[image: image1.png]symbian

Delta Design Document:

MWAR-5LFHMY – CntVCard Reference Plugin Modernisation

	Team/Department:
	Core Apps

	Status:
	Draft
	Version:
	0.1.
	Last Revised:
	05-Mar-03

Requirements

· The ‘General’ address fields, as used by Microsoft Outlook must be synchronised during a contact sync between device and PC.

Introduction

All contacts synchronisation occurs via the contacts vCard converter. Symbian supply a reference version of this converter, called CntvCard. The vCard converter must implement the CContactConverter abstract interface (defined in CNTDB.H). This is a simple API to handle both the import and export of contact data

class CContactConverter : public Cbase
 {
public:

 virtual CArrayPtr<CContactItem>* ImportL(CContactDatabase& aDb,
 RReadStream& aReadStream,
 TBool& aImportSuccessful,
 TInt aOptions,
 TBool aImportSingle
)=0;

 virtual void ExportL(CContactDatabase& aDb,
 const CContactIdArray& aSelectedContactIds,
 RWriteStream& aWriteStream,
 TInt aOptions,
 const Versit::TVersitCharSet aCharSet,
 TBool aExportPrivateFields,
 TInt aCommitNumber=10
)=0;

 };
The plugin must provide a single exported function, at ordinal one of the DLL, that creates a concrete instance of this class. The Contacts Model Import/Export functions then use this interface to handle the actual manipulation and processing of vCard data.

Symbian supply a reference plugin that contains functionality to support many of the requirements for basic synchronization between PC PIM and device. This reference plugin is designed to act as a starting point for Symbian OS licensees who wish to support PC Sync (or indeed vCard exchange) functionality. Due to the plugin mechanism described above, Symbian OS licensees are able to enhance or replace the reference plugin with their own tailored version with requiring changes to Contacts Model itself. Since the reference plugin is an old antiquated component which was originally written for Palmtop style devices, rather than smart phones, it does not implement all of the functionality that is desirable for a modern Symbian OS based device.

Microsoft Outlook supports the notion of a General Address, that is, an address that is not specific to a Home, Work or Preferred location. This type of address therefore has no property parameter and is therefore said to be “general.”

This CR has been raised to update the reference plugin to support the synchronisation of this General Address, whilst maintaining the existing support for the other three (Home, Work, Preferred). Interestingly, the author believes that the notion of a Preferred address contravenes the vCard 2.1 specification, however, no attempt will be made to correct this non-standard behaviour.

There are two distinct areas of functionality implemented in CntvCard. The first is concerned with exporting contacts from the device, and the second is concerned with importing (or merging) contacts onto the device.

The following class diagram provides an overview of the key classes in the CntVCard reference plugin.

[image: image2.png]symbian

In order to support the round-trip synchronisation of General Address data between device and PC (and potentially via SyncML if the SyncML framework uses Contacts Model vCard export API’s) both areas of functionality must be updated.

Note that the terminology used within this document to represent the HOME/WORK/PREF/’General’ nomenclature is interchangeable. Indeed, the existing implementation of CntVCard cannot decide whether this attribute should be referred as a ‘mapping’ or as a ‘field type.’ The general consensus (as best as the author can tell) from the source, is that it should be referred to as a ‘field type,’ however, lots of the existing source code does not refer to it as such.

vCard Addresses

Since all contact exchange during PC Synchronisation occurs via vCards, it is useful to quickly describe how the General, Home, Work and Preferred addresses are specified in terms of their vCard attributes.

The address vCard 2.1 property (ADR) is composite. That is, it is a concatenation of several fields (separated by the vCard Field Delimiter) to form a vCard property. The sub-fields are:

· Post Office Box

· Extended address

· Street Address

· Locality Name

· State or Province Name

· Postal Code

· Country Name

A vCard potentially can contain many addresses. Each address can have a different mapping (or property parameter in vCard terminology) which can be used to indicate, for example, home and work addresses, or a specific address to be used for all post. The existing Symbian reference implementation of CntvCard handles three specific types of address

· Work address (WORK property parameter)

· Home address (HOME property parameter)

· Preferred address (PREF property parameter). Interestingly, this doesn’t appear to be a valid property parameter for the ADR vCard 2.1 property.

