
QMTest: User’s Guide and Reference

CodeSourcery, LLC

QMTest: User’s Guide and Reference
by CodeSourcery, LLC
Copyright © 2002-2005 CodeSourcery LLC

I. REQUIREMENTS ON BOTH UNMODIFIED AND MODIFIED VERSIONS

Open Publication work may be reproduced and distributed in whole or in part, in any medium physical or electronic,
provided that the terms of this license are adhered to, and that this license or an incorporation of it by reference is displayed
in the reproduction.

Proper form for incorporation of this license by reference is as follows:

Copyright © 2000, 2001 by CodeSourcery LLC. This material may be distributed only subject to the terms and conditions
set forth in the Open Publication License.

Commercial redistribution of material covered by this license is permitted.

Any publication in standard (paper) book form shall require the citation of the original author and (where applicable)
publisher.

II. COPYRIGHT

The copyright to each Open Publication is owned by its author(s) or designee(s).

III. SCOPE OF LICENSE

The license terms below apply to all Open Publication works.

AGGREGATION. Mere aggregation of Open Publication works or a portion of an Open Publication work with other works
or programs on the same media shall not cause this license to apply to those other works. The aggregate work shall contain a
notice specifying the inclusion of the Open Publication material and appropriate copyright notice.

SEVERABILITY. If any part of this license is found to be unenforceable in any jurisdiction, the remaining portions of the
license remain in force.

NO WARRANTY. Open Publication works are licensed and provided ‘as is’ without warranty of any kind, express or
implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose or a
warranty of non-infringement.

IV. REQUIREMENTS ON MODIFIED WORKS

All modified versions of documents covered by this license, including translations, anthologies, compilations and partial
documents, must meet the following requirements:

1. The modified version must be labeled as such.

2. The person making the modifications must be identified and the modifications dated.

3. Acknowledgement of the original author and publisher if applicable must be retained according to normal academic
citation practices.

4. The location of the original unmodified document must be identified.

5. The original author’s (or authors’) name(s) may not be used to assert or imply endorsement of the resulting document
without the original author’s (or authors’) permission.

V. GOOD-PRACTICE RECOMMENDATIONS

In addition to the requirements of this license, it is requested from and strongly recommended of redistributors that:

1. If you are distributing Open Publication works on hardcopy or CD-ROM, you provide email notification to the authors
of your intent to redistribute at least thirty days before your manuscript or media freeze, to give the authors time to
provide updated documents. This notification should describe modifications, if any, made to the document.

2. All substantive modifications (including deletions) be either clearly marked up in the document or else described in an
attachment to the document.

Finally, while it is not mandatory under this license, it is considered good form to offer a free copy of any hardcopy and
CD-ROM expression of an Open Publication-licensed work to its author(s).

Table of Contents
1. Introduction ..1

2. Getting Started with QMTest ...2

2.1. Setting Up...2
2.2. Starting the Graphical Interface..3
2.3. Running Tests..3
2.4. Setting Expectations..4
2.5. Examining Tests..4
2.6. Modifying and Creating Tests...5
2.7. Using the Command-Line Interface..5
2.8. Expectations on the Command Line...7
2.9. Reviewing Results...8

3. Using QMTest...10

3.1. QMTest Concepts..10
3.1.1. Tests..10
3.1.2. Resources..11
3.1.3. Context...11
3.1.4. Test Results...12

3.1.4.1. Outcomes...12
3.1.4.2. Annotations..12

3.1.5. Test Suite..12
3.1.5.1. Implicit Test Suites..13

3.1.6. Test Database..13
3.1.7. Targets..14

3.2. Running Tests..14
3.2.1. Ordering and Dependencies...14
3.2.2. The Context..15

3.3. Test Database Contents...16
3.4. Invoking QMTest..16

3.4.1.qmtest...16
3.4.1.1. Synopsis...16
3.4.1.2. Options...16

3.4.2.qmtest create...17
3.4.2.1. Summary..17
3.4.2.2. Synopsis...17
3.4.2.3. Description...17
3.4.2.4. Example...18

3.4.3.qmtest create-target..18
3.4.3.1. Summary..18
3.4.3.2. Synopsis...18
3.4.3.3. Description...18

3.4.4.qmtest create-tdb..19
3.4.4.1. Summary..19
3.4.4.2. Synopsis...19
3.4.4.3. Description...19

3.4.5.qmtest gui..20

iv

3.4.5.1. Summary..20
3.4.5.2. Synopsis...20
3.4.5.3. Description...20

3.4.6.qmtest extensions..21
3.4.6.1. Summary..21
3.4.6.2. Synopsis...21
3.4.6.3. Description...21

3.4.7.qmtest register...22
3.4.7.1. Summary..22
3.4.7.2. Synopsis...22
3.4.7.3. Description...22

3.4.8.qmtest run ...22
3.4.8.1. Summary..22
3.4.8.2. Synopsis...22
3.4.8.3. Description...23

3.4.9.qmtest summarize...25
3.4.9.1. Summary..25
3.4.9.2. Synopsis...25
3.4.9.3. Description...25

3.4.10.qmtest report...26
3.4.10.1. Summary..26
3.4.10.2. Synopsis...26
3.4.10.3. Description...26

3.4.11. Environment Variables...26
3.4.12. Configuration Variables..27
3.4.13. Return Value...27

3.5. Test and Resource Classes..27
3.5.1. Test Classes..27

3.5.1.1.command.ExecTest ...27
3.5.1.2.command.ShellCommandTest ..29
3.5.1.3.command.ShellScriptTest ..29

3.6. Test Targets...30
3.6.1. Target Specification..30
3.6.2. Target Classes...30

3.6.2.1.SerialTarget ..30
3.6.2.2.ThreadTarget ..31
3.6.2.3.ProcessTarget ...31
3.6.2.4.RemoteShellTarget ...31

4. Extending QMTest...33

4.1. Extension Classes..33
4.2. Field Classes...34

4.2.1. Built-In Field Classes...34
4.2.2. Writing Field Classes...35

4.3. Writing Test Classes..36
4.4. Writing Resource Classes...37
4.5. Writing Database Classes..37
4.6. Registering an Extension Class...38

v

5. The QM Configuration File ..40

5.1. Configuration Variables...40

vi

Chapter 1. Introduction
QMTest is a testing tool. You can use QMTest to test a software application, such as a database,
compiler, or web browser. You can even QMTest to test a physical system (like a valve or thermometer)
if you have a way of connecting it to your computer.

Code that has not been tested adequately generally does not work. Yet, many applications are deployed
without adequate testing, often with catastrophic results. It is much more costly to find defects at the end
of the release cycle than at the beginning. By making it easy to develop tests, and execute those tests to
validate the application, QMTest makes it easy to find problems easier, rather than later.

QMTest can be extended to handle any application domain and any test format. QMTest works with
existing testsuites, no matter how they work or how they are stored. QMTest’s open and pluggable
architecture supports a wide variety of applications.

QMTest features both an intuitive graphical user interface and a conventional command-line interface.
QMTest can run tests in serial, in parallel on a single machine, or across a farm of possibly
heterogeneous machines.

CodeSourcery provides support for QMTest. CodeSourcery can help you install, integrate, and customize
QMTest. For more information, visit the QMTest web site (http://www.qmtest.com).

1

Chapter 2. Getting Started with QMTest
QMTest is an general-purpose, cross-platform software testing tool. QMTest can be used to test
compilers, databases, graphical user interfaces, or embedded systems. QMTest provides a convenient
graphical user interface for creating, managing, and executing tests, provides support for parallel test
execution, and can be extended in a variety of ways.

This chapter will show you how to use QMTest by example. You will learn how to use QMTest to create
tests, run tests, and examine the results.

2.1. Setting Up
A test database is a directory that QMTest uses to store tests. If you want to create a new, empty test
database from scratch, you use theqmtest create-tdbcommand, but for this tutorial, you should use the
sample test database provided with QMTest. Since you’ll modify the test database later in the tutorial,
start by making a copy of it. Copy the entire test database directory tree to another location. If you’ve
installed QMTest in the default location you can make a copy of the sample database by running this
command on a UNIX system:

> cp -r /usr/qm/tutorial/test/tdb tdb

On a Windows system, use this command at a DOS1 prompt:

> xcopy c:\Python23\qm\tutorial\test\tdb tdb\ /s

The exact paths to use depend on exactly how you have built and installed QMTest. The paths above are
correct for the binary RPM and Windows packages distributed by CodeSourcery. If you build from the
QMTest source distribution, the tutorial may be in another location, such as/usr/local/share/qm .

Then, enter the new directory you have created. On both UNIX and Windows systems, you can do this
with this command:

> cd tdb

Make sure that QMTest is in your PATH so that the operating system can find it. On UNIX, you can use
this command:

> PATH=/usr/bin:${PATH}; export PATH

in the Bourne shell. In the C shell, use:

> setenv PATH /usr/bin:${PATH}

On Windows, use:

2

Chapter 2. Getting Started with QMTest

> PATH C:\Python23\Scripts;%PATH%

If you are not using Python 2.3, replaceC:\Python23 with the directory containing your Python
installation.

In order to avoid having to retype these commands every time you want to use QMTest, you can set up
your system so that these commands are executed automatically when you log in. Consult your system’s
manuals to find out how to do this.

On Windows, every command in this manual that begins withqmtestshould be read as if it starts with
qmtest.py. For example, if this tutorial instructs you to type:

> qmtest run

you should instead type:

> qmtest.py run

on a Windows system.

