
The SimPy Manual

Tony Vignaux <Vignaux@users.sourceforge.net>

Klaus Muller <Muller@users.sourceforge.net> Bob Helmbold

2007-01-07

SimPy version: 1.8
SimPy Web-site: http://simpy.sourceforge.net/
SimPy wiki: http://www.mcs.vuw.ac.nz/cgi-bin/wiki/SimPy
Python-Version: 2.3+
Revision: 1.1.1.59

Contents

Introduction

Simulation with SimPy

Alternative SimPy simulation libraries

Processes

Defining a process

Elapsing time in a Process

Starting and stopping SimPy Process Objects

Example 2
A source fragment

Asynchronous interruptions

Advanced synchronization/scheduling capabilities

Creating and Signalling SimEvents
“waituntil” synchronization -- waiting for any condition

Resources

Defining a Resource object

Requesting and releasing a unit of a Resource

Priority requests for a Resource unit

Preemptive requests for a Resource unit

Note on preemptive requests with waitQ in FIFO order

Reneging -- leaving a queue before acquiring a resource

Reneging after a time limit
Reneging when an event has happened

1

Note on exiting conventions and preemptive queues

Recording Resource queue lengths

Levels

Defining a Level

Getting amounts from a Level

Putting amounts into a Level

An inventory example (without reneging)

Reneging

Stores

Defining a Store

Putting objects into a Store

Getting objects from a Store

Using the get filter function

An example of a Store (without reneging)

Reneging

Storing objects in an order

Master/Slave modelling with a Store

An example

Random Number Generation

Recording Simulation Results

Defining Tallys and Monitors

Observing data

Data summaries

Special methods for Monitor

Histograms

Setting up a Histogram for a Tally object
Setting up a Histogram for a Monitor object

Other Links

Acknowledgements

Appendices

A0. Changes from the previous version of SimPy

A1. SimPy Error Messages

Advisory messages
Fatal error messages
Monitor error messages

A2. SimPy Process States

A3. SimPlot, The SimPy plotting utility

A4. SimGUI, The SimPy Graphical User Interface

2

A5. SimulationTrace, the SimPy tracing utility

A6. SimulationStep, the SimPy event stepping utility

A7. SimulationRT, a real-time synchronizing utility

Glossary

This document describes SimPy version 1.8[#] Changes from version 1.7 are listed in Appendix A0.

Introduction

SimPy is a Python-based discrete-event simulation system. It uses parallel processes to model active
components such as messages, customers, trucks, planes. It provides a number of tools for the simulation
programmer including Processes, three kinds of resource facilities (Resources, Levels, and Stores) and
ways of recording results by using Monitors and Tallys.

The basic active elements of a SimPy model are process objects (i.e., objects of a Process class --
see Processes). These may be delayed for fixed or random times, queued at resource facilities, and they
may be interrupted by or interact in other ways with other processes and components. For example, a
simulation of a gas (petrol) station could treat automobiles as process objects which may have to queue
while waiting for a pump to become available.

A SimPy script contains the declaration of one or more Process classes and the creation of process
objects from them1. Each process object executes its Process Execution Method (referred to later as a
PEM), a method that determines its actions. Each PEM runs in parallel with (and may interact with)
the PEMs of other process objects.

There are three types of resource facilities (Resources, Levels, and Stores). Each type models a
congestion point where process objects may have to queue while waiting to acquire a resource.

Resources have several resource units, each of which may be used by process objects. For example,
an automobile may have to wait for a free pump at a gas station. Treating cars as process objects and
the station as a Resource having the pumps as its resource units, SimPy automatically puts waiting
cars in a queue until a pump is available. SimPy allows each car to retain its pump while refuelling.
The car then releases the pump for possible use by another car.

Levels model the production and consumption of a homogeneous undifferentiated “material.” Thus,
the currently-available amount of material in a Level resource facility can be fully described by a scalar
(real or integer). Process objects may increase or decrease the currently-available amount of material
in a Level facility. For example, a gas (petrol) station stores gas in large tanks. Tankers increase, and
refuelled cars decrease, the amount of gas in the station’s storage tanks. The process object need not
return the material to the Level in contrast to the requirement for Resource units.

Stores model the production and consumption of individual items. Process objects can insert or
remove items from the list of available items. For example, surgical procedures (treated as process
objects) require specific lists of personnel and equipment that may be treated as the items in a Store
facility such as a clinic or hospital. The items held in a Store can be of any Python type. In particular
they can be process objects, and this may be exploited to facilitate modeling Master/Slave relationships.

1 The variable version contains the number and date of the current version.
2 As a general practice and for brevity we will usually refer to both process objects and their classes as
“processes.” Thus, “process” may refer to a Process class or to a process object, depending on context.
To avoid ambiguity or for added emphasis we often explicitly state whether a class or an object is
intended.
3 We will often refer to process objects as “entities”. This term is frequently used in the simulation
literature. Here, though, we restrict it to process objects and it will not be used for any other elements
in the simulation.

3

Process objects may have to queue at resource facilities if the request cannot be immediately satisfied
or the facility is full when attempting to put material into a Level or objects into a Store. These queues,
on requests for Resources or on both puts and gets for Levels and Stores are operated automatically by
SimPy. There is also a facility to model reneging from the queues on timing out or when some event
occurs.

Monitors and Tallys are used to compile statistics as a function of time on variables such as waiting
times and queue lengths. These statistics consist of simple averages and variances, time-weighted
averages, or histograms. They can be gathered on the queues associated with Resources, Levels and
Stores. For example we may collect data on the average number of cars waiting at a gas station and
the distribution of their waiting times. Tallys update the current statistics as the simulation progresses,
but cannot preserve complete time-series records. Monitors can preserve complete time-series records
that may later be used for more advanced post-simulation analyses.

Before attempting to use SimPy, you should be able to write Python code. In particular, you should
be able to define and use classes and their objects. Python is free and usable on most platforms. We
do not expound it here. You can find out more about it and download it from the Python web-site
(http://www.Python.org). SimPy requires Python 2.3 or later.

[Return to Top]

Simulation with SimPy

All discrete-event simulation programs automatically maintain the current simulation time in a software
clock. In SimPy the current simulation time is returned by the now() function. The software clock is
set to 0.0 at the start of the simulation. The user cannot change the software clock directly.

While a simulation program runs, current simulation time steps forward from one event to the next.
An event occurs whenever the state of the simulated system changes. For example, an arrival of a
customer is an event. So is a departure.

To use the SimPy simulation system you must import its Simulation module:

from SimPy.Simulation import *

The following statement must appear in the script before any SimPy process objects are activated
-- it initializes global simulation variables and sets the software clock to zero:

initialize()

This is followed by some SimPy statements creating and activating objects. Execution of the simu-
lation itself starts when the following statement appears in the script:

simulate(until=endtime)

The simulation then starts, and SimPy seeks and executes the first scheduled event. Having executed
that event, the simulation seeks and executes the next event, and so on. This continues until one of the
following occurs:

• there are no more events to execute (so now() equals the time the last scheduled event
occurred)

• the simulation time reaches the endtime (so now() equals endtime)

• the stopSimulation() command is executed (so now() equals the simulation time at
which stopSimulation() was called).

Typically a simulation is terminated using the until argument of the simulate statement, but it
can be stopped at any time by issuing the command:

stopSimulation()

4

http://www.Python.org
http://www.Python.org

Additional statements can still be executed after exit from simulate. This is useful for saving or
displaying results such as average delays or lengths of queues.

The following fragment shows only the main block in a simulation program. (Complete, runnable
examples are shown in Example1 and Example 2). Here Message is a (previously defined) Process class
and m is defined as an object of that class, that is it is a particular message. Activating m has the
effect of scheduling at least one event by starting m’s Process Execution Method (here called go). The
simulate(until=1000.0) statement starts the simulation itself, which immediately jumps to the first
scheduled event. It will continue until it runs out of events to execute or the simulation time reaches
1000.0. When the simulation stops the (previously written) Report function is called to display the
results:

initialize()
m = Message()
activate(m,m.go(),at=0.0)
simulate(until=1000.0)

Report() # report results when the simulation finishes

Alternative SimPy simulation libraries

In addition to SimPy.Simulation, SimPy provides three other, alternative simulation libraries which
have the basic SimPy.Simulation capabilities, plus additional facilities:

• SimPy.SimulationTrace for program tracing: With from SimPy.SimulationTrace
import, any SimPy program automatically generates detailed event-by-event tracing
output. This makes the library ideal for program development/testing and for teaching
SimPy.

• SimPy.SimulationRT for real time synchronization: from SimPy.SimulationRT im-
port facilitates synchronising simulation time and real (wall-clock) time. This capa-
bility can be used to implement, e.g., interactive game applications or to demonstrate
a model’s execution in real time.

• SimPy.SimulationStep for event-stepping through a simulation: The import from
SimPy.SimulationStep import provides an API for stepping through a simulation
event by event. This can assist with debugging models, interacting with them on an
event-by-event basis, getting event-by-event output from a model (e.g. for plotting
purposes), etc.

[Return to Top]

Processes

The active objects for discrete-event simulation in SimPy are process objects -- instances of some class
that inherits from SimPy’s Process class.

For example, if we are simulating a computing network we might model each message as an object
of the class Message. When message objects arrive at the computing network they make transitions
between nodes, wait for service at each one, and eventually leave the system. The Message class specifies
these actions in its Process Execution Method (PEM). Individual message objects are created as the
simulation runs, and their evolutions are directed by the Message class’s PEM.