This document uses the terminology mapping and property parameter interchangeably to refer to this concept.

Exporting vCards

This section discusses methods relating to the CContactsAppToVCardConverter class, defined in CNTVCARDEXPORT.CPP.

High-level Overview

For each of the three mappings discussed in the previous section (or ‘property parameters’ in vCard terminology), fields within the contact card are identified which conform to the specified mapping (home, work etc). An array is populated with each of the seven sub-fields (if they exist, or a NULL value otherwise). Should a non-NULL value exist for a given mapping, an ADR vCard property is created and added to the vCard. This process is repeated for each mapping. Here is the in terms of pseudo-code

FOR EACH mapping (HOME, WORK, PREF)
 FOR EACH of the seven sub-fields (Street, postcode, etc.)
 IF the contact card contains an address sub-field corresponding to this mapping THEN
 Extract the field’s value from the contacts card
 Add the extracted field value to an array
 ELSE IF it doesn’t THEN
 Add a null (KNullDesC) value to the array instead
 END IF
 END FOR
 IF the array contains at least one non-NULL, real value (i.e. non-KNullDesC) THEN
 Create a vCard property
 Set the vCard property’s mapping value to correspond to the current mapping (HOME, WORK etc)
 Assign the retrieved sub-field values to the property
 Add the property to the constructed vCard
 END IF
END FOR

Detailed Description

The EncodeFieldPropertiesL method is responsible for addition of the Address vCard properties to the vCard export stream.

void CContactsAppToVCardConverter::EncodeFieldPropertiesL(const CContactItem& aContactItem,CContactItem* aAgentItem,TInt aOption,TBool aExportPrivateFields)
{
 …
 GetVCardHomeAddressL(aContactItem,aOption,aExportPrivateFields);
 GetVCardWorkAddressL(aContactItem,aOption,aExportPrivateFields);
 GetVCardPrefAddressL(aContactItem,aOption,aExportPrivateFields);
 …
}

As can be seen above, this process is carried out by these methods:

GetVCardHomeAddressL(const CContactItem& aContact, TInt aOption, TBool aExportPrivateFields)
GetVCardWorkAddressL(const CContactItem& aContact, TInt aOption, TBool aExportPrivateFields)
GetVCardPrefAddressL(const CContactItem& aContact, TInt aOption, TBool aExportPrivateFields)

In turn, they use the following generic address extraction method to identify address sub-fields (within the contact card, aContact) that conform to the specified mapping:

GetVCardAddressL(const CContactItem& aContact, TUid aVCardMapping, const TDesC8& aToken, TInt aOption, TBool aExportPrivateFields)

An example, from the GetVCardHomeAddressL method:

void GetVCardHomeAddressL(const CContactItem& aContact, TInt aOption, TBool aExportPrivateFields)
 {
 GetVCardAddressL(aContact, KUidContactFieldVCardMapHOME, KVersitParam8Home, aOption, aExportPrivateFields);
 }

The GetVCardAddressL method has several areas of functionality:
1. It creates an empty array that is used to hold any property parameters associated with the current address property. For example, in the case of WORK, HOME and PREF, this array will initially be populated with a single property parameter that corresponds to the mapping specified in aToken. The current implementation of this method always creates a vCard property parameter corresponding to the value specified in aToken (HOME, WORK, PREF),

2. It creates an empty descriptor array that is populated by RetrieveFieldL when each of the seven address sub-field values is identified.

3. It calls the RetrieveFieldL method for each of the seven vCard address sub fields that are specified by the vCard 2.1 standard (listed in an earlier section). The RetrieveFieldL method attempts to locate the specified sub-field in the contact field set, and should it be found, the value from the field is written to the descriptor array created in step 2. If the sub field is not found, the value KNullDesC is written instead.

