[image: image1.png]symbian

Contacts Sort Plug-in
	
	
	
	

	Security Classification:
	Internal - Symbian
	Team/Department:
	Content & Messaging / Core Apps

	Document Reference:
	SGL.183nnn.nnn
	Author(s):
	Core Apps Team

	Status:
	Draft
	Owner(s):
	Core Apps Team

	Version:
	0.1
	Approver(s)
	Core Apps Team

	Last Revised Date:
	3/10/2004
	
	

	
	
	
	

Contacts Sort Plug-in
[image: image2.png]symbian

SGL.183nnn.nnn
Internal - Symbian
Draft v0.1

1 Introduction

1.1 Purpose and Scope

This document provides covers how to use the new view sort plug-in functionality. This includes:

· how to use the new API for creating a view with a sort plug-in
· the naming convention for sort plug-ins
· how to write a new sort plug-in

2 Using a plug-in
2.1 Creating
The view sort plug-in is set when the view is created. A plug-in can be set for Local or Remote views using the last argument of the NewL method, aSortPluginName.
static CContactLocalView* CContactLocalView::NewL(MContactViewObserver& aObserver,
const CContactDatabase& aDb, const RContactViewSortOrder& aSortOrder, TContactViewPreferences aContactTypes, const TDesC8& aSortPluginName)
static CContactRemoteView* CContactRemoteView::NewL(MContactViewObserver& aObserver, const CContactDatabase& aDb, const RContactViewSortOrder& aSortOrder, TContactViewPreferences aContactTypes, const TDesC8& aSortPluginName)
static CContactNamedRemoteView* CContactNamedRemoteView::NewL(MContactViewObserver& aObserver, const TDesC& aName, const CContactDatabase& aDb, const RContactViewSortOrder& aSortOrder, TContactViewPreferences aContactTypes, const TDesC8& aSortPluginName)
Note that the plug-in name is always an 8-bit (narrow) descriptor using TDesC8, regardless of the build. This contrasts named views which take a wide descriptor, TDesC for the view name.
There are three possible ways to sort

1. Sort by named plug-in – The view will be sorted by the plug-in specified. If the plug-in cannot be found, the NewL method will leave with KErrNotFound. To create a view with a named plug-in, include the desired plug-in name as the final parameter
:

CContactLocalView::NewL(obs,db,order,types, _L8("application.vnd.example.com/mysort"));

2. Sort by default plug-in – The view will be sorted by the default plug-in. If no default exists, the built-in sorting routine will be used. To create a view with the default plug-in, leave off the final parameter
:
CContactLocalView::NewL(obs,db,order,types);
3. Sort by built-in sorting routine – The view will be sorted by the internal sorting routine CContactViewBase::CompareFieldsL() which uses TDesC::CompareC(). To create a view which explicitly uses the built-in routine, use KNullDesC8 (an empty descriptor) as the final:

CContactLocalView::NewL(obs,db,order,types, KNullDesC8);
2.2 Plug-in name format

The plug-in name has a very specific format, bearing a strong resemblance to a mime type using the vendor tree [R1]. It contains two halves separated by a forward-slash (“/”). The first half is a unique identifier indicating the author. It is in the format:

application.vnd.vendorname
Including the company name eliminate issues with different phones or licensees using the same name.

The second half is the name of the sort, and can consist of any alphanumeric character, the underscore (“_”), or dash (“-“). The view name given to NewL cannot have any wildcards. It is also is case-sensitive and must match intended plug-in exactly. When no name parameter is explicitly given, a default plug-in is loaded. If no default plug-in is can be found, the built-in sorting routine is used.
Some examples:

[image: image3.png]symbian

CContactLocalView::NewL(obs,db,order,types,_L8("application.vnd.symbian.com/contacts-reverse-sort"));
CContactLocalView::NewL(obs,db,order,types,_L8(""));
CContactLocalView::NewL(obs,db,order,types);
CContactLocalView::NewL(obs,db,order,types,_L8("/default"));
CContactLocalView::NewL(obs,db,order,types,_L8("application.vnd.symbian.com/*"));
3 Creating a plug-in
All ECom plug-ins consist of a DLL and a resource file describing it.