Defining a process

Each Process class inherits from SimPy’s Process class. For example here is the header of the definition
of a new Message Process class:

5

class Message(Process):

You must define at least one Process Execution Method (PEM) in each Process class. A PEM can
have arguments. You may also include other methods and, in particular, you may include an init
method.

• A Process Execution Method (PEM) defines the actions that can be performed by its process
objects. Each PEM must contain at least one of the yield statements, described later, that make
it a Python generator function. This means it has resumable execution -- it can be restarted again
after the yield statement without losing its current state. A PEM may have any name of your
choice. For example it may be called execute() or run().

A process object’s PEM starts execution as soon as the object is activated, provided the simu-
late(until = ...) statement has been executed.

Here the Process Execution Method, go(), for the preceding Message class, prints out the current
time, the message object’s identification number and the word “Starting”. After a simulated delay
of 100.0 time units (in the yield hold, ... statement) it announces that this message object has
“Arrived”:

def go(self):
print now(), self.i, ’Starting’
yield hold,self,100.0
print now(), self.i, ’Arrived’

• init (self, ...), where ... indicates method arguments. This method initialises the process
object, setting values for some or all of its attributes. As for any sub-class in Python, the first
line of this method must call the Process class’s init () method in the form:

Process.__init__(self,name=’a_process’)

where the process name can be anything.

You can then use additional commands to initialize attributes of the Process class’s objects. The
init () method is always called whenever you create a new process object.

The following example of an init () method for a Message class provides instance variables so
that each new message object can be given its own integer identification number, i, and message
length, len:

def __init__(self,i,len):
Process.__init__(self,name=’Message’+str(i))
self.i = i
self.len = len

If you do not wish to provide for any attributes other than a name, the init method may be
dispensed with.

Elapsing time in a Process

A PEM uses the yield hold command to temporarily delay a process object’s operations:

• yield hold,self,t causes the object to wait for a delay of t time units (unless it is further delayed
by being interrupted). After the delay, it continues with the operation specified by the next
statement in its PEM. During the hold the object’s operations are suspended.

• yield passivate,self suspends the process object’s operations until reactivated by explicit com-
mand (which must be issued by a different process object).

6

The following example’s Customer class illustrates that a PEM method (here called buy) can have
arguments that may be used when activating process objects. Each process object has a name attribute
that will default to ’a_process’ unless, as illustrated here, you explicitly give it another name when
you create it:

from SimPy.Simulation import *

class Customer(Process):
def buy(self,budget=0):

print ’Here I am at the shops ’,self.name
t = 5.0
for i in range(4):

yield hold,self,t
executed 4 times at intervals of t time units

print ’I just bought something ’,self.name
budget -= 10.00

print ’All I have left is ’, budget,\
’ I am going home ’,self.name,

initialize()
C = Customer(name=’Evelyn’)

create a customer named "Evelyn",
activate(C,C.buy(budget=100),at=10.0)

and activate her with a budget of 100
simulate(until=100.0)

Starting and stopping SimPy Process Objects

A process object is “passive” when first created, i.e., it has no scheduled events. It must be activated to
start its Process Execution Method (see Glossary entry for an explanation of the modified BNF notation
used):

• activate(p, p.PEM([args]) [, {at=t|delay=period}] [, prior=False]) activates process ob-
ject p, provides its Process Execution Method p.PEM() with arguments args and possibly assigns
values to the other optional parameters. The default is to activate at the current time (at=now(
)) with no delay (delay=0.0) and prior set to False. You may assign other values to at, delay,
and prior.

– However, delay overrides at, in the sense that when a delay=period clause is included, then
activation occurs at now() or now() + delay (whichever is larger), irrespective of what
value of t is assigned in the at=t clause. This is true even when the value of period in the
delay clause is zero, or even negative. So it is better and clearer to choose one (or neither)
of at=t and delay=period, but not both.

– Moreover,“retroactive activations”(i.e., those that attempt to activate a process object before
the current simulation time) result in an error report and lead to termination of a simulation.

– If you set prior to True, then process object p will be activated before any others that
happen to be scheduled for activation at the same time as p. So, if several process objects
are scheduled for activation at the same time and all have prior==True, then the last one
scheduled will actually be the first to be activated, the next-to-last of those scheduled will
actually be the second to be activated, and so forth.

Process objects can be passivated, reactivated, or cancelled (see the Glossary for an explanation of
the modified BNF notation used):

7

• yield passivate,self suspends the process object itself. It becomes “passive”.

• reactivate(p [,{at=t|delay=period}] [, prior=False]) reactivates the passive process object,
p. It becomes “active”. The optional parameters work as for activate. A process object cannot
reactivate itself. To temporarily suspend a process object, use yield hold,self,t instead.

• self.cancel(p) deletes all scheduled future events for process object p. Only “active” process
objects can be cancelled. A process cannot cancel itself. If that is required, use yield passivate,self
instead. (Note: This new format replaces the p.cancel() form of earlier SimPy versions.)

A process object is “terminated” after all statements in its process execution method have been com-
pleted. If the object is still referenced, it becomes just a data container. Otherwise, it is automatically
destroyed.

Even activated process objects will not start operating until the simulate(until=t) statement is
executed. This starts the simulation going and it will continue until time t (unless it runs out of events
to execute or the command stopSimulation() is executed).

Example 2

Before introducing the more complicated process capabilities let us look at a complete runnable SimPy
script. This simulates a firework with a time fuse. I have put in a few extra yield hold commands for
added suspense:

from SimPy.Simulation import *

class Firework(Process):

def execute(self):
print now(), ’ firework launched’
yield hold,self, 10.0 # wait 10.0 time units
for i in range(10):

yield hold,self,1.0
print now(), ’ tick’

yield hold,self,10.0 # wait another 10.0 time units
print now(), ’ Boom!!’

initialize()
f = Firework() # create a Firework object, and

activate it (with some default parameters)
activate(f,f.execute(),at=0.0)
simulate(until=100)

Here is the output from this Example. No formatting was attempted so it looks a bit ragged:

0.0 firework launched
11.0 tick
12.0 tick
13.0 tick
14.0 tick
15.0 tick
16.0 tick
17.0 tick
18.0 tick
19.0 tick
20.0 tick
30.0 Boom!!

8

A source fragment

One useful program pattern is the source. This is a process object with a Process Execution Method
(PEM) that sequentially activates other process objects -- it is a source of other process objects. Random
arrivals can be modelled using random intervals between activations.

In the following example a source creates and activates a series of customers who arrive at regular
intervals of 10.0 units of time. This continues until the simulation time exceeds the specified finishTime
of 33.0. (Of course, to model customers with random inter-arrival times the yield hold statement would
use a random variate, such as expovariate(), instead of the constant 10.0 inter-arrival time used here.)
The following example assumes that the Customer class has previously been defined with a PEM called
run that does not require any arguments:

class Source(Process):

def execute(self, finish):
while now() < finish:

c = Customer() # create a new customer object, and
activate it (using default parameters)

activate(c,c.run())
print now(), ’ customer’
yield hold,self,10.0

initialize()
g = Source() # create the Source object, g,

and activate it (with some default parameters)
activate(g,g.execute(33.0),at=0.0)
simulate(until=100)

Asynchronous interruptions

An active process object can be interrupted by another but cannot interrupt itself. The interrupter
process object uses the following statement to interrupt the victim process object.

• self.interrupt(victim)

The interrupt is just a signal. After this statement, the interrupter process object continues its
PEM.

For the interrupt to have an immediate effect, the victim process object must be active -- that is
it must have an event scheduled for it (that is, it is “executing” a yield hold,self,t). If the victim is
not active (that is, it is either passive or terminated) the interrupt has no effect. In particular, process
objects queuing for resource facilities cannot be interrupted because they are passive. Process objects
that have acquired a resource are active and can be interrupted.

If interrupted, the victim returns from its yield hold statement prematurely. It should then check
to see if it has been interrupted by calling

• self.interrupted() which returns True if it has been interrupted. It can then either continue in
the current activity or switch to an alternative, making sure it tidies up the current state, such as
releasing any resources it owns. When self.interrupted()== True:

– self.interruptCause is a reference to the interrupter object.

– self.interruptLeft gives the time remaining in the interrupted yield hold.

The interruption is reset (that is, “turned off”) at the victim’s next call to a yield hold. It can also
be reset by calling

9

• self.interruptReset()

It may be helpful to think of an interruption signal as instructing the victim to determine whether
it should interrupt itself. If the victim determines that it should interrupt itself, it then becomes
responsible for making any necessary readjustments -- not only to itself but also to any other simulation
components that are affected. (The victim must take responsibility for these adjustments, because it
is the only simulation component that “knows” such details as whether or not it is interrupting itself,
when, and why.)