4. If one or more address sub-fields are found within the contact field set, then

· a vCard ADR property is constructed

· the property parameters, created in step 1, are assigned to the property

· the property value (in this case, the array of seven sub-field values) are assigned to the property

The RetrieveFieldL method is worthy of note:

void RetrieveFieldL(const CContactItemFieldSet& aFields,
 CArrayPtr<CParserParam>& aParams,
 CDesCArrayFlat& aDesArray,
 const TUid& aUid1,
 const TUid& aUid2,
 const TDesC& aLabel,
 TInt aOption,
 TBool& aFound,
 TBool aExportPrivateFields,
 TBool aWithoutPref) const

It is the key method as far as address export is concerned. It searches all the fields within the field set (aFields) for fields that conform to a mapping (specified by aUid1 - HOME, WORK, PREF) and a type (one of the seven vCard ADR sub fields, e.g. Country, Region, Street etc). The mapping, aUid1 is one of the following UID’s from CNTDEF.H:

· KUidContactFieldVCardMapHOME
· KUidContactFieldVCardMapWORK
· KUidContactFieldVCardMapPREF
The field type, aUid2 is one of the following UID’s:

· KUidContactFieldVCardMapPOSTOFFICE

· KUidContactFieldVCardMapEXTENDEDADR

· KUidContactFieldVCardMapADR

· KUidContactFieldVCardMapLOCALITY

· KUidContactFieldVCardMapREGION

· KUidContactFieldVCardMapPOSTCODE

· KUidContactFieldVCardMapCOUNTRY
The label is used in the case where aOption contains the CContactsDatabase::EIncludeX flag set. It is exported in the vCard data stream as a vCard extension property. It is not relevant to this document, except to say that the General Address will need to honour this flag when it is set.

If a Contacts Model field matching a specific mapping (e.g. HOME, WORK etc) is located, then the aFound parameter is set to ETrue and the field’s value is written to the descriptor array aDesArray. If the sub-field is not located, then KNullDesC is written to the array instead and aFound remains unchanged. Since aFound is only updated when a sub-field is located, it can be used as an indicator as to whether at least one (out of a potential seven) sub-fields are present for the specified HOME/WORK/PREF mapping. At the end of the GetVCardAddressL method, if one or more sub-fields were located, a vCard ADR property is created with the correct property parameters, and is added to the vCard CParserVCard object.

Changes to Address Export

1. The author proposes to remove the following three methods:

 GetVCardHomeAddressL(const CContactItem& aContact, TInt aOption, TBool aExportPrivateFields)
 GetVCardWorkAddressL(const CContactItem& aContact, TInt aOption, TBool aExportPrivateFields)
 GetVCardPrefAddressL(const CContactItem& aContact, TInt aOption, TBool aExportPrivateFields)

They are simple one-line mappings onto the GetVCardAddressL method. The author therefore has decided that they aren’t really that helpful and have removed them; instead, the EncodeFieldPropertiesL method calls GetVCardAddressL directly for each of the mappings, specifying the appropriate parameters.

2. Since the ultimate aim of this CR is to add support for the general address, it is apparent that there needs to be a way to export address fields which contain no specific mapping. There is already generic address identification functionality within the export code (the GetVCardAddressL method) and therefore this should be utilised to identify general address types as well as the existing WORK, HOME and PREF mappings.

Here is the prototype of the general address extraction method with proposed values for general address identification and export:

 GetVCardAddressL(const CContactItem& aContact,
 TUid aVCardMapping,
 const TDesC8& aToken,
 TInt aOption,
 TBool aExportPrivateFields)

aContact – is the contact card which is being exported

aVCardMapping – mappings are specified via contact model field UID’s. In the case of the general address, which has no mapping, the UID KNullUid constant will be used to indicate this

aToken – this parameter is used to construct any vCard property parameter for the ADR vCard property. In the case of the general address, there is no vCard property parameter to specify, and therefore KNullDesC8 will be used instead.

aOption – options used for the vCard export (one or more of CContactDatabase::TOptions).

aExportPrivateFields – whether private fields are to be exported

Since the GetVCardAddressL method uses the RetrieveFieldL method it will be possible to implement the export of General Addresses within the existing framework. However, at the lowest level, RetrieveFieldL will need to be updated to understand the new parameter values that are specified above.