2.2. Starting the Graphical Interface
To examine the tests in the test database, you can use QMTest’s graphical user interface. To start the
graphical user interface, use theqmtest guicommand, like this:

> qmtest gui

You will see output similar to:

QMTest running at http://127.0.0.1:1158/test/dir

After a moment, a new web browser window will open, and you will see the QMTest graphical user
interface (GUI). If a web browser window does not open, you will have to manually enter the URL that
QMTest printed out (http://127.0.0.1:1158/test/dir in the example above) into your browser.
Alterantively, you can edit yourQM configuration fileto tell QM how to invoke your browser and then
start the GUI again.

As you can see, QMTest creates a graphical user interface using your web browser.

The page you see in your browser shows the contents of the test database. You can see that there are three
tests in the database, namedexec0 , exec1 , andexec2 . You can always click onDirectory under
QMTest’sView menu to see this display.

3

Chapter 2. Getting Started with QMTest

2.3. Running Tests
To run all the tests, chooseAll Tests from theRun menu. QMTest will display the test results page. As
the tests run, this page will be automatically updated. (If you do not want to wait for QMTest to update
the page, you can manually reload the page in your browser.) After a few moments, QMTest will display
the test results for the three tests in the database. The upper part of the screen gives a statistical overview
of the test results. Of the three tests, two passed. However, one test failed. You can use this statistical
information to get a quick overview of your application’s correctness.

In addition to showing you how many tests passed and how many failed, QMTest shows you whether
how many tests hadunexpectedpass or fail outcomes. If you know that certain tests will fail, you can tell
QMTest that they are expected to fail. Then, if you are testing a change to your application, you can
easily see whether your change made things better or worse. As long as there are no unexpected failures,
your change did not cause any problems.

If you have not explicitly set up an expectation for a test, QMTest assumes that the test is expected to
pass. That is why QMTest indicated that there was one unexpected failure when you ran the tests.

Below the statistics section, QMTest displays detailed information about each test. In this case, you can
see that theexec1 test is the one that is failing. You can click on theDetails link to get additional
information about why a particular test is failing.

2.4. Setting Expectations
The easiest way to create expectations is to tell QMTest that you expect future results to be the same as
the results you just obtained. Save the results of your test run by choosingSave Results from theFile
menu. QMTest will prompt you for a file to use to store the results of your test run. If you exit QMTest,
you can reload this file to recover your test results without rerunning the tests.

You can also use this file to set QMTest’s expectations. ChooseLoad Expectations from theFile menu
and provide the same file name that you used when you told QMTest when you asked it to save your
results earlier.

Then, QMTest will redisplay the test results, but now you will see that there are no unexpected failures;
the current results match your expectations.

You can also manually edit expectations. Click on theExpectation link next to a particular test to set the
expectation. To set the expectation forexec1 back toPASS, click on theExpectation link next to
exec1 , choosePASS, and click theOK button. You will see that now theexec1 failure is unexpected
again. You can save your expectations by choosingSave Expectations from theFile menu.

2.5. Examining Tests
Click on theexec1 label to examine the failing test. QMTest will display information about the test. The
most important information about the test is itstest class. This test is an instance of the
python.ExecTest class. The test class indicates what kind of testexec1 is. QMTest gives a brief
description of the test class in the GUI; apython.ExecTest checks that a Python expression evaluates
to true.

4

Chapter 2. Getting Started with QMTest

For more details about the test class, you can click on theHelp link to the right of the description.
QMTest will pop up a window that describes the test in more detail. In summary, apython.ExecTest

executes some setup code. Then, a Python expression is evaluated. If the expression evaluates to true, the
test passes; otherwise, it fails.

The setup code and the expression are theargumentsto the test class. Every test class takes arguments;
the arguments are what differentiate one instance of a test class from another. QMTest displays the
arguments for theexec1 test in the GUI. In this case, the sequence of statements is simply the single
statementx = 2 , which assigns2 to the variablex . The expression isx + x == 5 , which comparesx
+ x with 5. Sincex is 2 in this case, this expression evaluates to false. That is why the test fails.

You can click on theHelp link next to each argument to get more details about exactly what the
argument is for.

2.6. Modifying and Creating Tests
To fix the test, you need to change the arguments to the test. SelectEdit Test from theEdit menu.
QMTest will display a form that allows you to change the arguments to the test.

Change the second argument, labeled "Python Expression," tox + x == 4 . Then click on theOK
button at the bottom of the page to save your changes. ChooseThis Test from theRun menu and
observe that the test now passes.

Creating a new test works in a similar way. ChooseDirectory under theView menu to return to the main
QMTest page. Then, selectNew Test from theFile menu to create a new test. QMTest displays a form
that contains two fields: the test name, and the test class. The test name identifies the test; the test class
indicates what kind of test will be created.

Test names must be composed entirely of lowercase letters, numbers, the “_” character, and the “.”
character. You can think of test names like file names. The “.” character takes the place of “/” on UNIX
or “\” on Windows; it allows you to place a test in a particulardirectory. For example, the test name
a.b.c names a test namedc in the directorya.b . The directorya.b is a subdirectory of the directorya.
By organizing your tests in directories, you will make it easier to keep track of your tests. In addition,
QMTest can automatically run all the tests in a particular directory, so by using directories you will make
it easy to run a group of related tests at once.

Entercommand.test1 for the test name. This will create a new test namedtest1 in thecommand

directory. Choosecommand.ShellCommandTest as the test class. This kind of test runs a command
and compares its actual output against the expected output. If they match, the test passes. This test class
is useful for testing many programs. Click on theNext button to continue.

Now, QMTest will present you with a form that looks just like the form you used to editexec1 , except
that the arguments are different. The arguments are different because you’re creating a different kind of
test. Enterecho test in theCommand field. This command will produce an output (the wordtest),
so find theStandard Output box and entertest in this box. When you are done, click theOK button at
the bottom of the form.

Now you can selectThis Test from theRun menu to run the test.

When you’re done experimenting with QMTest, chooseExit from theFile menu.

5

Chapter 2. Getting Started with QMTest

2.7. Using the Command-Line Interface
All of QMTest’s functionality is available from the command-line, as well as in the graphical user
interface. When you invokeqmteston the command line, you specify a command argument, which tells
the program which action to perform. Some commands require additional options and arguments, which
you place after the command. There are a few options that apply to all commands; to use these options
place them before the command name. For example, in the command:

> qmtest -D . run -f full exec1

the-D . option is a generalqmtestoption,run is the QMTest command, the-f full applies to the
run command, andexec1 is an argument to the run command. This command tests QMTest to run the
exec1 test from the test database intdb , and to use thefull format when displaying the results.

To see a list of available commands, and general options toqmtest, invoke it with the--help (or -h)
option. To see a description of each command, and additional options specific to that command, invoke
qmtestcommand --help.

By this point, you have modified the test database using the GUI and have fixed the failing test. Recreate
the original database now by removing and recreating thetdb directory. On a UNIX system use these
commands:

> cd ..
> rm -rf tdb
> cp -r /usr/local/share/qm/tutorial/test/tdb tdb
> cd tdb

On a Windows system, use these commands instead:

> cd ..
> rmdir /s tdb
> xcopy c:\Python23\qm\tutorial\test\tdb tdb\ /s
> cd tdb

The command for running tests isqmtest run. Assuming you made a copy of the example test database
as described in the previous section, execute the following command to run all the tests in the database:

> qmtest run

QMTest runs the tests, and prints a summary of the test run:

--- TEST RESULTS ---

exec0 : PASS

exec1 : FAIL

Expression evaluates to false.

6

Chapter 2. Getting Started with QMTest

ExecTest.expr:

x + x == 5

ExecTest.value:

0

qmtest.target:

local

exec2 : PASS

--- TESTS THAT DID NOT PASS --

exec1 : FAIL

Expression evaluates to false.

--- STATISTICS ---

3 tests total

1 (33%) tests FAIL

2 (67%) tests PASS

QMTest shows you the result of the tests as they execute. Then, there is a summary description
containing statistics similar to those shown in the graphical user interface. Finally, QMTest lists the tests
that did not pass, along with the cause of the failure.

2.8. Expectations on the Command Line
When you run QMTest on the command line, it automatically creates a results file calledresults.qmr .
You can specify a different filename with the-o option. Run this command:

> qmtest run -o expected.qmr

to save the results to a file namedexpected.qmr instead of the defaultresults.qmr .

Now, when you rerun the tests you can tell QMTest to useexpected.qmr as theexpected results file,
like this:

> qmtest run -O expected.qmr

QMTest will rerun the tests, but this time it will not mention the failure ofexec1 . The output will look
like:

--- TEST RESULTS ---

exec0 : PASS

7

Chapter 2. Getting Started with QMTest

exec1 : XFAIL

Expression evaluates to false.

ExecTest.expr:

x + x == 5

ExecTest.value:

0

qmtest.target:

local

exec2 : PASS

--- TESTS WITH UNEXPECTED OUTCOMES ---

None.

--- STATISTICS ---

3 tests total

3 (100%) tests as expected

Note that QMTest indicates that there were no tests with unexpected outcomes, even thoughexec1 still
fails. TheXFAIL notation indicates that the test failed, but that failure was expected. In contrast,XPASS

means that a test passed unexpectedly.

2.9. Reviewing Results
You can use the results file generated by QMTest to get additional information about the tests that failed.
The default results file name isresults.qmr and is placed in the directory where you ran QMTest.