This is illustrated by the following example of a simulation with interrupts. A bus is subject to
breakdowns that are modelled as interrupts caused by a Breakdown process. Notice that the yield
hold,self,tripleft statement may be interrupted, so if the self.interrupted() test returns True
a reaction to it is required. Here, in addition to delaying the bus for repairs, the reaction includes
scheduling the next breakdown. In this example the Bus Process class does not require an __init__()
method:

from SimPy.Simulation import *

class Bus(Process):

def operate(self,repairduration,triplength): # PEM
tripleft = triplength

"tripleft" is the driving time to finish trip
if there are no further breakdowns

while tripleft > 0:
yield hold,self,tripleft # try to finish the trip

if a breakdown intervenes
if self.interrupted():

print self.interruptCause.name, ’at %s’ %now()
tripleft=self.interruptLeft
update driving time to finish
the trip if no more breakdowns

self.interruptReset() # end self-interrupted state
update next breakdown time

reactivate(br,delay=repairduration)
impose delay for repairs on self

yield hold,self,repairduration
print ’Bus repaired at %s’ %now()

else: # no breakdowns intervened, so bus finished trip
break

print ’Bus has arrived at %s’ %now()

class Breakdown(Process):
def __init__(self,myBus):

Process.__init__(self,name=’Breakdown ’+myBus.name)
self.bus=myBus

def breakBus(self,interval): # Process Execution Method
while True:

yield hold,self,interval # driving time between breakdowns
if self.bus.terminated(): break
signal "self.bus" to break itself down

self.interrupt(self.bus)

initialize()

10

b=Bus(’Bus’) # create a Bus object "b" called "Bus"
activate(b,b.operate(repairduration=20,triplength=1000))

create a Breakdown object "br" for bus "b", and
br=Breakdown(b)

activate it with driving time between
breakdowns equal to 300

activate(br,br.breakBus(300))

simulate(until=4000)
print ’SimPy: No more events at time %s’ %now()

The ouput from this example:

Breakdown Bus at 300
Bus repaired at 320
Breakdown Bus at 620
Bus repaired at 640
Breakdown Bus at 940
Bus repaired at 960
Bus has arrived at 1060
SimPy: No more events at time 1260

Where interrupts can occur, the victim of interrupts must test for interrupt occurrence after every
appropriate yield hold and react appropriately to it. A victim holding a resource facility when it gets
interrupted continues to hold it, unless the facility is explicitly released.

Advanced synchronization/scheduling capabilities

The preceding scheduling constructs all depend on specified time values. That is, they delay processes
for a specific time, or use given time parameters when reactivating them. For a wide range of applications
this is totally satisfactory and sufficient.

However, some applications either require or can profit from an ability to activate processes that must
wait for other processes to complete. For example, models of real-time systems or operating systems
often use this kind of approach. Event signalling is particularly helpful in such situations. Furthermore,
some applications need to activate processes when certain conditions occur, even though when (or if)
they will occur may be unknown. SimPy has a general wait until to support clean implementation of
this approach.

This section describes how SimPy provides event signalling and wait until capabilities.

Creating and Signalling SimEvents

As mentioned in the Introduction, for ease of expression when no confusion can arise we often refer
to both process objects and their classes as “processes”, and mention their object or class status only
for added clarity or emphasis. Analogously, we will refer to objects of SimPy’s SimEvent class as
“SimEvents”2 (or, if no confusion can arise, simply as “events”). However, we sometimes mention their
object or class character for clarity or emphasis.

SimEvent objects must be created before they can be signalled. You create the SimEvent object,
sE, from SimPy’s SimEvent class by a statement like the following:

sE = SimEvent(name=’I just had a great new idea!’)

4 The name SimEvent was chosen because “event” is already used in Python’s standard library. See
Python Library Reference section 7.5 threading -- Higher-level threading interface, specifically subsection
7.5.5.

11

A SimEvent’s name attribute defaults to ’a_SimEvent’ unless you provide your own, as shown here.
Its “occurred” attribute, sE.occurred, is a boolean that defaults to False. It indicates whether the event
sE has occurred.

You program a SimEvent to “occur” or “fire” by “signalling” it like this:

sE.signal(<payload parameter>)

This “signal” is “received” by all processes that are either “waiting” or “queueing” for this event to
occur. What happens when they receive this signal is explained in the next section. The <payload
parameter> is optional -- it defaults to None. It can be of any Python type. Any process can retrieve
it from the event’s signalparam attribute, for example by:

message = sE.signalparam

Waiting or Queueing for SimEvents

You can program a process either to“wait”or to“queue” for the occurrence of SimEvents. The difference
is that all processes“waiting”for some event are reactivated as soon as it occurs. For example, all firemen
go into action when the alarm sounds. In contrast, only the first process in the “queue” for some event
is reactivated when it occurs. That is, the “queue” is FIFO. An example might be royal succession --
when the present ruler dies: “The king is dead. Long live the (new) king!” (And all others in the line
of succession move up one step.)

You program a process to “wait” for SimEvents by including in its PEM:

yield waitevent,self,<events part>

where <events part> can be either:

• one SimEvent object, e.g. myEvent, or

• a tuple of SimEvent objects, e.g. (myEvent,myOtherEvent,TimeOut), or

• a list of SimEvent objects, e.g. [myEvent,myOtherEvent,TimeOut]

If none of the events in the <events part> have occurred, the process is passivated and joined to the
list of processes waiting for some event in <events part> to occur (or to recur).

On the other hand, when any of the events in the <events part> occur, then all of the processes
“waiting” for those particular events are reactivated at the current time. Then the occurred flag of those
particular events is reset to False. Resetting their occurred flag prevents the waiting processes from
being constantly reactivated. (For instance, we do not want firemen to keep responding to any such
“false alarms.”) For example, suppose the <events part> lists events a, b, and c in that order. If events
a and c occur, then all of the processes waiting for event a are reactivated. So are all processes waiting
for event c but not a. Then the occurred flags of events a and c are toggled to False. No direct changes
are made to event b or to any processes waiting for it to occur.

You program a process to “queue” for events by including in its PEM:

yield queueevent,self,<events part>

where the <events part> is as described above.
If none of the events in the <events part> has occurred, the process is passivated and appended to

the FIFO queue of processes queuing for some event in <events part> to occur (or recur).
But when any of the events in <events part> occur, the process at the head of the “queue” is taken

off the queue and reactivated at the current time. Then the occurred flag of those events that occurred
is reset to False as in the “waiting” case.

12

Finding Which Processes Are Waiting/Queueing for an Event, and Which Events Fired

SimPy automatically keeps current lists of what processes are “waiting” or “queueing” for SimEvents.
They are kept in the waits and queues attributes of the SimEvent object and can be read by commands
like the following:

TheProcessesWaitingFor_myEvent = myEvent.waits
TheProcessesQueuedFor_myEvent = myEvent.queues

However, you should not attempt to change these attributes yourself.
Whenever myEvent occurs, i.e., whenever a myEvent.signal(...) statement is executed, SimPy

does the following:

• If there are any processes waiting or queued for that event, it reactivates them as described in the
preceding section.

• If there are no processes waiting or queued (i.e., myEvent.waits and myEvent.queues are both
empty), it toggles myEvent.ocurred to True.

SimPy also automatically keeps track of which events were fired when a process object was reac-
tivated. For example, you can get a list of the events that were fired when the object Godzilla was
reactivated with a statement like this:

GodzillaRevivedBy = Godzilla.eventsFired

This is illustrated in the following example.

An Example Using SimEvents

Here is a small, complete SimPy script illustrating these constructs. (It also illustrates that a Process
class may have more than one PEM. Here the Wait Or Queue class has two PEMs -- waitup and
queueup.)

from SimPy.Simulation import *

class Wait_Or_Queue(Process):
def waitup(self,myEvent): # PEM illustrating "waitevent"

wait for "myEvent" to occur
yield waitevent, self, myEvent
print ’At %s, some SimEvent(s) occurred that \

activated object %s.’ %(now(), self.name)
print ’ The activating event(s) were %s’ \

%([x.name for x in self.eventsFired])

def queueup(self, myEvent): # PEM illustrating "queueevent"
queue up for "myEvent" to occur
yield queueevent, self, myEvent
print ’At %s, some SimEvent(s) occurred that \

activated object %s.’ %(now(), self.name)
print ’ The activating event(s) were %s’ \

%([x.name for x in self.eventsFired])

class Signaller(Process):
here we just schedule some events to fire

def sendSignals(self):
yield hold, self, 2

13

event1.signal() # fire "event1" at time 2
yield hold, self, 8
event2.signal() # fire "event2" at time 10
yield hold, self, 5
event1.signal() # fire all four events at time 15
event2.signal()
event3.signal()
event4.signal()
yield hold, self, 5
event4.signal() # event4 recurs at time 20

initialize()

Now create each SimEvent and give it a name
event1 = SimEvent(’Event-1’)
event2 = SimEvent(’Event-2’)
event3 = SimEvent(’Event-3’)
event4 = SimEvent(’Event-4’)
Event_list = [event3,event4] # define an event list

s = Signaller()
Activate Signaller "s" *after* events created

activate (s,s.sendSignals())

w0 = Wait_Or_Queue(’W-0’)
create object named "W-0", and set it to
"waitup" for SimEvent "event1" to occur

activate (w0, w0.waitup(event1))
w1 = Wait_Or_Queue(’W-1’)
activate (w1, w1.waitup(event2))
w2 = Wait_Or_Queue(’W-2’)
activate(w2, w2.waitup(Event_list))
q1 = Wait_Or_Queue(’Q-1’)

create object named "Q-1", and put it to be first
in the queue for Event_list to occur

activate(q1, q1.queueup(Event_list))
q2 = Wait_Or_Queue(’Q-2’)

create object named "Q-2", and append it to
the queue for Event_list to occur

activate(q2, q2.queueup(Event_list))

simulate(until=50)

This program outputs:

At 2, some SimEvent(s) occurred that activated object W-0.
The activating event(s) were [’Event-1’]

At 10, some SimEvent(s) occurred that activated object W-1.
The activating event(s) were [’Event-2’]

At 15, some SimEvent(s) occurred that activated object W-2.
The activating event(s) were [’Event-3’]

At 15, some SimEvent(s) occurred that activated object Q-1.
The activating event(s) were [’Event-3’, ’Event-4’]

At 20, some SimEvent(s) occurred that activated object Q-2.