3. In the case of the existing three mappings, it is always necessary to add a vCard property parameter (HOME, WORK, PREF etc). However, for the general address, which has no associated property parameter, the code must be updated so that the property parameter is created only if aToken corresponds to non-KNullDesC8 value. GetVCardAddressL handles this functionality. Since KNullDesC8 will be used to indicate ‘no property parameter is necessary’ it will simply involve checking the length of the aToken descriptor, and adding the property parameter if the length is greater than 0.

4. The RetrieveFieldL method should be renamed to the more appropriately named, RetrieveAddressFieldL since this method is only used to identify vCard address properties and as it stands, it is rather a generic, non-descriptive name.

5. As described in an earlier section, RetrieveAddressFieldL (the new name for RetrieveFieldL) is largely responsible for the identification of vCard address sub-fields. In the existing code, each of the seven address sub-fields is located using two UID’s, the first being the field type and the second being the mapping. In the case of the general address, there is obviously no mapping UID, since it is general in nature and is the whole principle of this specific address type.

As such, this method will need to be modified to act one of two ways:

A) In the existing case, whereby the mapping UID is not KNullUid, the existing code can be used to locate a suitably matching sub-field. This simply uses the contacts model API CContactItemFieldSet::Find.

B) For the General Address, where the mapping UID is null, the contact field set should be iterated through, field by field, attempting to identify any field which matches the specified field type but does not have any specific mapping specified.

In the updated CntVCard export code this process will be encapsulated by the addition of a new method, FindAddressFieldByMappingAndType.

 TInt FindAddressFieldByMappingAndType(const CContactItemFieldSet& aFields,
 TFieldType aFieldType,
 TUid aMapping)

This method simply iterates through the specified field set, attempting to locate a field of the specified type and mapping. It should implement the requirements defined in A and B. If a suitable field is located, its position within the field set should be returned, or in the case of no matching field, KErrNotFound should be the return code.

In the case of requirement B, whereby FindAddressFieldByMappingAndType is being used to locate a General Address, the process of identifying fields that do not have a mapping is itself more complicated than a single contacts model API call. It is therefore proposed that the addition of another helper function, IsGeneralAddressField:

 TBool IsGeneralAddressField(const CContactItemField& aField)

This helper function returns a boolean indicating whether the specified field may be considered ‘general.’ The criteria upon which it should base this decision is that the field should contain neither the WORK, HOME nor PREF mapping.

6. Whilst not related to the implementation of this CR, the opportunity can be taken to reduce the size and maintenance complexity code by refactoring the implementation of the GetVCardNameL method.

The current implementation contains a large chunk of essentially identical code whose purpose is to locate each name sub-field within the contact card, and, should it be found, create a suitable vCard Name (‘N’ in vCard terminology) property to represent this data.

The current implementation repeats the same pattern of code for each of the five sub-fields, and therefore this can be easily refactored into five function calls with suitable parameters. This new functionality entails the addition of one new method:

 TBool LocateSpecificNameValueL(const CContactItemFieldSet& aFieldSet,
 TUid aSearchField,
 CDesCArray& aPropValueArray,
 CArrayPtr<CParserParam>& aPropParamArray,
 const TDesC& aLabelPrefix,
 TBool aIncludeXDash,
 TBool aExportPrivateFields)

The implementation of this method should simply locate a specific name sub-field by UID (aSearchField). Should the sub-field be found, then its value is appended to aPropValueArray and ETrue is returned. If the sub-field is not located, then KNullDesC is appended to aPropValueArray and EFalse is returned. In the case where field-labels are exported, an extension property parameter will be constructed and appended to aPropParamArray for later addition to any exported vCard ‘name’ (‘N’ in vCard terminology) property.

The implementation of GetVCardNameL can then be refactored in terms of calling this new method five times, once for each different sub-field. The five sub-field UIDs are thus:

· KUidContactFieldFamilyName

· KUidContactFieldGivenName

· KUidContactFieldAdditionalName

· KUidContactFieldPrefixName

· KUidContactFieldSuffixName
Importing vCards

This section discusses methods relating to the CVCardToContactsAppConverter class, defined in CNTVCARDIMPORT.CPP.

Overview of Address (and Name) Import

In many ways, import is more simple than export since the opportunity for code reuse is quite high, which leads to a cleaner design and implementation. Without wishing to write a design document describing how the existing import/merge code works, it is necessary to highlight a few key points in order to establish a context for the reason that they should be changed.