As an example we will describe the test sort plug-in CntSimpleSortPlugin.
3.1 The MMP File

The MMP requires the standard ECom fields. The only addition that all sort plug-ins require is the cntmodel.lib library. In Example 1, the UID for the DLL is 0x10200FBC. This is used as the 2nd number in the UID field, as well as the filename of the resource file (i.e. “0x10200FBC.rss”).
3.2 The Implementation
There are four essential parts to each sort plug-in: class and variable declarations, constructor and destructor methods, implementation of the five virtual methods, and proving the hooks for ECom. A
3.2.1 Declarations

A sort plug-in implementation is derived from the base class CViewContactSortPlugin. At the minimum it requires implementation of a static constructor (NewL) and the five virtual methods defined in CViewContactSortPlugin. Also useful, is to declare a constant to store the UID of the implementations.
It is valid to have multiple sort plug-ins declared in the same DLL. This requires one CViewContactSortPlugin-derived class and UID for each plug-in, and an Implementation Table entry for each plug-in (See Section 3.2.4).

Example 2 shows an example of an implementation of a sort plug-in which sorts in the reverse of the normal order. It requires a bare-minimal implementation and is presented to show the essentials for creating a new plug-in.
3.2.2 Construction and Destruction

A sort plug-in’s constructor must call the constructor for the base class, CViewContactSortPlugin(). The plug-in’s ConstructL() must then confirm the TSortPluginParams passed is the proper version and has valid values. The plug-in should store a copy of the parameters for future use. Example 3 shows a sample implementation of the constructor and destructor methods.

3.2.3 Implementing the virtual methods
The derived class must define the five virtual methods. Three of the methods are used to control the sort and are called before it starts, after it completes, and when the parameters are to be changed. Two of the methods are called during the sort.
3.2.3.1 Control Methods
void SetSortOrderL(const RContactViewSortOrder& aViewSortOrder)
This is called from the Contacts View to set the plug-in’s sort order. This is called on view creation as well as when a different sort order is requested.

TInt SortStart(TSortStartTypes aSortStartType, TInt aToCount)
This is called from the Contacts View whenever a sort is begun. aToCount indicates the approximate number of contacts to be processed. This number may not be exact. aSortStartType indicates the type of sort. This will be one of:

ESortNull

There is no sort in progress
ESortStartFull

Sort or resort everything
ESortStartInsertOne

Insert or change one contact
ESortStartInsertMultiple
Add multiple contacts
Other values may be added in the future.

SortStart returns the error condition if it fails, or KErrNone if successful.

void SortCompleted()
This is called from the Contacts View whenever a sort completes.

3.2.3.2 Sorting Methods

TInt SortCompareViewContactsL(const CViewContact& aLhs, const CViewContact& aRhs)
This method compares two CViewContact items for sorting in the Contacts View. This returns 0 if both aLhs and aRhs have equal sorting order. If aLhs is to be sorted before aRhs this returns an arbitrary positive value. If aRhs is to be sorted before aLhs, this returns arbitrary negative value. This is the same behaviour as TDesC::CompareC().

TBool ViewContactIsSortable(const CViewContact& aViewContact)

This returns ETrue if the contact is sortable, and EFalse if not.
3.2.4 Providing information for ECom

All ECom DLLs require an exported function which returns an implementation table. This is an array of TImplementationProxy objects, one for each implementation. In the example code, there is only one plug-in implementation, so there will only be one item in the implementation table. A TImplementationProxy object contains the UID of the plug-in and the static method which constructs the object (usually, NewL).
Example 5 shows how to provide the required ECom information for a DLL with a single ECom plug-in.
3.3 Resources

Every ECom DLL must have a resource file describing the contents. This data is used to find which DLL to find the class to instantiate when ECom is asked given a set of parameters.

In the case of a sort plug-in, the resource file must take the form shown in Example 6. The name of the resource file must be the hexadecimal UID of the DLL (without the leading “0x”) plus the extension “.rss”. In the examples this is “10200FBC.RSS”. Note that this matches the second UID in the MMP file (see Example 1). The DLL UID must also be set in the REGISTRY_INFO object for the property “dll_uid”.

In the INTERFACE_INFO section, the interface UID (interface_uid) must be 0x10200FBD. This is the value of KCntSortPluginInterfaceUid, and is required for all sort plug-ins.

3.4 Implementation info
While there can be more then one plug-in defined in a DLL (or even multiple types of plug-ins), for the sake of simplicity we only cover the case of a single implementation. If there is more than one, the IMPLEMENTATION_INFOs are separated by commas.
The IMPLEMENTATION_INFO object has five properties, four of which are straightforward.

	implementation_uid
	This is set to the UID of the sort plug-in. It corresponds to KCntSortPluginReverseSortUidInt defined in Example 2.

	version_no
	This is the version number of the plug-in and is used to avoid the incompatibility issues that may come up with multiple versions of the same plug-in

	display_name
	This is a human-readable string which describes the plug-in. There is no standard format for this.