To examine the results file, use thesummarizecommand, like this:

> qmtest summarize -f full

The-f full option indicates that the output should be displayed in more detail. The output will look
like:

--- TEST RESULTS ---

exec0 : PASS

qmtest.target:

local

exec1 : FAIL

8

Chapter 2. Getting Started with QMTest

Expression evaluates to false.

ExecTest.expr:

x + x == 5

ExecTest.value:

0

qmtest.target:

local

exec2 : PASS

qmtest.target:

local

--- TESTS THAT DID NOT PASS --

exec1 : FAIL

Expression evaluates to false.

--- STATISTICS ---

3 tests total

1 (33%) tests FAIL

2 (67%) tests PASS

The detailed information indicates what went wrong. The test value was0 which is considered false by
Python. The information displayed by the “full” format is domain-dependent; it depends on the kind of
application you are testing. The tests in the sample database test basic functionality of the Python
interpreter, so the full report contains information about Python concepts called exceptions and
tracebacks. If you were testing a different application, the full report would contain different information.
For example, if you were testing a database, the detailed results might refer to queries and records.

Notes
1. Under Windows, you must use the standard Windows command shell (DOS) to run QMTest;

alternative shells (such as Cygwin) will not work with QMTest.

9

Chapter 3. Using QMTest
This chapter describes QMTest in more detail. It explains the fundamental concepts that QMTest uses,
the test classes that come with QMTest, and how to extend QMTest to support new application domains.

The central principle underlying the design of QMTest is that the problem of testing can be divided into a
domain-dependent problem and a domain-independent problem. The domain-dependent problem is
deciding what to test and how to test it. For example, should a database be tested by performing unit tests
on the C code that makes up the database, or by performing integration tests using SQL queries? How
should the output of a query asking for a set of records be compared to expected output? Does the order
in which records are presented matter? These are questions that only someone who understands the
application domain can answer.

The domain-independent part of the problem is managing the creation of tests, executing the tests, and
displaying the results for users. For example, how does a user create a new test? How are tests stored?
Should failing tests be reported to the user, even if the failure was expected? These questions are
independent of the application domain; they are just as relevant for compiler tests as they are for database
tests.

QMTest is intended to solve the domain-independent part of the problem and to offer a convenient,
powerful, and flexible interface for solving the domain-dependent problem. QMTest is both a complete
application, in that it can be used “out of the box” to handle many testing domains, and infrastructure, in
that it can be extended to handle other domains.

3.1. QMTest Concepts
This section presents the concepts that underlie QMTest’s design. By understanding these concepts, you
will be able to better understand how QMTest works. In addition, you will find it easier to extend
QMTest to new application domains.

3.1.1. Tests
A testchecks for the correct behavior of the target application. What constitutes correct behavior will
vary depending on the application domain. For example, correct behavior for a database might mean that
it is able to retrieve records correctly while correct behavior for a compiler might mean that it generates
correct object code from input source code.

Every test has a name that uniquely identifies the test, within a giventest database. Test names must be
composed entirely of lowercase letters, numbers, the “_” character, and the “.” character. You can think
of test names like file names. The “.” character takes the place of “/”; it allows you to place a test in a
particulardirectory. For example, the test namea.b.c names a test namedc in the directorya.b . The
directorya.b is a subdirectory of the directorya.

Every test is an instance of some test class. The test class dictates how the test is run, what constitutes
success, and what constitutes failure. For example, thecommand.ExecTest class that comes with
QMTest executes the target application and looks at its output. The test passes if the actual output exactly
matches the expected output.

10

Chapter 3. Using QMTest

The arguments to the test parameterize the test; they are what make two instances of the same test class
different from each other. For example, the arguments tocommand.ExecTest indicate which
application to run, what command-line arguments to provide, and what output is expected.

Sometimes, it may be pointless to run one test unless another test has passed. Therefore, each test can
have a set of associatedprerequisite tests. If the prerequisite tests did not pass, QMTest will not run the
test that depends upon them.

3.1.2. Resources
Some tests take a lot of work to set up. For example, a database test that checks the result of SQL queries
may require that the database first be populated with a substantial number of records. If there are many
tests that all use the same set of records, it would be wasteful to set up the database for each test. It would
be more efficient to set up the database once, run all of the tests, and then remove the databases upon
completion.

You can use aresourceto gain this efficiency. If a test depends on a resource, QMTest will ensure that
the resource is available before the test runs. Once all tests that depend on the resource have been run
QMTest will destroy the resource.

Just as every test is an instance of atest class, every resource is an instance of aresource class. The
resource class explains how to set up the resource and how to clean up when it is no longer needed. The
arguments to the resource class are what make two instances of the same resource class different from
each other. For example, in the case of a resource that sets up a database, the records to place in the
database might be given as arguments. Every resource has a name, using the same format that is used for
tests.

Under some circumstances (such as running tests on multiple machines at once), QMTest may create
more than one instance of the same resource. Therefore, you should never depend on there being only
one instance of a resource. In addition, if you have asked QMTest to run tests concurrently, two tests may
access the same resource at the same time. You can, however, be assured that there will be only one
instance of a particular resource on a particular target at any one time.

Tests have limited access to the resources on which they depend. A resource may place additional
information into the context (Section 3.1.3) that is visible to the test. However, the actual resource object
itself is not available to tests. (The reason for this limitiation is that for a target consisting of multiple
processes, the resource object may not be located in the process as the test that depends upon it.)

Setting up or cleaning up a resource produces a result, just like those produced for tests. QMTest will
display these results in its summary output and record them in the results file.

3.1.3. Context
When you create a test, you choose arguments for the test. The test class uses this information to run the
test. However, the test class may sometimes need information that is not available when the test is
created. For example, if you are writing compiler tests to verify conformance with the C programming
language specification, you do not know the location of the C compiler itself. The C compiler may be
installed in different locations on different machines.

11

Chapter 3. Using QMTest

A contextgives users a way of conveying this kind of information to tests. The context is a set of
key/value pairs. The keys are always strings. The values of all context properties provided by the user are
strings. In general, all tests in a given use of QMTest will have the same context. However, when a
resource is set up, it may place additional information in the context of those tests that depend upon it.
The values inserted by the resource may have any type, so long as they can be "pickled" by Python.

All context properties whose names begin with "qmtest. " are reserved for use by QMTest. The values
inserted by QMTest may have any type. Test and resource classes should not depend on the presence or
absence of these properites.

3.1.4. Test Results
A result is anoutcometogether with someannotations. The outcome indicates whether the test passed or
failed. The annotations give additional information about the result, such as the manner in which the test
failed, the output the test produced, or the amount of time it took to run the test.

3.1.4.1. Outcomes

The outcome of a test indicates whether it passed or failed, or whether some exceptional event occurred.
There are four test outcomes:

• PASS: The test succeeded.

• FAIL: The test failed.

• ERROR: A problem occurred in the test execution environment, rather than in the tested system. For
example, this outcome is used when the test class attempted to run an executable in order to test it, but
could not because the system call to create a new process failed.

This outcome may also indicate a defect in QMTest or in the test class.

• UNTESTED: QMTest did not attempt to execute the test. For example, this outcome is used when
QMTest determines that a prerequisite test failed.

3.1.4.2. Annotations

An annotation is a key/value pair. Both the keys and values are strings. The value is HTML. When a test
(or resource) runs it may add annotations to the result. These annotations are displayed by QMTest and
preserved in the results file. If you write your own test class, you can use annotations to store information
that will make your test class more informative.

12

Chapter 3. Using QMTest

3.1.5. Test Suite
A test suiteis a collection of tests. QMTest can run an entire test suite at once, so by grouping tests
together in a test suite, you make it easier to run a number of tests at once. A single test can be a member
of more than one test suite. A test suite can contain other test suites; the total set of tests in a test suite
includes both those tests included directly and those tests included as part of another test suite. Every test
suite has a name, following the same conventions given above for tests and resources.

One use of test suites is to provide groups of tests that are run in different situations. For example, the
nightly test suite might consist of those tests that should be run automatically every night, while the
checkin test suite might consist of those tests that have to pass before any changes are made to the
target application.

3.1.5.1. Implicit Test Suites

Section 3.1.1explains how you may arrange tests in a tree hierarchy, using a period (“. ”) as the path
separator in test names. QMTest defines animplicit test suitefor each directory. The name of these
implicit test suites is the same as the name of the directory. The implicit test suite corresponding to a
directory contains all tests in that directory or its subdirectories.

Consider, for example, a test database which contains tests with these names:

back_end.db_1
back_end.db2
front_end.cmdline
front_end.gui.widget_1
front_end.gui.widget_2

For this test database, QMTest defines implicit test suites with IDsback_end , front_end , and
front_end.gui . The test suitefront_end contains the testsfront_end.cmdline ,
front_end.gui.widget_1 , andfront_end.gui.widget_2 .

The suite named ". " (a single period) is the implicit test suite corresponding to the root directory in the
test database. This suite therefore contains all tests in the database. For example, the command

> qmtest run .

is equivalent to:

> qmtest run

Both commands run all tests in the database.

3.1.6. Test Database
A test databasestores tests, test suites, and resources. When you ask QMTest for a particular test by
name, it queries the test database to obtain the test itself. QMTest stores a test database in a single
directory, which may include many files and subdirectories.

13

Chapter 3. Using QMTest

In general, QMTest can only use one test database at a time. However, it is possible to create a test
database which contains other test databases. This mechanism allows you to store the tests associated
with different parts of a large application in different test databases, and still combine them into a single
large test database when required.