· To import a contact onto the device, the contact must be created (or re-assembled, in the case of a merge operation) based upon the contents of a vCard.

· The existing implementation already has the provision to import HOME, WORK, PREF and, interestingly, General Addresses. However, General Addresses will not be imported should both the HOME and WORK addresses exist within the vCard data. The requirement is that the General Address be synchronised irrespective of any HOME or WORK presence and therefore this behaviour must be altered such that all three (as well as the mysterious PREF address) can be imported at once.

· For the existing code base, there are several methods that are concerned with manipulating contact addresses (and also contact names). Typically, these methods perform some sort of processing that requires both the address sub-field values, and their associated labels as parameters. The chosen data structure for these parameters is a descriptor array (CDesCArray). Whilst functionally, this behaviour is sound, it results in method names which take a very large number of arguments.

Functional Overview of vCard Import

Here is a brief summary of the main address (and name) functions contained within this class:

void DeleteAddressFields(CContactItem& aContact,
 const TUid& aUid)

- Delete all address sub-fields which correspond to the specified field type (E.g. HOME, WORK etc).

void SetAddressFieldL(CDesCArrayFlat* aName,
 CDesCArrayFlat* aNamelabels,
 CContactItem& aContact,
 TInt aOption,
 TInt aIndex,
 TFieldType aFieldType,
 TInt& aInsertPos,
 TUid aMapping,
 TUid aExtrauid)

- From an array of name sub-fields (and their associated labels), create a single Contacts Model field of the specified type (HOME, WORK) and the specified mapping (e.g. Country, Post code etc) and add the field to the contact card. Return the insertion position via a reference parameter.

void SetAddressFieldsL(CDesCArrayFlat* aName,
 CDesCArrayFlat* aNamelabels,
 CContactItem& aContact,
 TInt aOption,
 TUid aExtraMapping)

- From an array of name sub-fields (and their associated labels), create their associated Contacts Model field equivalents. The Extra Mapping is actually the field type, E.g. HOME, WORK, but it is mis-named. This method calls the SetAddressFieldL method once for each of the seven address sub-fields.

void GetHomeAndWorkAddressL(CParserVCard& aVCard,
 CDesCArray* aAddressHome,
 CDesCArray* aAddressWork,
 TInt aOption,
 CDesCArray* aAddressHomeLabels,
 CDesCArray* aAddressWorkLabels)

- For the HOME and WORK field type only, this method extracts the sub-field values and their associated labels (from the vCard data structures) and assigns them to the specified descriptor arrays.

void GetPrefAddressL(CParserVCard& aVCard,
 CDesCArray* aAddressPref,
 TInt aOption,
 CDesCArray* aAddressPrefLabels)

- For the PREF field type only, this method extracts the sub-field values and their associated labels (from the vCard data structures) and assigns them to the specified descriptor arrays.

void GetContactNameL(CParserVCard& aVCard,
 CDesCArray* aName,
 TInt aOption,
 CDesCArray* aLabels)

- This method extracts the name sub-field values (and their labels) from the vCard and assigns them to the specified descriptor arrays.

void SetNameFieldL(CDesCArrayFlat* aName,
 CDesCArrayFlat* aNamelabels,
 CContactItem& aContact,
 TInt aOption,
 TInt aIndex,
 TFieldType aFieldType,
 TInt &aInsertPos)

- From an array of name sub-fields (and their associated labels), this method constructs a Contacts Model name field with the specified field type (Given name, Family name, etc.) and adds it to the specified contact card. The insertion position with the contact card’s field set is returned.

void SetNameFieldsL(CDesCArrayFlat* aName,
 CDesCArrayFlat* aNamelabels,
 CContactItem& aContact,
 TInt aOption)

- From an array of name sub-fields (and their associated labels), create their associated Contacts Model field equivalents. This method calls the SetNameFieldL method once for each of the five name sub-fields.

As can be observed from the list of functions, the address functionality is hard-coded to only identify three types of address sub-field values, HOME, WORK and PREF.

