line and is about to
return the line to the caller.

int rl_explicit_arg [Variable]
Set to a non-zero value if an explicit numeric argument was specified by the user.
Only valid in a bindable command function.

28 GNU Readline Library

int rl_numeric_arg [Variable]
Set to the value of any numeric argument explicitly specified by the user before
executing the current Readline function. Only valid in a bindable command function.

int rl_editing_mode [Variable]
Set to a value denoting Readline’s current editing mode. A value of 1 means Readline
is currently in emacs mode; 0 means that vi mode is active.

2.4 Readline Convenience Functions

2.4.1 Naming a Function

The user can dynamically change the bindings of keys while using Readline. This is
done by representing the function with a descriptive name. The user is able to type the
descriptive name when referring to the function. Thus, in an init file, one might find

Meta-Rubou