	opaque_data
	This is not used and should be left blank

The final property is default_data, and provides a machine-reachable description of the plug-in. This is used to match the plug-in name requested in CContactXxxxView::NewL().
The plug-in name must adhere to the proper mime-like namespace convention as described in Section 2.2:
application.vnd.company-name/plugin-name

for example:

application.vnd.symbian.com/contacts-reverse-sort

The default_data property can contain multiple plug-in names (separated by “||”) or wildcards (e.g. “*”), in order to match multiple plug-in names. Note that these can only appear in the resource file; wildcards cannot be used in the NewL() methods.
One common usage is to include he plug-in’s name explicitly and to indicate that it is also the default plug-in. This would be done by including the name, followed by the logical OR (the double bar used in C: “||”), followed by "/default" (KViewSortPluginDefaultName). For example:

default_data = "application.vnd.symbian.com/contacts-reverse-sort||/default";
This will match the following:
CContactLocalView::NewL(obs,db,order,types,_L8("application.vnd.symbian.com/contacts-reverse-sort"));
CContactLocalView::NewL(obs,db,order,types);
CContactLocalView::NewL(obs,db,order,types,_L8("/default"));
The plug-in will not match anything else.

Some other examples:

default_data = "*/contacts-reverse-sort";
default_data = "application.vnd.symbian.com/contacts-reverse-sort||

application.vnd.symbian.com/reversed";

default_data = "/default";

default_data = "application.vnd.example.com/*";

Only one plug-in on a device should use “/default” in the default_data. If more than one includes “/default”, requesting the default plug-in will return arbitrary results, which cannot be guaranteed to be the same from one call to the next.
4 Internal details

4.1 Loading and unloading

Each Contacts View that supports sorting loads the specified Contacts View sort plug-in DLL (if any). This is called from the NewL method using the ECom framework. An instance of the implementation class is created for each view, allowing internal state information to be separately managed.

In the case of a Remote View the implementation is loaded twice. The Contacts Lock Server holds the Local View and controls sorting, and maintains the order for insert and replace. The client process holds an implementation in the Remote View object so that Find Views operate correctly.

When the View is deleted the instance of the implementation class is deleted, calling its destructor, then the base class destructor. CViewContactSortPlugin::~CViewContactSortPlugin() tells ECom to unload the plug-in if no more instances exist in the process.
4.2 Identifying a plug-in

It is possible to find out the ID of the sort plug-in using the following method:

TUid CContactViewBase::GetViewSortPluginImplUid() const;
This returns the ID of the plug-in used by the view. If the view is using the built-in sort routine, this will return KNullUid. It is possible, using the ECom API, to extract the details, such as the human-readable plug-in name (display name) and the version number, given the plug-in implementation ID and the sort plug-in ID (KCntSortPluginInterfaceUid). Specifics for how to do so are out of the scope of this document.
5 Further Information

5.1 People

	Role
	Person / People

	Reviewers
	Core Apps Team

	Contributors
	Core Apps Team

	Distribution
	

5.2 References

	No.
	Document Reference
	Version
	Description

	[R1]
	RFC 2048
	November 1996
	Multipurpose Internet Mail Extensions (MIME) Part Four: Registration Procedures

5.3 Open Issues

5.4 Glossary

	Term
	Definition

	
	

5.5 Document History

	Date
	Version
	Status
	Author
	Description

	26-05-2004
	1.0
	Issued
	<Core Apps Team>
	Initial release with changes from review

	15-05-2004
	0.1
	Draft
	<Core Apps Team>
	First draft based on SGL.PPS001.500 Lightweight Document Template Rev 8.5

UID for this DLL�(CntSimpleSortPlugin.dll)

Machine-readable name(s) for plug-in

Human-readable name for plug-in

Example � SEQ Figure * ARABIC �6� An example resource file

Mandatory UID for any sort plugin�(KCntSortPluginInterfaceUid)

UID for this implementation (contacts-reverse-sort)

// 10200FBC.RSS

// Copyright (c) 2004 Symbian Software Ltd. All rights reserved.

// Registration data for a Sort util Implementation Collection.

//

#include "RegistryInfo.rh"

RESOURCE REGISTRY_INFO theInfo

 {

 dll_uid = 0x10200FBC;

 interfaces =

 {

 INTERFACE_INFO

 {

 interface_uid = 0x10200FBD;

 implementations =

 {

 IMPLEMENTATION_INFO

 {

 implementation_uid = 0x10200FBE;	

 version_no = 1;

 display_name = "Example Interface Implementation||Copyright © 2004 Symbian Software Ltd. All Rights Reserved.";

 default_data = "application.vnd.symbian.com/contacts-reverse-sort";

 opaque_data = "";

 }

 };

 }

 };

 }

No plug-in will be loaded

Load default plug-in

Load default plug-in and Leave if not found.