There are two key high-level methods within the import/merge code:

1. void GetVCardAsContactItemLCC(CParserVCard& aVCard,
 CContactItem*& aMainContact,
 CContactItem*& aAgentContact,
 TUnknownPropertyBehaviour aUnknownPropertyBehaviour,
 TInt aOption)
- This method is responsible for adding a new contact to the contacts database

2. TBool MergeVCardWithContactItemL(CContactItem &aContact,
 CParserVCard& aVCard,
 TUnknownPropertyBehaviour aUnknownPropertyBehaviour,
 TInt aOption)
- This method is responsible for updating an existing contact within the contacts database.

In both cases, the existing implementation of these methods is to:

a) Search the vCard data structures for the presence of the HOME, WORK and PREF address sub-fields. This process is implemented by two functions:

GetHomeAndWorkAddressL(…)
GetPrefAddressL(…)

b) Should address fields of the specified type be found, then:

· delete all existing sub-fields in the contact card corresponding to the specified field type (HOME, WORK, PREF). This process is implemented by the following method:

DeleteAddressFields(…)
· add the located address sub-fields to the contact card by creating the corresponding fields with the appropriate field type. This process is implemented by the following two methods, the first of which calls the second for each of the seven address sub-fields, using differing arguments:

SetAddressFieldsL(…)
SetAddressFieldL(…)
Incidentally, the exact same process applies for the name fields.

Overview of Changes to Address Import

As can be seen from the method list in the previous section, the number of arguments to these methods is often long and complicated. It is also quite apparent to the author, at least, that the separation between values and labels is not necessarily a good one. In most cases, these methods require both an item value and also the associated label for the item in order to perform some action upon the contacts database. The author therefore proposes the addition of a generic ‘item and label’ class that can be used to couple these two elements together. Whilst being designed with the Address sub-fields in mind, it actually makes sense to ensure this is generic enough to be re-used for any composite (array) vCard property. In this case, the Name sub-fields make a good candidate for refactoring in terms of this new functionality, since they two are described in terms of item and label array pairs.

Requirements for such an object:

1. The object should be generic, that is, not specific to the address vCard property type.

2. The proposed object should be capable of storing an arbitrary number of item and label pairs that can be defined at run time.

3. It must be possible to specify item values in separation from any label, since the label functionality is only enabled when specific options are specified at the CContactDatabase level.

4. It must be possible to query how many items and labels are stored within the object.

5. It must be possible to retrieve a specific name or label by index.

6. It must be possible to search for a label value based upon a value. The position within the object container should be returned to the caller.

Based upon these requirements, the following class should be implemented:

class CVCardItemAndLabel : public CBase
 {
public:
 static CVCardItemAndLabel* NewLC();
 ~CVCardItemAndLabel();
…

public:
 void AddItemL(const TDesC& aItem);
 void AddLabelL(const TDesC& aItem);
 TInt ItemCount() const;
 TInt LabelCount() const;
 TPtrC Item(TInt aIndex) const;
 TPtrC Label(TInt aIndex) const;
 TInt FindLabel(const TDesC& aName, TInt& aPosition) const;
…
 };

This object provides a generic framework for item and label pairs, however, the address property type has one additional attribute, namely, the field type (e.g. HOME, WORK, PREF, ‘general’). Since a requirement of the CVCardItemAndLabel object was listed as being generic, it makes sense to define a derived class to encapsulate this field type (or mapping) property:

class CVCardAddress : public CVCardItemAndLabel
 {
public:
 static CVCardAddress* NewLC(TUid aMapping);
…
public:
 inline TUid Mapping() const { return iMapping; }
…
 };

The existing methods that are implemented in terms of descriptor arrays should be updated to use the new objects.

Here is a diagram showing the proposed interaction between these two new classes and the existing framework. Note that these classes are only used for the import process, and therefore only the CVCardToContactsAppConverter class is affected.

Function Description of Import Changes

The introduction of the two additional classes, CVCardItemAndLabel and CVCardToContactsAppConverter, presents the opportunity to streamline and refactor some of the existing CVCardToContactsAppConverter implementation. The following section discusses the methods that have changed within the class to accommodate the new objects.

Since the import process, from an address perspective, is concerned with identifying addresses within the vCard data structure that conform to the four supported address types (Home, Work, Preferred and General) there must be a means of locating these address fields within the vCard data structures.