A single test database can store many different kinds of tests. By default, QMTest stores tests, resources,
and test suites in the test database using subdirectories containing XML files. Generally, there should be
no need to examine or modify these files directly. However, the use of an XML format makes it easy for
you to automatically generate tests from another program, if required.

3.1.7. Targets
A target is QMTest’s abstraction of a machine. By using multiple targets, you can run your tests on
multiple machines at one. If you have many tests, and many machines, you can greatly reduce the
amount of time it takes to run all of your tests by distributing the tests across multiple targets.

By default, QMTest uses only one target: the machine on which you are running QMTest. You may
specify other targets by creating a target file, which lists the available targets and their attributes, and
specifying the target file when you invokeqmtest.

Each target is a member of a singletarget group. All machines in the same target group are considered
equivalent. A target group is specified by a string. If you are testing software on multiple platforms at
once, the target group might correspond to machines running the same operating system. For example,
all Intel 80386 compatible machines running GNU/Linux might be in the “i386-pc-linux-gnu ” target
group.

Section 3.6describes how you specify and use targets with QMTest.

3.2. Running Tests
To run one or more tests, use theqmtest run command. Each invocation of theqmtest run command is
a single test run, and produces a single set of test results and statistics. Specify as arguments the names of
tests and test suites to run. Even if you specify a test more than once, either directly or by incorporation
in a test suite, QMTest runs it only once.

If you wish to run all tests in the test database, use the implicit test suite. (a single period; seeSection
3.1.5.1), or omit all IDs from the command line.

QMTest can run tests in multiple concurrent threads of execution or on multiple remote hosts. See the
documentation for therun commandfor details.

3.2.1. Ordering and Dependencies
Given one or more input test names and test suite names, QMTest employs the following procedure to
determine which tests and resources to run and the order in which they are run.

14

Chapter 3. Using QMTest

1. QMTest resolves test names and test suite names. Test suites are expanded into the tests they
contain. Since test suites may contain other test suites, this process is repeated until all test suites
have been expanded. The result is a set of tests that are to be run.

2. QMTest computes a schedule for running the tests to be run such that a test’s prerequisites are run
before the test itself is run. Prerequisites not included in the test run are ignored. Outside of this
condition, the order in which tests are run is undefined.

If QMTest is invoked to run tests in parallel or distributed across severaltargets, the tests are
distributed among them as well. QMTest does not guarantee that a test’s prerequisites are run on the
same target, though. On each target, tests are assigned to the next available concurrent process or
thread.

3. QMTest determines the required resources for the tests to be run. If several tests require the same
resource, QMTest attempts to run all of the tests on the same target. In this case, the resource is set
up and cleaned up only once. In some cases, QMTest may schedule the tests on multiple targets; in
that case, the resource is set up and cleaned up once on each target.

In some cases, a test, resource setup function, or resource cleanup function is not executed:

• A test specifies for each of its prerequisite tests an expected outcome. If the prerequisite is included in
the test run and the actual outcome of the prerequisite test is different from the expected outcome, the
test is not run. Instead, it is given an UNTESTED outcome.

If a test’s prerequisite is not included in the test run, that prerequisite is ignored.

• If a setup function for one of the resources required by a test fails, the test is given an UNTESTED
outcome.

• The cleanup function of a resource is run after the last test that requires that resource, whether or not
that test was run. The cleanup function is run even if the setup function failed.

3.2.2. The Context
QMTest passes a context object to theRun method of a test that is run and to theSetUp method of a
resource.

Most of the properties of the context are the same for all tests and resource functions run during a single
test run. These properties are configured as part of the test run. For example, when you run tests using the
qmtest run command, you may specify individual context properties with the--context (-c) or
--load-context (-C) options.

In addition, a resource setup function may add additional properties to a context. These added properties
do not become part of the common context; they are hidden from other tests and resources except that the
properties added by a resource are visible to tests that require that resource.

For instance, a resourceSetUp function might allocate the resource and place a handle to it (for instance,
a temporary directory name or a database session key) in the context as a context property. Tests that
require that resource have access to the temporary resource via the handle stored in the context. The

15

Chapter 3. Using QMTest

resource’s cleanup function also uses the handle to deallocate the resource. That information should be
stored in the resource object itself since no context is made available to theCleanUp .

3.3. Test Database Contents
The default QMTest test database implementation stores the database as a directory hierarchy containing
XML files. Each QMTest subdirectory is represented by a subdirectory in the filesystem. A test, suite, or
resource is represented by an XML file. These files have file extensions.qmt , .qms , and.qma ,
respectively.

Expert QMTest users may modify the contents of the test database directly by editing these files.
However, it is the user’s responsibility to ensure the integrity and validity of the XML contents of each
file. For example, file and directory names should contain only characters allowed in identifiers
(lower-case letters, digits, hyphens, and underscores); a period should only be used before a file
extension, such as.qmt . Also, the files and directories in a test database should not be modified directly
while QMTest is running with that test database.

3.4. Invoking QMTest
All QMTest functionality is available using theqmtestcommand.

3.4.1. qmtest

3.4.1.1. Synopsis

qmtest [option ...] command [command-option ...] [argument ...]

3.4.1.2. Options

These options can be used with any QMTest command, and must precede the command name on the
command line.

All options are available in a "long form" prefixed with "--" (two hyphens). Some options also may be
specified in a "short form" consisting of a single hyphen and a one-letter abbreviation. Short-form
options may be combined; for example,-abc is equivalent to-a -b -c.

-D path
--tdb path

Use the test database located in the directory given bypath . This flag overrides the value of the
environment variable QMTEST_DB_PATH. If neither this flag nor the environment variable is
specified, QMTest assumes that the current directory should be used as the database. SeeSection
3.1.6.

16

Chapter 3. Using QMTest

-h

--help

Display help information, listing commands and general options for theqmtestcommand.

--version

Describe the version of QMTest in use.

Additional options are available for specific commands; these are presented with each command. Options
specific to a command must follow the command on the command line. Specify the--help (-h) option
after the command for a description of the command and a list of of available options for that command.

3.4.2. qmtest create

3.4.2.1. Summary

Create a new extension instance.

3.4.2.2. Synopsis

qmtest create [option ...] kind descriptor

3.4.2.3. Description

Theqmtest createcreates a new extension instance. For example, this command can be used to create a
new test or resource. For a list of the kinds of extensions supported by QMTest, runqmtest extensions.
Thekind must be one of these extension kinds.

The descriptor specifies an extension class and (optionally) attributes for that extension class. The form
of the descriptor isclass (attributes), where the attributes are of the formattr = " val " . If there
are no attributes, the parentheses may be omitted.

Theclass may be either the path to an extension file or a QMTest class name in the form
module.class . If the class is the path to an extension file (such as an existing test or resource file),
the class name used is the one provided in the file; otherwise the class named used is the name provided
on the command line.

The attributes used to construct the extension instance come from three sources: the attributes in the
extension file (if theclass is the path to an extension file), the--attribute options provided on the
command line, and the explicit attributes provided in the descriptor. If multiple values for the the same
attribute name are provided, the value used is taken from the first source in the following list for which
there is a value: the rightmost attribute provided in the descriptor, the extension file, or the rightmost
--attribute present on the command line.

The new extension file is written to the file specified with the--output option, or to the standard output
if no --output is specified.

17

Chapter 3. Using QMTest

Thecreatecommand accepts these options:

-a name=value
--attribute name=value

Set the target class argumentname to value . The set of valid argument names and valid values is
dependent on the extension class in use.

-o file
--output file

Write a description of the extension instance tofile .

3.4.2.4. Example

This command:

qmtest create -a format=stats -o rs
result_stream text_result_stream.TextResultStream(filename="rs")

creates a file calledrs containing an instance ofTextResultStream .

3.4.3. qmtest create-target

3.4.3.1. Summary

Create a new target.

3.4.3.2. Synopsis

qmtest create-target [option ...] name class [group]

3.4.3.3. Description

Theqmtest create-targetcommand creates a new target. A target is an entity that runs tests; normally, a
target corresponds to a particular machine.

The target’s name and class must be specified. An optional group may also be specified. When QMTest
decides which target to use to run a particular tests, it will select a target that matches the test’s requested
target group.

Thecreate-targetcommand accepts these options:

18

Chapter 3. Using QMTest

-a name=value
--attribute name=value

Set the target class argumentname to value . The set of valid argument names and valid values is
dependent on the target class in use.

-T file
--targets file

Write the target description to the indicatedfile . If there are already targets listed infile , they
will be preserved, except that any target with the same name as the new target will be removed. If
this option is not present, the file used will be theQMTest/targets file in the test database
directory.

3.4.4. qmtest create-tdb

3.4.4.1. Summary

Create a new test database.

3.4.4.2. Synopsis

qmtest create-tdb [option ...]

3.4.4.3. Description

Theqmtest create-tdbcommand creates a new, empty test database. A test database is a directory in
which QMTest stores configuration files, tests, and other data. Certain test database classes may also
store data elsewhere, such as in an external relational database.

The test database is created in the directory specified by--tdb (-D) option or by setting the
QMTEST_DB_PATH environment variable. If no database path is specified, QMTest assumes that the
current directory is the test database.

By default, QMTest creates a new test database that uses the standard XML-based implementation. (See
Section 4.5for information about writing a test database class.)