WRONG!!!

Ok

// CntSimpleSortPlugin.MMP

//

// Copyright (c) 2004 Symbian Software Ltd. All rights reserved.

//

target CntSimpleSortPlugin.dll

TARGETTYPE ECOMIIC

UID 0x10009D8D 0x10200FBC

systeminclude \EPOC32\INCLUDE \EPOC32\INCLUDE\ECOM

sourcepath ..\src

source		 CntSimpleSortPlugin.cpp

RESOURCE 10200FBC.RSS

library EUSER.LIB ECom.lib cntmodel.lib

Example � SEQ Figure * ARABIC �1� An example MMP file

Name for this DLL

Indicates it’s an ECom DLL

Names for all source files

UID for this DLL

Mandatory ECom DLL UID

// CntSimpleSortPlugin.cpp

// Copyright © 2004 Symbian Software Ltd. All rights reserved.

//

	if (!aParams || be NULLonur as alue. whenever a sort is begun, .lib library. re or dash ("thod will leave with ����������������

#include <cntviewsortplugin.h>

#include <ImplementationProxy.h>

#define KCntSortPluginDllUidInt		0x10200FBC

#define KCntSortPluginInterfaceUidInt	0x10200FBD

#define KCntSortPluginImplement1UidInt	0x10200FBE

#ifndef EKA2

GLDEF_C TInt E32Dll(TDllReason) // Static DLL functions

	{

	return(KErrNone);

	}

#endif

class CViewSortPluginExample : public CViewContactSortPlugin

{

public:

	static CViewSortPluginExample* NewL(TSortPluginParams* aParams);

	void SetSortOrderL(const RContactViewSortOrder& aViewSortOrder);

	TInt SortStart(TSortStartTypes aSortStartType, TInt aToCount);

	void SortCompleted();

TInt SortCompareViewContactsL(const CViewContact& aLhs, �const CViewContact& aRhs);

	TBool ViewContactIsSortable(const CViewContact& aViewContact);

public:

	CViewSortPluginExample();					

	void ConstructL(TSortPluginParams* aParams);

private:

	~CViewSortPluginExample();

protected:

	RContactViewSortOrder	iViewSortOrder;

	TSortStartTypes		iCurrentSort;

	TInt				iToCount;

	TSortPluginParams		iPluginParams;Implementation of CViewContactSortPlugin

ams;

	};

D

Example � SEQ Figure * ARABIC �3� Example sort plug-in constructors and destructors

Class must free all memory

Function pointers must not be NULL

Make a copy of the view parameters

View parameters must not be NULL

Make a copy of the parameters

Check parameter version UID

aParams must not be NULL

 Standard NewL construction

Constructor must call base constructor

CViewSortPluginExample::CViewSortPluginExample() : CViewContactSortPlugin()

	{

	}

CViewSortPluginExample* CViewSortPluginExample::NewL(TSortPluginParams* aParams)

	{

	CViewSortPluginExample* self = new (ELeave) CViewSortPluginExample();

	CleanupStack::PushL(self);

	self->ConstructL(aParams);

	CleanupStack::Pop(self);

	return(self);

	}

void	CViewSortPluginExample::ConstructL(TSortPluginParams* aParams)

	{

	__ASSERT_DEBUG(aParams, User::Invariant());

	if (aParams->iParametersRevision != KCntSortPluginViewParamsRev1Uid)

			User::Leave(KErrArgument);

	iPluginParams = *aParams;

	__ASSERT_DEBUG(aParams->iViewSortParams, User::Invariant());

	iPluginViewParams = *(reinterpret_cast<TSortPluginViewParamsRev1*>� (aParams->iViewSortParams));

	__ASSERT_DEBUG(iPluginViewParams.iCompareViewContactsL, User::Invariant());

	__ASSERT_DEBUG(iPluginViewParams.iIsSortable, User::Invariant());

	}

CViewSortPluginExample::~CViewSortPluginExample()

	{

	iViewSortOrder.Close();

	}

Compute comparison value here

This example computes the reverse of the normal sort order by returning the inverse of the default method memethodmwetcomparison method

Sort must be in progress and have a al properd and should be left blankcribes the ug-insih consructs thfs, etc)r dash ("thod will leave with ����������������Sort Order

Required ECom method

Determine if contact is sortable

(Can call default Sortable Contact test)

Implementation table contains one UID and constructor method pair for each sort plug-in implementation in the DLL