In the original implementation, this process was carried out by two separate methods:

GetHomeAndWorkAddressL(…)
GetPrefAddressL(…)

The first was responsible for locating the Home and Work address types, and the second the Preferred address type. In the new implementation, searching the vCard object for the now four supported vCard address types has been combined into a single function:

void GetAddressesL(CParserVCard& aVCard,
 TInt aOption,
 RPointerArray<CVCardAddress>& aAddresses)
As described above, this method searches the specified vCard for all suitable address types. If an appropriate address is located, then an instance of CVCardAddress is created and populated with the address field data. This process is carried out for all four of the supported address mappings/types.

Since the parsed vCard data must be searched for each address type, it is necessary to identify a means of correlating the vCard data (with its associated property parameters and values) to the four address types to be potentially stored within the Contacts Model database.

As an example, lets consider the Home and General addresses. In plain English, one might describe the process of identifying the Home address thus:

“Locate a vCard ADR property which contains a HOME vCard property parameter, but does not contain a WORK vCard property parameter”

In the case of the General Address, it can be interpreted as follows:

“Locate a vCard ADR property which neither contains the HOME or WORK vCard property parameters”

Therefore, it is logical for the implementation of GetAddressesL to use a new generic address extraction internal function that can locate a specific address type from within the vCard data structures. The arguments passed to this new function GetSpecifiedAddressLC, allow a different set of address fields to be identified, thereby allowing the creation of different instances of CVCardAddress, potentially, one for each of the four supported types.

Here is a proposed prototype for the new generic address location/extraction function:

CVCardAddress* GetSpecifiedAddressLC(const CArrayPtr<CParserProperty>& aProperties,
 TInt aOption,
 const TDesC8& aParamMustMatch,
 const TDesC8& aParamMustNotMatch1,
 const TDesC8& aParamMustNotMatch2,
 TUid aMapping)
This new method is essentially the result of combining and generalising the two existing GetHomeAndWorkAddressL and GetPrefAddressL methods. In the original version, these two methods contained a lot of duplicated code and therefore it is logical to combine them and form a reusable generic version.

Note that the function is both leaving and capable of returning a vCard address object (CVCardAddress) pushed onto the cleanup stack.
The following table shows a suitable configuration for arguments to be passed to this method in order to identify a given address type:

	Address type being detected
	aMapping
	aParamMustMatch
	aParamMustNotMatch1
	aParamMustNotMatch2

	Home
	KUidContactFieldVCardMapHOME
	KVersitParam8Home
	KVersitParam8Work
	KNullDesC8

	Work
	KUidContactFieldVCardMapWORK
	KVersitParam8Work
	KNullDesC8
	KNullDesC8

	Preferred
	KUidContactFieldVCardMapPREF
	KVersitParam8Pref
	KVersitParam8Home
	KVersitParam8Work

	General
	KNullUid
	KNullDesC8
	KVersitParam8Home
	KVersitParam8Work

In the above table, the data within the first three rows is extracted from the implementation of the existing GetHomeAndWorkAddressL and GetPrefAddressL methods. The fourth row is a new addition, based upon the requirements to synchronise the general address.

KNullDesC8 has special meaning within the GetSpecifiedAddressLC function. Essentially, this allows the implementation to ignore the specified parameter for comparison purposes when attempting to locate the desired type of address.

If a suitable address is located within the vCard, then a CVCardAddress object can be created and populated with the sub-field data from the ADR vCard property. Likewise, any corresponding label values present in the property parameter section can also be added to this object. The address object can then be returned to the caller (left on the cleanup stack).

If no address is located, then this method will return a NULL object pushed onto the cleanup stack in order to ensure that the cleanup levels are balanced (this prevents the need for making this function leave if no suitable address can be found and thereby requiring the caller to TRAP the call).