14

The activating event(s) were [’Event-4’]

Each output line, The activating event(s) were ..., lists the contents of the named object’s
eventsFired attribute. One of those events “caused” the object to reactivate at the indicated time. Note
that at time 15 objects W-0 and W-1 were not affected by the recurrence of event1 and event2 because
they already were active. Also at time 15, even though objects W-2, Q-1 and Q-2 were all waiting
for event3, only W-2 and Q-1 were reactivated. Process object Q-2 was not reactivated at that time
because it was not first in the queue. Finally, Q-2 was reactivated at time 20, when event4 fired again.

“waituntil” synchronization -- waiting for any condition

SimPy provides the waituntil feature that makes a process’s progress depend on the state of the simula-
tion. This is useful if, for example, you need to reactivate a process when (if ever) the simulation enters
the state “goodWeather OR (nrCustomers>50 AND price<22.50)”. Doing that requires interrogative
scheduling, while all other SimPy synchronization constructs are imperative -- i.e., the condition must
be tested after every change in state until it becomes True. And this requires that after every change
in system state SimPy must run a special (hidden) process that tests and responds appropriately to
the condition’s truth-value. This clearly takes more run time than SimPy’s imperative scheduling con-
structs. So SimPy activates its interrogative testing process only so long as at least one process is
executing a waituntil statement. When this is not the case, the runtime overhead is minimal (about 1
percent extra runtime).

You program a process to wait for a condition to be satisfied by including in its PEM a statement
of the form:

yield waituntil, self, <cond>

where <cond> is a reference to a function, without parameters, that returns a boolean value indi-
cating whether the simulation state or condition to be waited for has occurred.

Here is a sample program using the yield waituntil ... statement. Here the condition to be waited
for is given by the function killed(), defined in the life() PEM of the Player process:

from SimPy.Simulation import *
import random
class Player(Process):

def __init__(self,lives=1,name=’ImaTarget’):
Process.__init__(self,name)
self.lives=lives
provide Player objects with a "damage" property

self.damage=0

def life(self):
self.message=’Drat! Some %s survived \
Federation attack!’ %(target.name)

def killed(): # function testing for "damage > 5"
return self.damage>5

while True:
yield waituntil,self,killed
self.lives-=1; self.damage=0
if self.lives==0:
self.message= ’%s wiped out by Federation at \
time %s!’ %(target.name,now())

15

stopSimulation()

class Federation(Process):

def fight(self): # simulate Federation operations
print ’Three %s attempting to escape!’ %(target.name)
while True:
if random.randint(0,10)<2: # check for hit on player
target.damage+=1 # hit! increment damage to player
if target.damage <= 5: # target survives
print ’Ha! %s hit! Damage = %i’ \

%(target.name, target.damage)
else:
if (target.lives-1)==0:
print ’No more %s left!’ %(target.name)

else:
print ’Now only %i %s left!’ %(target.lives-1,target.name)

yield hold,self,1

initialize()
gameOver=100
create a Player object named "Romulans"

target=Player(lives=3,name=’Romulans’)
activate(target,target.life())
create a Federation object

shooter=Federation()
activate(shooter,shooter.fight())
simulate(until=gameOver)
print target.message

One possible output from this program is shown below. Whether the Romulans are wiped out or
some escape depends on what simulation states the randomisation feature produces:

Three Romulans attempting to escape!
Ha! Romulans hit! Damage = 1
Ha! Romulans hit! Damage = 2
Ha! Romulans hit! Damage = 3
Ha! Romulans hit! Damage = 4
Ha! Romulans hit! Damage = 5
Now only 2 Romulans left!

Ha! Romulans hit! Damage = 1
Ha! Romulans hit! Damage = 2
Ha! Romulans hit! Damage = 3
Ha! Romulans hit! Damage = 4
Ha! Romulans hit! Damage = 5
Now only 1 Romulans left!

Ha! Romulans hit! Damage = 1
Ha! Romulans hit! Damage = 2
Ha! Romulans hit! Damage = 3
Ha! Romulans hit! Damage = 4
Ha! Romulans hit! Damage = 5
No more Romulans left!

Romulans wiped out by Federation at time 73!

16

The“wait until” construct is so general that in principle it could replace all the other synchronisation
approaches (but at a runtime cost).

[Return to Top]

Resources

The three resource facilities provided by SimPy are Resources, Levels and Stores. Each models a
congestion point where process objects may have to queue up to obtain resources. This section describes
the Resource type of resource facility.

An example of queueing for a Resource might be a manufacturing plant in which a Task (modelled as
a process object) needs work done by a Machine (modelled as a Resource object). If all of the Machines
are currently being used, the Task must wait until one becomes free. A SimPy Resource can have a
number of identical units. For example, a number of identical machine units. A process obtains a unit
of the Resource by requesting it and, when it is finished, releasing it. A Resource maintains a list of
process objects that have requested but not yet received one of the Resource’s units (called the waitQ),
and another list of processes that are currently using a unit (the activeQ). SimPy creates and updates
these queues itself -- the user can access them, but should not change them.

Defining a Resource object

A Resource object, r, is established by the following statement:

r=Resource(capacity=1,
name=’a_resource’,
unitName=’units’,
qType=FIFO,
preemptable=False,
monitored=False,
monitorType=Monitor)

where

• capacity is a positive real or integer value that specifies the total number of identical
units in Resource object r.

• name is a descriptive name for this Resource object (e.g., ’gasStation’).

• unitName is a descriptive name for a unit of the resource (e.g., ’pump’).

• qType is either FIFO or PriorityQ. It specifies the queue discipline of the resource’s
waitQ ; typically, this is FIFO (First-in, First-out) and that is the default value. If
PriorityQ is specified, then higher-priority requests waiting for a unit of Resource r
are inserted into the waitQ ahead of lower priority requests. See Priority requests for
a Resource unit for details.

• preemptable is a boolean (False or True); typically, this is False and that is the default
value. If it is True, then a process requesting a unit of this resource may preempt a
lower-priority process in the activeQ, i.e., one that is already using a unit of the resource.
See Preemptive requests for a Resource unit for details.

• monitored is a boolean (False or True). If set to True, then information is gathered
on the sizes of r’s waitQ and activeQ, otherwise not.

• monitorType is either Monitor or Tally and indicates the type of Recorder to be used
(see Recording Resource queue lengths for an example and additional discussion).

Each Resource object, r, has the following additional attributes:

• r.n, the number of units that are currently free.

17

• r.waitQ, a queue (list) of processes that have requested but not yet received a unit of
r, so len(r.waitQ) is the number of process objects currently in r’s waitQ.

• r.activeQ, a queue (list) of process objects currently using one of r’s units, so len(r.activeQ)
is the number of r’s units that are currently in use.

• r.waitMon, the record (made by a Monitor or a Tally whenever monitored==True)
of the activity in r.waitQ. So, for example, r.waitMon.timeaverage() is the average
number of processes in r.waitQ. See Recording Resource queue lengths for an example
of this usage.

• r.actMon, the record (made by a Monitor or a Tally whenever monitored==True) of
the activity in r.activeQ.

Requesting and releasing a unit of a Resource

A process can request and later release a unit of the Resource object, r, by using the following yield
commands in a Process Execution Method:

• yield request,self,r[,P] requests a unit with (optional) priority value P. If no priority is specified,
it defaults to zero. If the priority P is specified, it must be either real or integer. Larger values of
P represent higher priorities. See the following sections on Priority requests for a Resource unit
and Preemptive requests for a Resource unit for more information on how priority values are used.
Although this form of request can be used for either of the possible qTypes (FIFO or PriorityQ),
all priority values are ignored when qType==FIFO.

• yield release,self,r releases the unit of r.

The following remarks apply to the FIFO case (i.e., qType==FIFO). If a Resource unit is free when
the request is made, the requesting process takes it. If no Resource unit is available when the request
is made, then the requesting process is appended to the Resource’s waitQ and suspended. The next
time a unit becomes available the first process in the r.waitQ takes it and continues its execution. All
priority assignments are ignored. Moreover, in the FIFO case no preemption is possible, for preemption
requires that priority assignments be recognized. (However, see the Note on preemptive requests with
waitQ in FIFO order for one way of simulating such situations.)