Thecreate-tdbcommand accepts these options:

-a name=value
--attribute name=value

Set the database attributename to value . The set of attribute names and valid values is dependent
on the database class in use. The default database class accepts no attributes.

19

Chapter 3. Using QMTest

-c class
--class class

Use the test database class given byclass . Theclass may have the general form described in
Section 3.4.2. Once you create a test database, you cannot change the test database implementation
it uses. If you do not use this option, QMTest will use the default test database implementation,
which uses an XML file format to store tests.

3.4.5. qmtest gui

3.4.5.1. Summary

Start the graphical user interface.

3.4.5.2. Synopsis

qmtest gui [option ...]

3.4.5.3. Description

Theqmtest guistarts the graphical user interface. The graphical user interface is accessed through a web
browser. You must have a web browser that supports JavaScript to use the graphical interface. QMTest
has been tested with recent versions of Internet Explorer and Netscape Navigator. Other web browsers
may or may nor work with QMTest.

Thegui command accepts these options:

-A address
--address address

Bind the server to the indicated internetaddress , which should be a dotted quad. By default, the
server binds itself to the address127.0.0.1 , which is the address of the local machine. If you
specify another address, the server will be accessible to users on other machines. QMTest does not
perform any authentication of remote users, so you should not use this option unless you have a
firewall in place that blocks all untrusted users.

-c name=value
--context name=value

For details about this option, see the description of theqmtest run command.

-C file
--load-context file

For details about this option, see the description of theqmtest run command.

20

Chapter 3. Using QMTest

--daemon

Run the QMTest GUI as a daemon. In this mode, QMTest will detach from the controlling terminal
and run in the background until explicitly shutdown.

-j count
--concurrency count

For details about this option, see the description of theqmtest run command.

--no-browser

Do not attempt to start a web browser when starting the GUI. QMTest will still print out the URL at
which the server can be accessed. You can then connect to this URL manually using the browser of
your choice.

-O file
--outcomes file

For details about this option, see the description of theqmtest run command.

--pid-file path

Specify thepath to which the QMTest GUI will write its process ID. This option is useful if you
want to run QMTest as a daemon. If this option is not provided, no PID file is written. If you specify
this option, butpath is the empty string, QMTest will check the.qmrc configuration file for a
pid-file entry. If there is no such entry, QMTest will use an appropriate platform-specific default
value.

--port port

Specify theport on which the QMTest GUI will listen for connections. If this option is not
provided, QMTest will select an available port automatically.

-T file
--targets file

For details about this option, see the description of theqmtest run command.

3.4.6. qmtest extensions

3.4.6.1. Summary

List available extension classes.

3.4.6.2. Synopsis

qmtest extensions[option ...]

21

Chapter 3. Using QMTest

3.4.6.3. Description

Theqmtest extensionslists available extension classes and provides a brief description of each class.
You can use this command to list all of the available extension classes, or to list all of the available
extension classes of a particular type. For example, you can use this command to list all of the available
test classes.

Theextensionscommand accepts these options:

-k kind
--kind kind

List the available extension classes of the indicatedkind . Thekind must be one oftest ,
resource , target , or database .

3.4.7. qmtest register

3.4.7.1. Summary

Register an extension class.

3.4.7.2. Synopsis

qmtest register kind class-name

3.4.7.3. Description

Theqmtest registerregisters an extension class with QMTest. As part of this process, QMTest will load
your extension class. If the extension class cannot be loaded, QMTest will tell you what went wrong.

QMTest will search for your extension class in the directories it would search when running tests,
including those given by the environment variable QMTEST_CLASS_PATH.

Thekind argument tells QMTest what kind of extension class you are registering. If you invokeqmtest
register with no arguments it will provide you with a list of the available extension kinds.

Theclass-name argument gives the name of the class in the formmodule.Class . QMTest will look
for a file whose basename is the module name and whose extension is eitherpy , pyc , or pyo .

3.4.8. qmtest run

3.4.8.1. Summary

Run tests or test suites.

22

Chapter 3. Using QMTest

3.4.8.2. Synopsis

qmtest run [option ...] [test-name | suite-name]...

3.4.8.3. Description

Theqmtest run command runs tests and displays the results. If no test or suite names are specified,
QMTest runs all of the tests in the test database. If test or suite names are specified, only those tests or
suites are run. Tests listed more than once (directly or by inclusion in a test suite) are run only once.

Therun command accepts these options:

-c name=value
--context name=value

Add a property to thetest execution context. The name of the property isname, and its value is set
to the stringvalue .

This option may be specified multiple times.

-C file
--load-context file

Read properties for thetest execution contextfrom the filefile .

The file should be a text file with one context property on each line, in the formatname=value .
Leading and trailing whitespace on each line are ignored. Also, blank lines and lines that begin with
"#" (a hash mark) are ignored as comments.

This option may be specified more than once, and used in conjunction with the--context option.
All of the context properties specified are added to the eventual context. If a property is set more
than once, the last value provided is the one used.

If this option is not specified, but a file namedcontext exists in the current directory, that file is
read. The properties specified in this file are processed first; the values in this file can be overridden
by subsequent uses of the--context option on the command line.

-f format
--format format

Control the format used when displaying results. The format specified must be one offull , brief ,
stats , batch , or none . Thebrief format is the default if QMTest was invoked interactively; the
batch format is the default otherwise. In thefull format, QMTest displays any annotations
provided in test results. In thebrief mode only the causes of failures are shown; detailed
annotations are not shown. In thestats format, no details about failing tests are displayed; only
statistics showing the number of passing and failing tests are displayed. In thebatch mode, the
summary is displayed first, followed by detailed results for tests with unexpected outcomes. In the
none mode, no results are displayed, but a results file is still created, unless the--no-output

option is also provided.

23

Chapter 3. Using QMTest

-j count
--concurrency count

Run tests in multiplecount concurrent processes on the local computer. On multiprocessor
machines, the processes may be scheduled to run in parallel on different processors. QMTest
automatically collects results from the processes and presents combines test results and summary.
By default, one process is used.

This option may not be combined with the--targets (-T) option.

--no-output

Do not produce a test results file.

-o file
--output file

Write full test results tofile . Specify "- " (a hyphen) to write results to standard output. If neither
this option nor--no-output is specified, the results are written to the file namedresults.qmr in
the current directory.

-O file
--outcomes file

Treatfile as a set of expected outcomes. Thefile must have be a results file created either by
qmtest run, or by saving results in the graphical user interface. QMTest will expect the results of
the current test run to match those specified in thefile and will highlight differences from those
results.

--random

Run the tests in a random order.

This option can be used to find hidden dependencies between tests in the testsuite. (You may not
notice the dependencies if you always run the tests in the same order.)

--rerun file

Rerun only those tests that had unexpected outcomes.

The tests run are determined as follows. QMTest starts with all of the tests specified on the
command line, or, if no tests are explicitly specified, all of the tests in the database. If no
expectations file is specified (see the description of the--outcomes option), then all tests that
passed in the results file indicated by the--rerun option are removed form the set of eligible tests.
If an expectations file is specified, then the tests removed are tests whose outcome in the results file
indicated by the--rerun option is the same as in the expectations file.

The--rerun provides a simple way of rerunning failing tests. If you run your tests and notice
failures, you might try to fix those failing tests. Then, you can rerun the failing tests to see if you
succeeded by using the--rerun option.

24

Chapter 3. Using QMTest

--result-stream descriptor

Specify an additional output result stream. The descriptor is in the format described inSection 3.4.2.

--seed integer

If the --random is used, QMTest randomizes the order in which tests are run, subject to the
constraints described inSection 3.2.1. By default, the random number generator is seeded using the
system time.

For debugging purposes, it is sometimes necessary to obtain a reproducible sequence of tests. Use
the--seed option to specify the seed for the random number generator.

Note that even with the same random number seed, if tests are run in parallel, scheduling
uncertainty may still produce variation in the order in which tests are run.

-T file
--targets file

Use targets specified in target specification filefile . If this option is not present, the
QMTest/targets in the test database directory will be used. If that file is not present, the tests will
be run in serial on the local machine.

3.4.9. qmtest summarize

3.4.9.1. Summary

Theqmtest summarizedisplays information stored in a results file.

3.4.9.2. Synopsis

qmtest summarize [option ...] [test-name | suite-name]...

3.4.9.3. Description

Theqmtest summarizeextracts information stored in a results file and displays this information on the
console. The information is formatted just as if the tests had just been run, but QMTest does not actually
run the tests.

Thesummarizecommand accepts the following options:

-f format
--format format

For details about this option, see the description of theqmtest run command.

25

Chapter 3. Using QMTest

-O file
--outcomes file

For details about this option, see the description of theqmtest run command.

--result-stream descriptor

Specify an additional output result stream. The descriptor is in the format described inSection 3.4.2.

3.4.10. qmtest report

3.4.10.1. Summary

Theqmtest report generates an xml report from a set of test result files.

3.4.10.2. Synopsis

qmtest report -o [output] [report-file [-e expectation-file] ...]

3.4.10.3. Description

Theqmtest report extracts information stored in one or more result files and generates an xml report file
from it. This report file is then typically processed using xslt to generate html or pdf versions of the
report.

Thereport command accepts the following options:

-o output file
--output output-file

The name of the file to write the report into.

3.4.11. Environment Variables
QMTest recognizes the following environment variables:

QMTEST_CLASS_PATH

If this environment variable is set, it should contain a list of directories in the same format as used
for the system’s PATH environment variable. These directories are searched (before the directories
that QMTest searches by default) when looking for extension classes such as test classes and
database classes.