Having identified all of the suitable addresses that can be imported onto the device, the two methods mentioned at the top of this chapter, namely:

void GetVCardAsContactItemLCC(CParserVCard& aVCard,
 CContactItem*& aMainContact,
 CContactItem*& aAgentContact,
 TUnknownPropertyBehaviour aUnknownPropertyBehaviour,
 TInt aOption)
TBool MergeVCardWithContactItemL(CContactItem& aContact,
 CParserVCard& aVCard,
 TUnknownPropertyBehaviour aUnknownPropertyBehaviour,
 TInt aOption)

… can behave in the same manor as the existing code, i.e. delete any existing address sub-fields and then add the newly located address sub-fields to the contact card.

Refactoring Opportunities
There are also a couple of opportunities for some minor refactoring:

1. The Name import functionality can also be implemented in terms of the generic CVCardItemAndLabel functionality. This requires changes to two methods but actually makes the code more logical and slightly more streamlined:

void SetNameFieldsL(const CVCardItemAndLabel& aNames,
 CContactItem& aContact,
 TInt aOption) const;

void SetNameFieldL(const CVCardItemAndLabel& aNames,
 CContactItem& aContact,
 TInt aOption,
 TInt aIndex,
 TFieldType aFieldType,
 TInt& aInsertPos) const;
2. Both DeleteAddressFields and DeleteNameFields share common functionality, namely searching for a specific field, and if it is located, removing it from the contact card. This behaviour can be refactored out in terms of a new method to perform this action on behalf of both methods.

void DeleteField(CContactItem& aContact,
 const CContactItemFieldSet& aFieldSet,
 TFieldType aFieldType,
 TUid aMapping)
CVCardItemAndLabel

CDesCArray* iItems

CDesCArray* iLabels

void AddItemL(const TDesC& aItem)�void AddLabelL(const TDesC& aItem)�TInt ItemCount() const�TInt LabelCount() const�TPtrC Item(TInt aIndex) const�TPtrC Label(TInt aIndex) const�TInt FindLabel(const TDesC& aName, TInt& aPosition) const

TUid Mapping() const

TUid iMapping

CVCardAddress

void GetAddressesL(CParserVCard& aVCard, TInt aOption, RPointerArray<CVCardAddress>& aAddresses)

void SetAddressFieldsL(const CVCardAddress& aAddress, CContactItem& aContact, TInt aOption) const

void SetAddressFieldL(const CVCardAddress& aAddress,

CContactItem& aContact, TInt aOption, TInt aIndex, TFieldType aFieldType, TInt& aInsertPos, TUid aMapping) const

CVCardAddress* GetSpecifiedAddressLC(const CArrayPtr<CParserProperty>& aProperties, TInt aOption, const TDesC8& aParamMustMatch, const TDesC8& aParamMustNotMatch1, const TDesC8& aParamMustNotMatch2, TUid aMapping)��CVCardItemAndLabel* GetContactNameLC(CParserVCard& aVCard, TInt aOption)

void SetNameFieldsL(const CVCardItemAndLabel& aNames, CContactItem& aContact, TInt aOption) const

void SetNameFieldL(const CVCardItemAndLabel& aNames, CContactItem& aContact, TInt aOption, TInt aIndex, TFieldType aFieldType, TInt& aInsertPos) const

CVCardToContactsAppConverter

void GetVCardAsContactItemLCC(CParserVCard& aSourceVCard,CContactItem*& aMainContact, CContactItem* &aAgentContact, TUnknownPropertyBehaviour aUnknownPropertyBehaviour, TInt aOption)

TBool MergeVCardWithContactItemL(CContactItem& aContact, CParserVCard& aSourceVCard, TUnknownPropertyBehaviour aUnknownPropertyBehaviour, TInt aOption)

CVCardToContactsAppConverter

CParserVCard* GetContactItemAsVCardL(CContactItem* aMainItem, CContactItem* aAgentItem, TInt aOption, TBool aExportPrivateFields)

CContactsAppToVCardConverter

CArrayPtr<CContactItem>* ImportL(CContactDatabase& aDb, RReadStream& aReadStream, TBool& aImportSuccessful, TInt aOptions, TBool aImportSingle)

void ExportL(CContactDatabase& aDb,const CContactIdArray& aSelectedContactIds, RWriteStream& aWriteStream, TInt aOptions,const Versit::TVersitCharSet aCharSet, TBool aExportPrivateFields, TInt aCommitNumber)

CContactVCardConverter

_1068468344