Here is an example of a complete script where the server Resource object is given two resource units
(capacity=2). By not specifying it we have allowed qType to take its default value (i.e., FIFO). In this
example, six clients arrive in the order specified by the program. They all request a resource unit from
the server Resource object at the same time. Even though they each specify a priority in their requests,
it is ignored and they get their Resource units in the same order as their requests:

from SimPy.Simulation import *
class Client(Process):

inClients=[] # list the clients in order by their requests
outClients=[] # list the clients in order by completion of service

def __init__(self,name):
Process.__init__(self,name)

def getserved(self,servtime,priority,myServer):
Client.inClients.append(self.name)
print self.name, ’requests 1 unit at t =’,now()
request use of a resource unit
yield request, self, myServer, priority
yield hold, self, servtime
release the resource

18

yield release, self, myServer
print self.name,’done at t =’,now()
Client.outClients.append(self.name)

initialize()

the next line creates the *server* Resource object
server=Resource(capacity=2) # server defaults to qType==FIFO

the next lines create some Client process objects
c1=Client(name=’c1’) ; c2=Client(name=’c2’)
c3=Client(name=’c3’) ; c4=Client(name=’c4’)
c5=Client(name=’c4’) ; c6=Client(name=’c6’)

in the next lines each client requests
one of the *server*’s Resource units

activate(c1,c1.getserved(servtime=100,priority=1,myServer=server))
activate(c2,c2.getserved(servtime=100,priority=2,myServer=server))
activate(c3,c3.getserved(servtime=100,priority=3,myServer=server))
activate(c4,c4.getserved(servtime=100,priority=4,myServer=server))
activate(c5,c5.getserved(servtime=100,priority=5,myServer=server))
activate(c6,c6.getserved(servtime=100,priority=6,myServer=server))

simulate(until=500)

print ’Request order: ’,Client.inClients
print ’Service order: ’,Client.outClients

This program results in the following output:

c1 requests 1 unit at t = 0
c2 requests 1 unit at t = 0
c3 requests 1 unit at t = 0
c4 requests 1 unit at t = 0
c5 requests 1 unit at t = 0
c6 requests 1 unit at t = 0
c1 done at time = 100
c2 done at time = 100
c3 done at time = 200
c4 done at time = 200
c5 done at time = 300
c6 done at time = 300

Request order: [’c1’, ’c2’, ’c3’, ’c4’, ’c5’, ’c6’]
Service order: [’c1’, ’c2’, ’c3’, ’c4’, ’c5’, ’c6’]

As illustrated, the clients are served in FIFO order. Clients c1 and c2 each take one Resource unit
right away, but the others must wait. When c1 and c2 finish with their resources, clients c3 and c4
can each take a unit, and so forth.

The next two sections cover the priority (qType==PriorityQ) and the preemption (preemptable==True)
cases.

19

Priority requests for a Resource unit

If the Resource r is defined with priority queueing (that is, qType==PriorityQ), priority values in
requests are recognized. If a Resource unit is available when the request is made, the requesting process
takes it. If no Resource unit is available when the request is made, the requesting process is inserted
into the Resource’s waitQ in order of priority (from high to low) and suspended. For an example where
priorities are used, we simply change the preceding example’s specification of the server Resource object
to:

server=Resource(capacity=2, qType=PriorityQ)

where, by not specifying it, we allow preemptable to take its default value, False. After this change
the program’s output becomes:

c1 requests 1 unit at t = 0
c2 requests 1 unit at t = 0
c3 requests 1 unit at t = 0
c4 requests 1 unit at t = 0
c5 requests 1 unit at t = 0
c6 requests 1 unit at t = 0
c1 done at time = 100
c2 done at time = 100
c6 done at time = 200
c5 done at time = 200
c4 done at time = 300
c3 done at time = 300

Request order: [’c1’, ’c2’, ’c3’, ’c4’, ’c5’, ’c6’]
Service order: [’c1’, ’c2’, ’c6’, ’c5’, ’c4’, ’c3’]

Although c1 and c2 have the lowest priority values, each requested and got a server unit imme-
diately. That was because at the time they made those requests a server unit was available and the
server.waitQ was empty -- it did not start to fill until c3 made its request and found all of the server
units busy. When c1 and c2 completed service, c6 and c5 (with the highest priority values of all
processes in the waitQ) each got a Resource unit, etc.

When the qType is PriorityQ and some processes in the waitQ have the same priority level as
a process making a priority request, SimPy inserts the requesting process immediately behind them.
For example, suppose that when a “priority 3” process makes its priority request the current waitQ
consists of processes with priorities [5,4,3a,3b,3c,2a,2b,1], where the letters indicate the order in which
the equal-priority processes were placed in the queue. Then SimPy inserts this requesting process
into the current waitQ immediately behind its last “priority 3” process. Thus, the new waitQ will be
[5,4,3a,3b,3c,3d,2a,2b,1], where the inserted process is “3d”.

One consequence of this is that, if all priority requests are assigned the same priority value, then
the waitQ will in fact be maintained in FIFO order. In that case, using a FIFO instead of a PriorityQ
discipline provides some saving in execution time which may be important in simulations having many
and very long waitQ ’s.

Preemptive requests for a Resource unit

In some models, higher priority processes can actually preempt lower priority processes, i.e., they can
take over and use a Resource unit currently being used by a lower priority process whenever no free
Resource units are available. A Resource object that allows its units to be preempted is created by
setting its properties to qType==PriorityQ and preemptable==True. Whenever a preemptable Resource
unit is free when a request is made, then the requesting process takes it and continues its execution.
On the other hand, when a higher priority request finds all the units in a preemptable Resource in use,
then SimPy adopts the following procedure regarding the Resource’s activeQ and waitQ :

20

• The process with the lowest priority is removed from the activeQ, suspended, and put
at the front of the waitQ -- so (barring additional preemptions) it will be the next one
to get a resource unit.

• The preempting process gets the vacated resource unit and is inserted into the activeQ
in order of its priority value.

• The time for which the preempted process had the resource unit is taken into account
when the process gets into the activeQ again. Thus, its total hold time is always the
same, regardless of how many times it has been preempted.

We emphasize that a process making a preemptive request to a fully-occupied Resource gets a
resource unit if -- but only if -- some process in the current activeQ has a lower priority. Otherwise, it
will be inserted into the waitQ at a location determined by its priority value and the current contents
of the waitQ, using a procedure analogous to that described for priority requests near the end of the
preceding section on Priority requests for a Resource unit. This may have the effect of advancing the
preempting process ahead of any lower-priority processes that had earlier been preempted and put at
the head of the waitQ. In fact, if several preemptions occur before a unit of resource is freed up, then
the head of the waitQ will consist of the processes that have been preempted -- in order from the last
process preempted to the first of them.

In the following example two clients of different priority compete for the same resource unit:

from SimPy.Simulation import *
class Client(Process):
def __init__(self,name):

Process.__init__(self,name)

def getserved(self,servtime,priority,myServer):
print self.name, ’requests 1 unit at t=’,now()
yield request, self, myServer, priority
yield hold, self, servtime
yield release, self,myServer
print self.name,’done at t= ’,now()

initialize()
create the *server* Resource object

server=Resource(capacity=1,qType=PriorityQ,preemptable=1)
create some Client process objects

c1=Client(name=’c1’)
c2=Client(name=’c2’)
activate(c1,c1.getserved(servtime=100,priority=1,myServer=server),at=0)
activate(c2,c2.getserved(servtime=100,priority=9,myServer=server),at=50)
simulate(until=500)

The output from this program is:

c1 requests 1 unit at t= 0
c2 requests 1 unit at t= 50
c2 done at t= 150
c1 done at t= 200

Here, c1 is preempted by c2 at t=50. At that time, c1 had held the resource for 50 of its total of
100 time units. When c2 finished and released the resource unit at 150, c1 got the resource back and
finished the last 50 time units of its service at t=200.

We add that, if preemption occurs when the last few processes in the current activeQ have the
same priority value, then the last process in the current activeQ is the one that will be preempted

21

and inserted into the waitQ ahead of all others. To describe this, it will be convenient to indicate
by an added letter the order in which equal-priority processes have been inserted into a queue. Now,
suppose that a “priority 4” process makes a preemptive request when the current activeQ priorities are
[5,3a,3b] and the current waitQ priorities are [2,1,0a,0b]. Then process 3b will be preempted. After the
preemption the activeQ will be [5,4,3a] and the waitQ will be [3b,2,1,0a,0b].

Note on preemptive requests with waitQ in FIFO order

You may consider doing the following to model a system whose queue of items waiting for a resource is
to be maintained in FIFO order, but in which preemption is to be possible. It uses SimPy’s preemtable
Resource objects, and uses priorities in a way that allows for preempts while maintaining a FIFO waitQ
order.

• Set qType==PriorityQ and preemptable==True (so that SimPy will process preemp-
tive requests correctly).

• Model “system requests that are to be considered as non-preemptive” in SimPy as
process objects each of which has exactly the same (low) priority value -- for example,
either assign all of them a priority value of 0 (zero) or let it default to that value. (This
has the effect of maintaining all of these process objects in the waitQ in FIFO order,
as explained at the end of the section on Priority requests for a Resource unit, above.)

• Model “system requests that are to be considered as preemptive” in SimPy as process
objects each of which is assigned a uniform priority value, but give them a higher value
than the one used to model the“non-preemptive system requests” -- for example, assign
all of them a priority value of 1 (one). Then they will have a higher priority value than
any of the non-preemptive requests.

Here is an example of how this works for a Resource with two Resource units -- we give the activeQ
before the waitQ throughout this example:

1. Suppose that the current activeQ and waitQ are [0a,0b] and [0c], respectively.

2. A “priority 1” process makes a preemptive request. Then the queues become: [1,0a] and
[0b,0c].

3. Another “priority 1” process makes a preemptive request. Then the queues become: [1a,1b]
and [0a,0b,0c].

4. A third “priority 1” process makes a preemptive request. Then the queues become: [1a,1b]
and [1c,0a,0b,0c].

5. Process “1a”finishes using its resource unit. Then the queues become: [1b,1c] and [0a,0b,0c].

Reneging -- leaving a queue before acquiring a resource

In most real world situations, people and other items do not wait forever for a requested resource facility
to become available. Instead, they leave its queue after a certain time has elapsed or when some other
condition occurs. This behaviour is called reneging, and the reneging person or thing is said to renege.