26

Chapter 3. Using QMTest

QMTEST_DB_PATH

If this environment variable is set, its value is used as the location of the test database, unless the
--tdb (-D) option is used. If this environment variable is not set and the--tdb option is not used,
the current directory is used as the test database.

3.4.12. Configuration Variables
These configuration variables are used by QMTest. You should define them in the[qmtest] section of
your QM configuration file.

pid-file

The default path to use when creating a PID file with the--pid-file option. (SeeSection 3.4.5
for more information about this option.) If this entry is not present, an appropriate platform-specific
default value is used.

3.4.13. Return Value
If QMTest successfully performed the action requested, QMTest returns 0. For theqmtest run or qmtest
summarizecommands, success implies not only that the tests ran, but also that all of the tests passed (if
the--outcomes option was not used) or had their expected outcomes (if the--outcomes option was
used).

If either therun command or thesummarizecommand was used, and at least one test failed (if the
--outcomes option was not used) or had an unexpected outcome (if the--outcomes option was used),
qmtest returns 1.

If QMTest could not perform the action requested,qmtest returns 2.

3.5. Test and Resource Classes
This section describes test classes and resource classes included with QMTest.Section 4.3provides
instructions for writing your own test classes,Section 4.4for resource classes.

3.5.1. Test Classes

3.5.1.1. command.ExecTest

Thecommand.ExecTest test class runs a program from an ordinary executable file. Each test specifies
the program executable to run, its full command line, and the data to feed to its standard input stream.

27

Chapter 3. Using QMTest

ExecTest collects the complete text of the program’s standard output and standard error streams and the
program’s exit code, and compares these to expected values specified in the test. If the standard output
and error text and the exit code match the expected values, the test passes.

A command.ExecTest test supplies the following arguments:

Program (text field)

The name of the executable file to run.command.ExecTest attempts to locate the program
executable in the path specified by the path property of the test context.

Argument List (set of strings)

The argument list for the program. The elements of this set are sequential items from which the
program’s argument list is constructed.command.ExecTest automatically prepends an implicit
zeroth element, the full path of the program.

Standard Input (text field)

Text or data to pass to the program’s standard input stream. This data is written to a temporary file,
and the contents of the file are directed to the program’s standard input stream.

Environment (set of strings)

The environment (i.e. the set of environment variables) available to the executing program. Each
element of this argument is a string of the form "VARIABLE=VALUE".

command.ExecTest adds additional environment variables automatically.

In addition, every context property whose value is a string is accessible as an environment variable;
the name of the environment variable is the name of the context property, prefixed with "QMV_"
and with any dots (".") replaced by a double underscore ("__"). For example, the value of the
context property "CompilerTable.c_path" is available as the value of the environment variable
"QMV_CompilerTable__c_path".

Expected Exit Code (integer field)

The exit code value expected from the program. If the program produces an exit code value
different from this one, the test fails.

Expected Standard Output (text field)

The text or data which the program is expected to produce on its standard output stream. The actual
text or data written to standard output is captured, andcommand.ExecTest performs a bytewise
comparison to the expected text or data. If they do not match, the test fails.

28

Chapter 3. Using QMTest

Expected Standard Error (text field)

The text or data which the program is expected to produce on its standard error stream. The actual
text or data written to standard error is captured, andcommand.ExecTest performs a bytewise
comparison to the expected text or data. If they do not match, the test fails.

3.5.1.2. command.ShellCommandTest

command.ShellCommandTest is very similar tocommand.ExecTest , except that it runs a program
via the shell rather than directly. Instead of specifying an executable to run and the elements of its
argument list, a test provides a single command line. The shell is responsible for finding the executable
and constructing its argument list.

Standard input and the environment are specified in the test. The test passes if the command produces the
expected standard output, standard error, and exit code.

Note that most shells create local shell variables to mirror the contents of the environment when the shell
starts up. Therefore, the environment set up by acommand.ShellCommandTest , including the contents
of the test context, are directly accessible via shell variables. The syntax to use depends on the particular
shell.

command.ShellCommandTest has the same fields ascommand.ExecTest , except that the Program
and Argument List properties are replaced with these:

Command (text field)

The command to run. The command is delivered verbatim to the shell. The shell interprets the
command according to its own quoting rules and syntax.

3.5.1.3. command.ShellScriptTest

command.ShellScriptTest is an extension ofcommand.CommandTest that lets a test specify an
entire shell script instead of a single command. The script specified in the test is written to a temporary
file, and this file is interpreted by the specified shell or command interpreter program.

Standard input, the environment, and the argument list to pass to the script are specified in the test. The
test passes if the script produces the expected standard output, standard error, and exit code.

Note that most shells create local shell variables to mirror the contents of the environment when the shell
starts up. Therefore, the environment set up by acommand.ShellScriptTest , including the contents
of the test context, are directly accessible via shell variables. The syntax to use depends on the particular
shell.

29

Chapter 3. Using QMTest

command.ShellScriptTest has the same fields ascommand.ExecTest , except that the Program
property is replaced with:

Script (text field)

The text of the script to run.

3.6. Test Targets
Test targets represent entities that QMTest uses to run tests. SeeSection 3.1.7for an overview of how
QMTest uses targets.

3.6.1. Target Specification
Each target specification includes the following:

1. The name of the target. This is a name identifying the target, such as the host name of the computer
which will run the tests. Target names should be unique in a single target file.

2. Thetarget class. Similar to a test class, a target class is a Python class which implements a type of
target. As with test classes, a target class is identified by its name, which includes the module name
and the class name.

For example,thread_target.ThreadTarget is the name of a target class, provided by QMTest,
which runs tests in multiple threads on the local computer.

QMTest includes several target class implementations. SeeSection 3.6.2for details.

3. A target groupname. The test implementor may choose the syntax of target group names in a test
implementation. Target groups may be used to encode information about target attributes, such as
architecture and operating system, and capabilities.

4. Optionally, a target specification may include additional properties. Properties are named and have
string values. Some target classes may use property information to control their configuration. For
instance, a target class which executes tests on a remote computer would extract the network address
of the remote computer from a target property.

3.6.2. Target Classes
QMTest includes these target class implementations.

30

Chapter 3. Using QMTest

3.6.2.1. SerialTarget

Theserial_target.SerialTarget target class runs tests one after the other on the machine running
QMTest. If you use aSerialTarget , you should not also use any other targets, including another
SerialTarget at the same time.

3.6.2.2. ThreadTarget

The thread_target.ThreadTarget target class runs tests in one or more threads on the machine
running QMTest. TheThreadTarget can be used to run multiple tests at once.

ThreadTarget uses the following properties:

• The concurrency specifies the number of threads to use. Larger numbers of threads will allow QMTest
to run more tests in parallel. You can experiment with this value to find the setting that allows QMTest
to run tests most quickly.

3.6.2.3. ProcessTarget

Theprocess_target.ProcessTarget target class run tests in one more processes on the machine
running QMTest. This target class is not available on Windows. LikeThreadTarget , ProcessTarget

can be used to run multiple tests simultaneously.

In general, you should useThreadTarget instead ofProcessTarget to maximize QMTest
performance. However, on machines that do not have threads,ProcessTarget provides an alternative
way of running tests in parallel.

ProcessTarget uses the following properties:

• The concurrency specifies the number of processes to use. Larger numbers of processes will allow
QMTest to run more tests in parallel. You can experiment with this value to find the setting that allows
QMTest to run tests most quickly.

• QMTest uses the path given by theqmtestproperty to create additional QMTest instances. By default,
the path/usr/local/bin/qmtest is used.

3.6.2.4. RemoteShellTarget

Thersh_target.RSHTarget target class runs tests on a remote computer via a remote shell invocation
(rsh, ssh, or similar). This target uses a remote shell to invoke a program similar to theqmtestcommand
on the remote computer. This remote program accepts test commands and responds with results from
running these tests.

To useRSHTarget , the remote computer must have QMTest installed and must contain an identical copy
of the test database. QMTest does not transfer entire tests over the remote shell connection; instead, it
relies on the remote test database for loading tests.

In addition, the remote shell program must be configured to allow a remote login without additional
intervention (such as typing a password). If you usersh, you can use an.rhosts file to set this up. If

31

Chapter 3. Using QMTest

you usessh, you can use an SSH public key and thessh-agentprogram for this. See the corresponding
manual pages for details.

RSHTarget uses all of the properties given above forProcessTarget . In addition,RSHTarget uses
the following properties:

• The remote_shell property specifies the path to the remote shell program. The default value isssh. The
remote shell program must accept the same command-line syntax asrsh.

• The host property specifies the remote host name. If omitted, the target name is used.

• The database_path property specifies the path to the test database on the remote computer. The test
database must be identical to the local test database. If omitted, the local test database path is used.

• The arguments property specifies additional command-line arguments for the remote shell program.
The value of this property is split at space characters, and the arguments are added to the command
line before the name of the remote host.

For example, if you are using thesshremote shell program and wish to log in to the remote computer
using a different user account, specify the-l username option using the arguments property.

32

Chapter 4. Extending QMTest
If the built-in functionality provided with QMTest does not serve all of your needs, you can extend
QMTest. All extensions to QMTest take the form of Python classes. You can write new test classes,
resource classes, or database classes in this way.

The contents of the class differ depending on the kind of extension you are creating. For example, the
methods that a new test class must implement are different from those that must be provided by a new
database class. In each case, however, you must create the class and place it in a location where QMTest
can find it. The following sections explain how to create extension classes. The last section in this
chapter explains how to register your new extension classes.