Perform any action here which needs to be done after a sort (release buffers, etc)

Sort has finished

Sort must be in progress

Perform any action here which needs to be done before starting a sort (allocate buffers, etc)

Sort must not be in progress

Process the new order information here

Example � SEQ Figure * ARABIC �4� Example code for a sort plug-in

void CViewSortPluginExample::SetSortOrderL(const RContactViewSortOrder& aViewSortOrder)

	{

	iViewSortOrder.CopyL(aViewSortOrder);

	}

TInt CViewSortPluginExample::SortStart(TSortStartTypes aSortStartType, TInt aToCount)

	{

	__ASSERT_DEBUG(iCurrentSort == ESortNull, User::Invariant());

	iCurrentSort = aSortStartType;

	iToCount = aToCount;

	

	return KErrNone;

	}

void CViewSortPluginExample::SortCompleted()

	{

	__ASSERT_DEBUG(iCurrentSort != ESortNull, User::Invariant());

	iCurrentSort = ESortNull;

	}

TInt CViewSortPluginExample::SortCompareViewContactsL(const CViewContact& aFirst, const CViewContact& aSecond)

	{

	__ASSERT_DEBUG(iCurrentSort != ESortNull, User::Invariant());

	__ASSERT_DEBUG(iViewSortOrder.Count() > 0, User::Invariant());

	TInt comparison = iPluginViewParams.iCompareViewContactsL(aFirst, aSecond);

	return -comparison;

	}

TBool CViewSortPluginExample::ViewContactIsSortable(const CViewContact& aContact)

	{

	return iPluginViewParams.iIsSortable(aContact);

	};

Example � SEQ Figure * ARABIC �5� Example DLL Information for ECOM

const TImplementationProxy ImplementationTable[] =

	{

	IMPLEMENTATION_PROXY_ENTRY(KCntSortPluginReverseSortUidInt,

CViewSortPluginExample::NewL),

	};

EXPORT_C const TImplementationProxy* ImplementationGroupProxy(TInt& aTableCount)

	{

	aTableCount = sizeof(ImplementationTable) / sizeof(TImplementationProxy);

	return ImplementationTable;

	}

Match anything by example.com

Required includes

Example � SEQ Figure * ARABIC �2� An example class declaration for a sort plug-in

Parameters from View

Parameters given to NewL

Unexported methods

Implementation of CViewContactSortPlugin

UID of this implementation

Not recommended!

Not recommended. Always give a full name as well.

Class Implementing sort plug-in

//

// CntSimpleSortPlugin.cpp

// Copyright © 2004 Symbian Software Ltd. All rights reserved.

//

	if (!aParams || be NULLonur as alue. whenever a sort is begun, .lib library. re or dash ("thod will leave with ����������������

#include <cntviewsortplugin.h>

#include <ImplementationProxy.h>

const TInt32 KCntSortPluginReverseSortUidInt = 0x10200FBE;

#ifndef EKA2

GLDEF_C TInt E32Dll(TDllReason) // Static DLL functions

	{

	return(KErrNone);

	}

#endif

class CViewSortPluginExample : public CViewContactSortPlugin

{

public:

	static CViewSortPluginExample* NewL(TSortPluginParams* aParams);

	void SetSortOrderL(const RContactViewSortOrder& aViewSortOrder);

	TInt SortStart(TSortStartTypes aSortStartType, TInt aToCount);

	void SortCompleted();

TInt SortCompareViewContactsL(const CViewContact& aLhs, �const CViewContact& aRhs);

	TBool ViewContactIsSortable(const CViewContact& aViewContact);

public:

	CViewSortPluginExample();					

	void ConstructL(TSortPluginParams* aParams);

private:

	~CViewSortPluginExample();

protected:

	RContactViewSortOrder	iViewSortOrder;

	TSortStartTypes		iCurrentSort;

	TInt				iToCount;

	TSortPluginParams		iPluginParams;

	TSortPluginViewParamsRev1	iPluginViewParams;

	};

Match any company’s reverse sort

� Please note that the use of _L8 is deprecated and is used in this document as an example only. Please use _LIT8 instead.

� Or use KViewSortPluginDefaultName (defined as "/default") as the final parameter. Note that expressly including "/default" means that if there is no default plug-in, the NewL will Leave.

Copyright © http://creativecommons.org/licenses/by-sa/2.0/uk/
Internal - Symbian
Page 1 of 9
All rights reserved
Copyright © http://creativecommons.org/licenses/by-sa/2.0/uk/
Internal - Symbian
Page 2 of 9
All rights reserved

_1139388098

_1139388101