SimPy provides an extended (i.e., compound) yield request statement to handle reneging. If the
resource has been defined as being a priorityQ the request is normally made with (optional) priority P :

• yield (request,self,resource[,P]),(<reneging clause>).

A SimPy program that models Resource requests with reneging must use the following pattern of
statements:

22

yield (request,self,resource),(<reneging clause>)
if self.acquired(resource):

process got resource and so did not renege
. . . .
yield release,self,resource

else:
process reneged before acquiring resource
.

A call to the self.acquired(resource) method is mandatory after a compound yield request
statement. It not only indicates whether or not the process has acquired the resource, it also removes
the reneging process from the resource’s waitQ.

There are two types of reneging clause, one for reneging after a certain time and one for reneging
when an event has happened.

Reneging after a time limit

To make a process renege after a certain time, use a reneging clause of the following form:

• yield (request,self,res,[,P]),(hold,self,waittime)

Here process self requests one unit of the resource res with optional priority P. If a resource unit
is available, self takes it and continues its PEM. Otherwise, self is passivated and inserted into res’s
waitQ. If a unit of res becomes available before the waittime expires, then self takes it and continues
executing its PEM. However, if the process does not acquire a resource unit before the waittime has
expired the process leaves the waitQ and its execution continues.

Here is an example code snippet:

Queuing for a parking space in a parking lot
. . . .
parking_lot=Resource(capacity=10)
patience=5 # wait no longer than "patience" time units

for a parking space
park_time=60 # park for "park_time" time units if get a parking space
. . . .
yield (request,self,parking_lot),(hold,self,patience)
if self.acquired(parking_lot):

park the car
yield hold,self,park_time
yield release,self,parking_lot

else:
patience exhausted, so give up
print ’I’m not waiting any longer. I am going home now.’

Reneging when an event has happened

To make a process renege at the occurrence of an event, use a reneging clause having a pattern like the
one used for a yield waitevent statement, namely waitevent,self,events (see “waituntil” synchroniza-
tion -- waiting for any condition). For example:

• yield (request,self,res[,P]),(waitevent,self,events)

Here process object self requests one unit of the resource res with optional priority P. If a unit of
resource res is available, self takes it and continues its PEM. Otherwise, self is passivated and inserted
into res’s waitQ. If a unit of res becomes available before any of the events occur, then self takes it and

23

continues executing its PEM. However, if any of the SimEvents in events occur first, then the process
leaves the waitQ and its execution continues. (Recall that events can be either one event, a list, or a
tuple of several SimEvents.)

Here is an example code snippet:

Queuing for movie tickets
. . . .
tickets=Resource(capacity=100)
sold_out=SimEvent() # signals "out of tickets"
too_late=SimEvent() # signals "too late for this show"
. . . .
Leave the ticket counter queue when movie sold out
or it is too late for the show
yield (request,self,tickets),(waitevent,self,[sold_out,too_late])
if self.acquired(tickets):

watch the movie
yield hold,self,120
yield release,self,tickets

else:
did not get a ticket
print ’Who needs to see this silly movie anyhow?’

Note on exiting conventions and preemptive queues

Many discrete event simulations (including SimPy) adopt the normal “exiting convention”, according
to which processes that have once started using a Resource unit stay in some Resource queue until
their hold time has completed. This is of course automatically the case for FIFO and non-preemptable
PriorityQ disciplines. The point is that the exiting convention is also applied in the preemptable queue
discipline case. Thus, processes remain in some Resource queue until their hold time has completed,
even if they are preempted by higher priority processes.

Some real-world situations conform to this convention and some do not. An example of one that
does conform can be described as follows. Suppose that at work you are assigned tasks of varying levels
of priority. You are to set aside lower priority tasks in order to work on higher priority ones. But you
are eventually to complete all of your assigned tasks. So you are operating like a SimPy resource that
obeys a preemptable queue discipline and has one resource unit. With this convention, half-finished
low-priority tasks may be postponed indefinitely if they are continually preempted by higher-priority
tasks.

An example that does not conform to the exiting convention can be described as follows. Suppose
again that you are assigned tasks of varying levels of priority and are to set aside lower priority tasks
to work on higher priority ones. But you are instructed that any tasks not completed within 24 hours
after being assigned are to be sent to another department for completion. Now, suppose that you are
assigned Task-A that has a priority level of 3 and will take 10 hours to complete. After working on
Task-A for an hour, you are assigned Task-B, which has a priority level of 5 and will take 20 hours to
complete. Then, at 11 hours, after working on Task-B for 10 hours, you are assigned Task-C, which
has a priority level of 1 and will take 4 hours to complete. (At this point Task-B needs 10 hours to
complete, Task-A needs 9 hours to complete, and Task-C needs 4 hours to complete.) At 21 hours you
complete Task-B and resume working on Task-A, which at that point needs 9 hours to complete. At
24 hours Task-A still needs another 6 hours to complete, but it has reached the 24-hour deadline and
so is sent to another department for completion. At the same time, Task-C has been in the waitQ for
13 hours, so you take it up and complete it at hour 28. This queue discipline does not conform to the
exiting convention, for under that convention at 24 hours you would continue work on Task-A, complete
it at hour 30, and then start on Task-C.

24

Recording Resource queue lengths

Many discrete event models are used mainly to explore the statistical properties of the waitQ and
activeQ associated with some or all of their simulated resources. SimPy’s support for this includes the
Monitor and the Tally. For more information on these and other recording methods, see the section on
Recording Simulation Results.

The following program uses a Monitor to record the server resource’s queues. After the simulation
ends, it displays some summary statistics for each queue, and then their complete time series:

from SimPy.Simulation import *
from math import sqrt

class Client(Process):
inClients=[]
outClients=[]

def __init__(self,name):
Process.__init__(self,name)

def getserved(self,servtime,myServer):
print self.name, ’requests 1 unit at t =’,now()
yield request, self, myServer
yield hold, self, servtime
yield release, self, myServer
print self.name,’done at t =’,now()

initialize()

server=Resource(capacity=1,monitored=True,monitorType=Monitor)

c1=Client(name=’c1’) ; c2=Client(name=’c2’)
c3=Client(name=’c3’) ; c4=Client(name=’c4’)

activate(c1,c1.getserved(servtime=100,myServer=server))
activate(c2,c2.getserved(servtime=100,myServer=server))
activate(c3,c3.getserved(servtime=100,myServer=server))
activate(c4,c4.getserved(servtime=100,myServer=server))

simulate(until=500)

print
print ’(Time) Average no. waiting:’,server.waitMon.timeAverage()
print ’(Number) Average no. waiting:’,server.waitMon.mean()
print ’(Number) Var of no. waiting:’,server.waitMon.var()
print ’(Number) SD of no. waiting:’,sqrt(server.waitMon.var())
print ’(Time) Average no. in service:’,server.actMon.timeAverage()
print ’(Number) Average no. in service:’,server.actMon.mean()
print ’(Number) Var of no. in service:’,server.actMon.var()
print ’(Number) SD of no. in service:’,sqrt(server.actMon.var())
print ’=’*40
print ’Time history for the "server" waitQ:’
print ’[time, waitQ]’
for item in server.waitMon:

print item

25

print ’=’*40
print ’Time history for the "server" activeQ:’
print ’[time, actQ]’
for item in server.actMon:

print item

The output from this program is:

c1 requests 1 unit at t = 0
c2 requests 1 unit at t = 0
c3 requests 1 unit at t = 0
c4 requests 1 unit at t = 0
c1 done at t = 100
c2 done at t = 200
c3 done at t = 300
c4 done at t = 400

(Time) Average no. waiting: 1.5
(Number) Average no. waiting: 1.5
(Number) Var of no. waiting: 0.916666666667
(Number) SD of no. waiting: 0.957427107756
(Time) Average no. in service: 1.0
(Number) Average no. in service: 0.5
(Number) Var of no. in service: 0.25
(Number) SD of no. in service: 0.5
==
Time history for the ’server’ waitQ:
[time, waitQ]
[0, 1]
[0, 2]
[0, 3]
[100, 2]
[200, 1]
[300, 0]
==
Time history for the ’server’ activeQ:
[time, actQ]
[0, 1]
[100, 0]
[100, 1]
[200, 0]
[200, 1]
[300, 0]
[300, 1]
[400, 0]

This output illustrates the difference between the (Time) Average and the number statistics. Here
process c1 was in the waitQ for zero time units, process c2 for 100 time units, and so forth. The total
wait time accumulated by all four processes during the entire simulation run, which ended at time 400,
amounts to 0 + 100 + 200 + 300 = 600 time units. Dividing the 600 accumulated time units by the
simulation run time of 400 gives 1.5 for the (Time) Average number of processes in the waitQ. It is the
time-weighted average length of the waitQ, but is almost always called simply the average length of the
waitQ or the average number of items waiting for a resource. It is also the expected number of processes
you would find in the waitQ if you took a snapshot of it at a random time during the simulation. The

26

activeQ ’s time average computation is similar, although in this example the resource is held by some
process throughout the simulation. Even though the number in the activeQ momentarily drops to zero
as one process releases the resource and immediately rises to one as the next process acquires it, that
occurs instantaneously and so contributes nothing to the (Time) Average computation.