4.1. Extension Classes
All extensions to QMTest are implemented by writing a new Python class. This new Python class will be
derived from an appropriate existing QMTest Python class. For example, new test classes are derived
from Test while new test database classes are derived fromDatabase .

The classes from which new extensions are derived (likeTest) are all themselves derived from
Extension

(http://www.codesourcery.com/public/qmtest/qm-2.3/internals/qm/extension/Extension.html). The
Extension class provides the basic framework used by all extension classes. In particular, every
instance ofExtension can be represented in XML format in persistent storage.

EveryExtension class has an associated list ofarguments. When anExtension instance is written out
as XML, the value of each argument which is encoded in the output. Similarly, when anExtension

instance is read back in, the arguments are decoded. Conceptually, twoExtension instances are the
same if they are instances of the same derived class and their arguments have the same values.

Each argument has both a name and a type. For example, everyTest has an argument called
target_group . The target group is a string indicating on which targets a particular test should be run.

Each argument is represented by an instance ofField

(http://www.codesourcery.com/public/qmtest/qm-2.3/internals/qm/fields/Field.html). AField instance
can read or write values in XML format. AField can also produce an HTML representation of a value,
or an HTML form that allows a user to update the value of the field. It is the fact that allExtension

arguments are instances ofField that makes it possible to representExtension instances as XML.
Smilarly, it is the the use of theField class that allows the user to edit tests in the QMTest GUI.

Each class derived fromExtension may contain a variable calledarguments . The value of
arguments must be a list ofField instances. The complete set of arguments for a derived class consists
of the arguments specified in the derived class together with all of those specified in base classes. In other
words, a derived class should not explicitly include arguments that have already been specified in a base
class.

For example, after the following class definitions:

class A(Extension):
arguments = [TextField("x")]

class B(A):

33

Chapter 4. Extending QMTest

arguments = [IntegerField("y"),
TextField("z")]

A has one argument (x) andB has three arguments (x , y , andz).

None of the arguments may have the same name as a class variable in the extension class, including class
variables in base classes.

4.2. Field Classes
A Field (http://www.codesourcery.com/public/qmtest/qm-2.3/internals/qm/fields/Field.html) is a
named, typed component of a data structure. AField can read and write XML representations of
values, generate HTML representations of values, or present HTML forms that permit the user to update
the value of the field. There are several classes derived fromField that you can use in extension classes.
If none of those classes satisfy your needs, you can create a new class derived fromField .

EveryField has a name. The name is a string, and must be a valid Python identifier. (The reason for this
restriction is that instances ofExtension have an instance variables corresponding to each field.) A
Field may also have a title, which is used when presenting theField to the user. The title need not be a
valid Python identifier. For example, theRSHTarget class has an argument whose name ishost , but
whose title isRemote Host Name . When accessing an instance of this class, the programmer refers to
self.host . In the GUI, however, the user will see the value presented asRemote Host Name .

A Field may have an associated description, which is a longer explanation of theField and its
purpose. This information is presented to the user by the GUI.

A Field may have a default value. The default value is used if no explicit value is provided for the field.

This example code fromRSHTarget shows how aField is constructed:

qm.fields.TextField(
name="remote_shell",
title="Remote Shell Program",
description="""The path to the remote shell program.

The name of the program that can be used to create a
remote shell. This program must accept the same command
line arguments as the ’rsh’ program.""",
default_value="ssh")

See the internal documentation forField

(http://www.codesourcery.com/public/qmtest/qm-2.3/internals/qm/fields/Field.html) for complete
interface documentation.

34

Chapter 4. Extending QMTest

4.2.1. Built-In Field Classes
QMTest comes with several useful field classes:

• IntegerField

(http://www.codesourcery.com/public/qmtest/qm-2.3/internals/qm/fields/IntegerField.html) stores
integers.

• TextField (http://www.codesourcery.com/public/qmtest/qm-2.3/internals/qm/fields/TextField.html)
stores strings.

• EnumerationField

(http://www.codesourcery.com/public/qmtest/qm-2.3/internals/qm/fields/EnumerationField.html)
stores one of a set of (statically determined) possible values.

• ChoiceField

(http://www.codesourcery.com/public/qmtest/qm-2.3/internals/qm/fields/ChoiceField.html) stores one
of a set of (dynamically determined) possible values.

• BooleanField

(http://www.codesourcery.com/public/qmtest/qm-2.3/internals/qm/fields/BooleanField.html) stores a
boolean value.

• TimeField (http://www.codesourcery.com/public/qmtest/qm-2.3/internals/qm/fields/TimeField.html)
stores a date and time.

• AttachmentField

(http://www.codesourcery.com/public/qmtest/qm-2.3/internals/qm/fields/AttachmentField.html) stores
arbitrary data.

• SetField (http://www.codesourcery.com/public/qmtest/qm-2.3/internals/qm/fields/SetField.html)
stores multiple values of the same type.

• TupleField

(http://www.codesourcery.com/public/qmtest/qm-2.3/internals/qm/fields/TupleField.html) stores a
fixed number of other fields.

4.2.2. Writing Field Classes
Before writing any code, you should decide what kind of data your field class will store. For example,
will your field class store arbitrary strings? Or only strings that match a particular regular expression? Or
will your field class store images? Once you have decided this question, you can write theValidate

function for your field class. This function checks an input value (a Python object) for validity.
Validate can return a modified version of the value. For example, if the field stores strings, you could
choose to accept an integer as an input toValidate and convert the integer to a string before returning it.

TheFormatValueAsHtml function produces an HTML representation of the value. You must define
this function so that the GUI can display the value of the field. Thestyle parameter indicates how the
value should be displayed. If the style isnew or edit , the HTML representation returned should be a
form that the user can use to set the value. If the user does not modify the form,ParseFormValue

should yield the value that was provided toFormatValueAsHtml .

35

Chapter 4. Extending QMTest

TheMakeDomNodeForValue andGetValueFromDomNode functions convert values to and from XML
format. TheFormatValueAsText andParseTextValue functions convert to and from plain text. As
with FormatValueAsHtml andParseFormValue , these pairs of functions should be inverses of one
another.

TheParseTextValue , ParseFormValue , andGetValueFromDomNode functions should use
Validate to check that the values produced are permitted by theField . In this way, derived classes
that want to restrict the set of valid values, but are otherwise content to use the base class functionality,
need only provide a new implementation ofValidate .

All of the functions which read and writeField values may raise exceptions if they cannot complete
their tasks. The caller of theField is responsible for handling the exception if it occurs.

4.3. Writing Test Classes
If the test classes that come with QMTest do not serve your needs, you can write a new test class. A test
class is a Python class derived fromTest

(http://www.codesourcery.com/public/qmtest/qm-2.3/internals/qm/test/test/Test.html). The test class
must define anarguments variable, whose value is a sequence ofField s, and aRun function.

The arguments to the test are the inputs to the test. TheRun function explains how to perform the test and
how to determine whether or not it passed. For example, if you want to test that a compiler correctly
compiled a particular source file, the source file would be an argument to the test while theRun would be
responsible for running the compiler and the program generated by the compiler. The path to the
compiler itself would be provided via the context (Section 3.1.3); that is an input to the testing system
that varies depending on the user’s environment.

TheRun function takes two arguments: the context and the result. The context object is an instance of
Context (http://www.codesourcery.com/public/qmtest/qm-2.3/internals/qm/test/context/Context.html).
The result object is an instance ofResult

(http://www.codesourcery.com/public/qmtest/qm-2.3/internals/qm/test/result/Result.html). The result is
initialized with the PASS outcome. Therefore, if theRun function does not modify the result, the test will
pass. If the test fails, theResult.Fail function should be called to indicate failure.

TheResult.Annotate function can be used to add information to theResult , whether or not the test
passes. For example, annotations can be used to record the time a test took to execute, or to log the
output from a command run as part of the test. Every annotation is a key/value pair. Both keys and values
are strings. The key created by a test classC should have the formC.key_name . The value must be valid
HTML. When results are displayed in the GUI, the HTML is presented directly to the user. When results
are displayed as text, the HTML is converted to plain text. That conversion uses textual devices (such as
single quotes around verbatim text) to emulate the HTML markup where possible.

As a convenience, you can use Python’s dictionary notation to access annotations. For example:

result["C.key1"] = "value"
result["C.key2"] = result["C.key1"].upper()

is equivalent to:

36

Chapter 4. Extending QMTest

result.Annotate({ "C.key1" : "value"
"C.key2" : "VALUE" })

The context (like the result) is a set of key/value pairs. The keys used by a test classC should have the
form C.key_name . The values are generally strings, but if a test depends on a resource, the resource can
provide context values that are not strings.

If the Run raises an unhandled exception, QMTest creates a result for the test with the outcome ERROR.
Therefore, test classes should be designed so that they do not raise unhandled exceptions when a test
fails. However, QMTest handles the exception generated by the use of non-existant context variables
specially. Because this situation generally indicates incorrect usage of the test suite, QMTest uses a
special error message that instructs the user to supply a value for the context variable.

4.4. Writing Resource Classes
Writing resource classes is similar to writing test classes. The requirements are the same except that,
instead of aRun function, you must provide two functions namedSetUp andCleanUp . TheSetUp

function must have the same signature as a test classsRun. TheCleanUp function is similar, but does not
take acontext parameter.