Number statistics such as the Average, Variance, and SD are computed differently. At time zero the
number of processes in the waitQ starts at 1, then rises to 2, and then to 3. At time 100 it drops back
to two processes, and so forth. The average and standard deviation of the six values [1, 2, 3, 2, 1, 0] is
1.5 and 0.9574..., respectively. Number statistics for the activeQ are computed using the eight values
[1, 0, 1, 0, 1, 0, 1, 0] and are as shown in the output.

When the monitorType is changed to Tally, all the output up to and including the lines:

Time history for the ’server’ waitQ:
[time, waitQ]

is displayed. Then the output concludes with an error message indicating a problem with the
reference to server.waitMon. Of course, this is because Tally does not generate complete time series.

[Return to Top]

Levels

The three resource facilities provided by the SimPy system are Resources, Levels and Stores. Each
models a congestion point where process objects may have to queue up to obtain resources. This
section describes the Level type of resource facility.

Levels model the production and consumption of a homogeneous undifferentiated “material.” Thus,
the currently-available amount of material in a Level resource facility can be fully described by a scalar
(real or integer). Process objects may increase or decrease the currently-available amount of material
in a Level facility. For example, a gasoline station stores gas (petrol) in large tanks. Tankers increase,
and refueled cars decrease, the amount of gas in the station’s storage tanks. Both getting amounts and
putting amounts may be subjected to reneging like requesting amounts from a Resource.

Defining a Level

You define the Level resource facility lev by a statement like this:

lev = Level(name=’a_level’,
unitName=’units’,
capacity=’unbounded’,
initialBuffered=0,
putQType=FIFO,
getQType=FIFO,
monitored=False,
monitorType=Monitor)

where

• name (string type) is a descriptive name for the Level object lev is known (e.g.,
’inventory’).

• unitName (string type) is a descriptive name for the units in which the amount of
material in lev is measured (e.g., ’kilograms’).

• capacity (positive real or integer) is the capacity of the Level object lev. The default
value is set to ’unbounded’ which is interpreted as sys.maxint.

• initialBuffered (positive real or integer) is the initial amount of material in the Level
object lev.

27

• putQType (FIFO or PriorityQ) is the (producer) queue discipline.

• getQType (FIFO or PriorityQ) is the (consumer) queue discipline.

• monitored (boolean) specifies whether the queues and the amount of material in lev
will be recorded.

• monitorType (Monitor or Tally) specifies which type of Recorder to use. Defaluts to
Monitor.

Every Level resource object, such as lev, also has the following additional attributes:

• lev.amount is the amount currently held in lev.

• lev.putQ is the queue of processes waiting to add amounts to lev, so len(lev.putQ)
is the number of processes waiting to add amounts.

• lev.getQ is the queue of processes waiting to get amounts from lev, so len(lev.getQ)
is the number of processes waiting to get amounts.

• lev.monitored is True if the queues are to be recorded. In this case lev.putQMon,
lev.getQMon, and lev.bufferMon exist.

• lev.putQMon is a Recorder observing lev.putQ.

• lev.getQMon is a Recorder observing lev.getQ.

• lev.bufferMon is a Recorder observing lev.amount.

Getting amounts from a Level

Processes can request amounts from a Level and the same or other processes can offer amounts to it.
A process, the requestor, can request an amount ask from the Level resource object lev by a yield

get statement.:

• yield get,self,lev,ask[,P]

Here ask must be a positive real or integer (the amount) and P is an optional priority value (real or
integer). If lev does not hold enough to satisfy the request (that is, ask > lev.amount) the requesting
process is passivated and queued (in lev.getQ) in order of its priority. Subject to the priority order, it
will be reactivated when there is enough to satisfy the request.

self.got holds the amount actually received by the requestor.

Putting amounts into a Level

A process, the offeror, which is usually but not necessarily different from the requestor, can offer an
amount give to a Level, lev, by a yield put statement:

yield put,self,lev,give[,P]

Here give must be a positive real or integer, and P is an optional priority value (real or integer). If the
amount offered would lead to an overflow (that is, lev.amount + give > lev.capacity) the offering
process is passivated and queued (in lev.putQ). Subject to the priority order, it will be reactivated
when there is enough space to hold the amount offered.

The orderings of processes in a Level’s getQ and putQ behave like those described for the waitQ
under Resources, except that they are not preemptable. Thus, priority values are ignored when the
queue type is FIFO. Otherwise higher priority values have higher priority, etc.

28

An inventory example (without reneging)

Suppose that a random demand on an inventory is made each day. Each requested amount is distributed
normally with a mean of 1.2 units and a standard deviation of 0.2 units. The inventory (modelled as an
object of the Level class) is refilled by 10 units at fixed intervals of 10 days. There are no back-orders,
but a cumulated sum of the total stock-out quantities is to be maintained. A trace is to be printed out
each day and whenever there is a stock-out:

from SimPy.Simulation import *
from random import normalvariate

class Deliver(Process):
def deliver(self): # an "offeror" PEM

while True:
lead = 10.0 # time between refills
delivery = 10.0 # amount in each refill
yield put, self, stock, delivery
print ’at %7.4f, add %7.4f units, now amount = %6.4f’\

%(now(),delivery,stock.amount)
yield hold, self, lead

class Demand(Process):
stockout = 0.0 # initialize intial stockout amount
def demand(self): # a "requestor" PEM

day = 1.0 # set time-step to one day
while True:

yield hold, self, day
dd = normalvariate(1.20, 0.20) # today’s random demand
ds = dd - stock.amount

excess of demand over current stock amount
if dd > stock.amount: # can’t supply requested amount

yield get, self, stock, stock.amount
supply all available amount

self.stockout += ds
add unsupplied demand to self.stockout

print ’day %7.4f, demand = %7.4f, \
shortfall = %7.4f’ %(now(), dd, -ds)

else: # can supply requested amount
yield get, self, stock, dd
print ’day %7.4f, supplied %7.4f, now amount = %6.4f’\

%(now(), dd, stock.amount)

stock = Level(monitored=True) # defines "stock" as a Level object,
with ’unbounded’ capacity and other defaults

initialize()
offeror = Deliver()
activate (offeror, offeror.deliver())
requestor = Demand()
activate (requestor, requestor.demand())
simulate (until=49.9)

result=(stock.bufferMon.mean(), requestor.stockout)
print

29

print ’Summary of results through end of day %7.4f:’ %(int(now()))
print ’average stock = %7.4f, cumulative stockout = %7.4f’ %result

Here is the last ten day’s output from one run of this program:

at 40.0000, add 10.0000 units, now amount = 10.0000
day 40.0000, supplied 0.7490, now amount = 9.2510
day 41.0000, supplied 1.1651, now amount = 8.0858
day 42.0000, supplied 1.1117, now amount = 6.9741
day 43.0000, supplied 1.1535, now amount = 5.8206
day 44.0000, supplied 0.9202, now amount = 4.9004
day 45.0000, supplied 0.8990, now amount = 4.0014
day 46.0000, supplied 1.1448, now amount = 2.8566
day 47.0000, supplied 1.7287, now amount = 1.1279
day 48.0000, supplied 0.9608, now amount = 0.1670
day 49.0000, demand = 0.9837, shortfall = -0.8167

Summary of results through end of day 49.0000:
average stock = 4.2720, cumulative stockout = 9.7484

[Return to Top]

Reneging

The yield put can be subject to reneging using one of the compound statements:

• yield (put,self,lev,ask[,P]),(hold,self,waittime)

where if the process does not acquire the amount before waittime is elapsed, the offerer leaves the
waitQ and its execution continues or

• yield (put,self,lev,ask[,P]),(waitevent,self,events)

where if one of the SimEvents in events occurs before enough becomes available, the offerer leaves
the waitQ and its execution continues.

In either case if reneging has not occurred the quantity will have been put into the Level and
self.stored(lev) will be True. This must be tested immediately after the yield :

yield (put,self,lev,ask[,P]),(<reneging clause>)
if self.stored(lev):

process did not renege
. . . .

else:
process reneged before being able to put into the resource

The yield get can also be subject to reneging using one of the compound statements:

• yield (get,self,lev,ask[,P]),(hold,self,waittime)

where if the process does not acquire the amount before waittime is elapsed, the offerer leaves the
waitQ and its execution continues.

• yield (get,self,lev,ask[,P]),(waitevent,self,events)

where if one of the SimEvents in events occurs before enough becomes available, reneging occurs,
the offerer leaves the waitQ and its execution continues.

In either case if reneging has not occurred self.got == ask and self.acquired(lev) will be True.
This must be tested immediately after the yield :

30

yield (get,self,lev,ask[,P]),(<reneging clause>)
if self.acquired(lev):

process did not renege, self.got == ask
. . . .

else:
process reneged before being able to put into the resource

[Return to Top]

Stores

The three resource facilities provided by the SimPy system are Resources, Levels and Stores. Each
models a congestion point where process objects may have to queue up to obtain resources. This
section describes the Store type of resource facility.

Stores model the production and consumption of individual items of any Python type. Process
objects can insert or remove specific items from the list of items available in a Store. For example,
surgical procedures (treated as process objects) require specific lists of personnel and equipment that
may be treated as the items available in a Store type of resource facility such as a clinic or hospital. As
the items held in a Store may be of any Python type, they may in particular be process objects, and
this can be exploited to facilitate modeling Master/Slave relationships. putting and getting may also
be subjected to reneging.