The setup function may add additional properties to the context. These properties will be visible only to
tests that require this resource. To add a context property, use Python’s dictionary assignment syntax.

Below is an example of setup and cleanup functions for a resource which callscreate_my_resource

anddestroy_my_resource to do the work of creating and destroying the resource. The resource is
identified by a string handle, which is inserted into the context under the nameResource.handle ,
where it may be accessed by tests. Context property names should always have the formClass.name so
that there is no risk of collision between properties created by different resource classes.

4.5. Writing Database Classes
The test database class controls the format in which tests are stored. QMTest’s default database class
stores each test as an XML file, but you might want to use a format that is particularly well suited to your
application domain or to your organization’s arrangement of computing resources.

For example, if you were testing a compiler, you might want to represent tests as source files with special
embedded comments indicating what errors are expected when compiling the test. You could write a test
database class that can read and write tests in that format.

Or, if you wanted to share a single test database with many people in such a way that everyone
automatically saw updates to the database, you might want to put all of the tests on a central HTTP
server. You could write a test database class that retrieves tests from the server and creates new tests by
uploading them to the server.

37

Chapter 4. Extending QMTest

A test database class is a Python class that is derived fromDatabase

(http://www.codesourcery.com/public/qmtest/qm-2.3/internals/qm/test/database/Database.html), which
is itself derived fromExtension . To create a new database class, you must define methods that read and
write tests, resources, and suites.

The database is also responsible for determining how tests (and other entities stored in the database) are
named. Each item stored in the database must have a unique name. For a database that stores files in the
filesystem, the name of the file may be a good name. For a database of unit tests for Python module, the
name of the module might be a good name for the tests. Choosing the naming convention appropriate
requires understanding both the application domain and the way in which the tests will actually be stored.

The database class must have aGetTest function which retrieves a test from the database. The
test_id parameter provide the name of the test. TheGetTest function returns aTestDescriptor

(http://www.codesourcery.com/public/qmtest/qm-2.3/internals/qm/test/database/TestDescriptor.html).1

A TestDescriptor indicates the test class, and the arguments to that test class. QMTest uses that
information to instantiate an instance of the test class itself as appropriate.

TheWrite function is the inverse ofGetTest . The test database is responsible for storing theTest

provided. The name of test can be obtained by callingGetId on theTest . When theRemove function is
called the database is responsible for removing the test named by theid parameter.

The functions that handle resources are analogous to those for tests. For exmaple,GetResource plays
the same role for resources asGetTest does for tests.

4.6. Registering an Extension Class
To use your test or resource class, you must place the Python module file containing it in a directory
where QMTest can find it. QMTest looks in three places when loading extension classes:

• If the environment variable QMTEST_CLASS_PATH is defined, QMTest first checks any directories
listed in it. This value of this environment variable should be a list of directories to check for the
module file, in the same format as the standard PATH environment variable.

• A test database may specify additional locations to check.

• QMTest checks the configuration directory (the subdirectory namedQMTest of a test database).

• Finally, QMTest checks a standard directory. This directory, installed with QMTest, contains modules
with the standard test classes described inSection 3.5.

You should generally place module files containing your test classes in the test database’sQMTest

directory, unless you plan to use the test classes in more than one test database.

You must use theqmtest registercommand to register your new extension class. You must perform this
step no matter where you place the module containing your extension class.

You can refer to the new extension class using the syntaxmodule.Class , wheremodule is the name of
the module andClass is the name of the class.

38

Chapter 4. Extending QMTest

Notes
1. GetTest returns aTestDescriptor , rather than aTest , because that allows QMTest to avoid

loading in the test class. If you are running many tests in parallel, on many different machines, this
indirection makes QMTest more effficient; QMTest only needs to load a particular test class on a
particular machine if an instance of that class is being run on that machine.

39

Chapter 5. The QM Configuration File
QM allows you to set up a per-user configuration file that contains your personal preferences, defaults,
and settings.

The configuration file is named$HOME/.qmrc . On Windows, you may have to set the HOME
environment variable manually.

The QM configuration file is a plain text file, with a format similar to that used in Microsoft Windows
.INI files. It is divided into sections by headings in square brackets. Three sections are supported:
[common] contains configuration variables common to all the QM tools, while[test] contains
configuration variables specific to QMTest. Within each section, configuration variables are set using the
syntaxvariable =value .

Here is a sample QM configuration file:

> cat ~/.qmrc
[common]

browser=/usr/local/bin/mozilla

5.1. Configuration Variables
These configuration variables are used in all QM tools. You should define them in the[common] section
of your QM configuration file.

browser (UNIX-like platforms only)

The path to your preferred web browser. If omitted, QM attempts to runmozilla . The QM GUI
does not correctly with Netscape 4 due to limitations in the support for JavaScript and DOM in that
browser.

command_shell

The shell program to run a single shell command. The value of this property is the path to the shell
executable, optionally followed by command-line options to pass to the shell, separated by spaces.
The shell command to run is appended to the command.

On GNU/Linux systems, the default is/bin/bash -norc -noprofile -c . On other UNIX-like
systems, the default is/bin/sh -c .

click_menus

If this option is not present, or has the value0, menus in the GUI are activated by moving the mouse
over the menu name.

If this option has the value1, the menus are activated by clicking on the menu name.

40

Chapter 5. The QM Configuration File

remote_shell (UNIX-like platforms only)

The program used for running commands on remote computers. The program must accept the same
syntax as the standardrsh command, and should be configured to run the command remotely
without any additional interaction (such as requesting a password from the TTY). The default value
is /usr/bin/ssh .

script_shell

The shell program to run a shell script. The value of this property is the path to the shell executable,
optionally followed by command-line options to pass to the shell, separated by spaces. The filename
of the shell command is appended to the command.

On GNU/Linux systems, the default is/bin/bash -norc -noprofile . On other UNIX-like
systems, the default is/bin/sh .

41

	QMTest: User's Guide and Reference
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Getting Started with QMTest
	2.1. Setting Up
	2.2. Starting the Graphical Interface
	2.3. Running Tests
	2.4. Setting Expectations
	2.5. Examining Tests
	2.6. Modifying and Creating Tests
	2.7. Using the CommandLine Interface
	2.8. Expectations on the Command Line
	2.9. Reviewing Results

	Chapter 3. Using QMTest
	3.1. QMTest Concepts
	3.1.1. Tests
	3.1.2. Resources
	3.1.3. Context
	3.1.4. Test Results
	3.1.4.1. Outcomes
	3.1.4.2. Annotations

	3.1.5. Test Suite
	3.1.5.1. Implicit Test Suites

	3.1.6. Test Database
	3.1.7. Targets

	3.2. Running Tests
	3.2.1. Ordering and Dependencies
	3.2.2. The Context

	3.3. Test Database Contents
	3.4. Invoking QMTest
	3.4.1. qmtest
	3.4.1.1. Synopsis
	3.4.1.2. Options

	3.4.2. qmtest create
	3.4.2.1. Summary
	3.4.2.2. Synopsis
	3.4.2.3. Description
	3.4.2.4. Example

	3.4.3. qmtest createtarget
	3.4.3.1. Summary
	3.4.3.2. Synopsis
	3.4.3.3. Description

	3.4.4. qmtest createtdb
	3.4.4.1. Summary
	3.4.4.2. Synopsis
	3.4.4.3. Description

	3.4.5. qmtest gui
	3.4.5.1. Summary
	3.4.5.2. Synopsis
	3.4.5.3. Description

	3.4.6. qmtest extensions
	3.4.6.1. Summary
	3.4.6.2. Synopsis
	3.4.6.3. Description

	3.4.7. qmtest register
	3.4.7.1. Summary
	3.4.7.2. Synopsis
	3.4.7.3. Description

	3.4.8. qmtest run
	3.4.8.1. Summary
	3.4.8.2. Synopsis
	3.4.8.3. Description

	3.4.9. qmtest summarize
	3.4.9.1. Summary
	3.4.9.2. Synopsis
	3.4.9.3. Description

	3.4.10. qmtest report
	3.4.10.1. Summary
	3.4.10.2. Synopsis
	3.4.10.3. Description

	3.4.11. Environment Variables
	3.4.12. Configuration Variables

	pidfile
	3.4.13. Return Value

	3.5. Test and Resource Classes
	3.5.1. Test Classes
	3.5.1.1. command.ExecTest

	Program (text field)
	Argument List (set of strings)
	Standard Input (text field)
	Environment (set of strings)
	Expected Exit Code (integer field)
	Expected Standard Output (text field)
	Expected Standard Error (text field)
	3.5.1.2. command.ShellCommandTest

	Command (text field)
	3.5.1.3. command.ShellScriptTest

	Script (text field)
	3.6. Test Targets
	3.6.1. Target Specification
	3.6.2. Target Classes
	3.6.2.1. SerialTarget
	3.6.2.2. ThreadTarget
	3.6.2.3. ProcessTarget
	3.6.2.4. RemoteShellTarget

	Chapter 4. Extending QMTest
	4.1. Extension Classes
	4.2. Field Classes
	4.2.1. BuiltIn Field Classes
	4.2.2. Writing Field Classes

	4.3. Writing Test Classes
	4.4. Writing Resource Classes
	4.5. Writing Database Classes
	4.6. Registering an Extension Class

	Chapter 5. The QM Configuration File
	5.1. Configuration Variables
	browser (UNIXlike platforms only)
	commandshell
	clickmenus
	remoteshell (UNIXlike platforms only)
	scriptshell