Defining a Store

The Store object sObj is established by a statement like the following:

sObj = Store(name=’a_store’,
unitName=’units’,
capacity=’unbounded’,
initialBuffered=None,
putQType=FIFO,
getQType=FIFO,
monitored=False,
monitorType=Monitor)

where

• name (string type) is a descriptive name for sObj (e.g., ’Inventory’).

• unitName (string type) is a descriptive name for the items in sObj (e.g., ’widgets’).

• capacity (positive integer) is the maximum number of individual items that can be held
in sObj. The default value is set to ’unbounded’ which is interpreted as sys.maxint.

• initialBuffered (a list of individual items) is sObj ’s initial content.

• putQType (FIFO or PriorityQ) is the (producer) queue discipline.

• getQType (FIFO or PriorityQ) is the (consumer) queue discipline.

• monitored (boolean) specifies whether sObj ’s queues and contents are to be recorded.

• monitorType (Monitor or Tally) specifies the type of Recorder to be used. Defaults
to Monitor.

The Store object sObj also has the following additional attributes:

• sObj.theBuffer is a queue (list) of the individual items in sObj. This list is in FIFO
order unless the user stores them in a particular order (see Storing objects in an order
, below). It is read-only and not directly changeable by the user.

31

• sObj.nrBuffered is the current number of objects in sObj. This is read-only and not
directly changeable by the user.

• sObj.putQ is the queue of processes waiting to add items to sObj, so that len(sObj.putQ)
is the number of processes waiting to add items.

• sObj.getQ is the queue of processes waiting to get items from sObj, so that len(sObj.getQ)
is the number of processes waiting to get items.

• If sObj.monitored is True then the queues are to be recorded. In this case sObj.putQMon,
sObj.getQMon, and sObj.bufferMon exist.

• sObj.putQMon is a Recorder observing sObj.putQ.

• sObj.getQMon is a Recorder observing sObj.getQ.

• sObj.bufferMon is a Recorder observing sObj.nrBuffered.

Putting objects into a Store

Processes can request items from a Store and the same or other processes can offer items to it. First
look at the simpler of these operations, the yield put.

A process, the offeror, which is usually but not necessarily different from the requestor, can offer a
list of items to sObj by a yield put statement:

• yield put,self,sObj,give[,P]

Here give is a list of any Python objects. If this statement would lead to an overflow (that is,
sObj.nrBuffered + len(give) > sObj.capacity) the putting process is passivated and queued (in
sObj.putQ) until there is sufficient room. P is an optional priority value (real or integer).

The ordering of processes in a Store’s putQ and getQ behave like those described for the waitQ
under Resources , except that they are not preemptable. Thus, priority values are ignored when the
queue type is FIFO. Otherwise higher priority values indicate higher priority, etc.

The items in sObj are stored in the form of a queue called sObj.theBuffer, which is in FIFO order
unless the user has arranged to sort them into a particular order (see Storing objects in an order below).

Getting objects from a Store

There are two ways of getting objects from a Store. A process, the requestor, can either extract the
first n objects from sObj or a list of items chosen by a filter function.

Getting n items is achieved by the following statement:

• yield get,self,sObj,n [,P]

Here n must be a positive integer and P is an optional priority value (real or integer). If sObj
does not currently hold enough objects to satisfy this request (that is, n > sObj.nrBuffered) then the
requesting process is passivated and queued (in sObj.getQ). Subject to the priority ordering, it will be
reactivated when the request can be satisfied.

The retrieved objects are returned in the list attribute got of the requesting process.

Using the get filter function

The second method is to get a list of items chosen by a filter function, written by the user.
The command, using filter function ffn is as follows:

• yield get,self,sObj,ffn [,P]

32

The user provides a filter function that has a single list argument and returns a list. The argument
represents the buffer of the Store. The function must search through the objects in the buffer and return
a sublist of those that satisfy the requirement.

Example: The filter function allweight, shown below, is an example of such a filter. The argument,
buff, will be automatically replaced in the execution of yield get,self,store,allweight by the
buffer of the Store. In this example the objects in the Store are assumed to have weight attributes.
The function allweight selects all those that have a weight attribute over a value W and returns these
as a list. The list appears to the calling process as self.got:

def allweight(buff):
"""filter: get all items with .weight >=W from store"""
result=[]
for i in buff:

if i.weight>=W:
result.append(i)

return result

This might be used as follows:

yield get,self,sObj,allweight [,P]

The retrieved objects are returned in the list attribute got of the requesting process.

An example of a Store (without reneging)

The following program illustrates the use of a Store to model the production and consumption of
“widgets”. The widgets are distinguished by their weight:

from SimPy.Simulation import *

class ProducerD(Process):
def __init__(self):

Process.__init__(self)
def produce(self): # the ProducerD PEM

while True:
yield put,self,buf,[Widget(9),Widget(7)]
yield hold,self,10

class ConsumerD(Process):
def __init__(self):

Process.__init__(self)
def consume(self): # the ConsumerD PEM

while True:
toGet=3
yield get,self,buf,toGet
assert len(self.got)==toGet
print now(),’Get widget weights’,\

[x.weight for x in self.got]
yield hold,self,11

class Widget(Lister):
def __init__(self,weight=0):

self.weight=weight

widgbuf=[]

33

for i in range(10):
widgbuf.append(Widget(5))

initialize()
buf=Store(capacity=11,initialBuffered=widgbuf,monitored=True)
for i in range(3): # define and activate 3 producer objects

p=ProducerD()
activate(p,p.produce())

for i in range(3): # define and activate 3 consumer objects
c=ConsumerD()
activate(c,c.consume())

simulate(until=50)
print ’LenBuffer:’,buf.bufferMon # length of buffer
print ’getQ:’,buf.getQMon # length of getQ
print ’putQ’,buf.putQMon # length of putQ

This program produces the following outputs (some lines may be formatted differently):

0 Got widget weights [5, 5, 5]
0 Got widget weights [5, 5, 5]
0 Got widget weights [5, 5, 5]
11 Got widget weights [5, 9, 7]
11 Got widget weights [9, 7, 9]
11 Got widget weights [7, 9, 7]
22 Got widget weights [9, 7, 9]
22 Got widget weights [7, 9, 7]
22 Got widget weights [9, 7, 9]
33 Got widget weights [7, 9, 7]
33 Got widget weights [9, 7, 9]
40 Got widget weights [7, 9, 7]
44 Got widget weights [9, 7, 9]
50 Got widget weights [7, 9, 7]
LenBuffer: [[0, 10], [0, 7], [0, 9], [0, 11], [0, 8], [0, 10], [0, 7],

[10, 9], [10, 11], [11, 8], [11, 10], [11, 7], [11, 4],
[20, 6], [20, 8], [21, 10], [22, 7], [22, 4], [22, 1],
[30, 3], [30, 5], [31, 7], [33, 4], [33, 1],
[40, 3], [40, 0], [40, 2], [41, 4], [44, 1], [50, 3], [50, 0], [50, 2]]

getQ: [[0, 0], [33, 1], [40, 0], [44, 1], [50, 0]]
putQ [[0, 0], [0, 1], [0, 2], [0, 3], [0, 2], [0, 1], [0, 0], [10, 1],\

[11, 0]]

[Return to Top]

Reneging

The yield put can be subject to reneging using one of the compound statements:

• yield (put,self,sObj,give [,P]),(hold,self,waittime)

where if the process cannot put the list of objects in give before waittime is elapsed, the offerer
leaves the putQ and its execution continues or

• yield (put,self,sObj,give [,P]),(waitevent,self,events)

34

where if one of the SimEvents in events occurs before it can put the list of objects in give the offerer
leaves the putQ and its execution continues.

In either case if reneging has not occurred the list of objects in give will have been put into the
Store and self.stored(Sobj) will be True.

The mandatory pattern for a put with reneging is:

yield (put,self,sObj,give [,P]),(<reneging clause>)
if self.stored(sObj):

process did not renege
. . . .

else:
process reneged before being able to put into the resource

This is so because self.stored() not only tests for reneging, but it also cleanly removes a reneging
process from the putQ.

The yield get can be subject to similar reneging using one of the compound statements:

• yield (get,self,sObj,n [,P]),(hold,self,waittime)

• yield (get,self,sObj,ffn [,P]),(hold,self,waittime)

where if the process does not acquire the amount before waittime is elapsed, the offerer leaves the
waitQ and its execution continues.

• yield (get,self,sObj,n [,P]),(waitevent,self,events)

• yield (get,self,sObj,ffn [,P]),(waitevent,self,events)

where if one of the SimEvents in events occurs before enough becomes available, reneging occurs,
the offerer leaves the waitQ and its execution continues.

In either case if reneging has not occurred self.got contains the list of retrieved objects and
self.acquired(Sobj) will be True.

The mandatory pattern for a get with reneging is:

yield (get,self,lev,sObj,<n or ffn> [,P]),(<reneging clause>)
if self.acquired(sObj):

process did not renege,
. . . .

else:
process reneged before being able to put into the resource

This is so because self.acquired() not only tests for reneging, but it also cleanly removes a reneging
process from the getQ.

[Return to Top]

Storing objects in an order

The contents of a Store instance are listed in a queue. By default, this list is kept in FIFO order.
However, the list can be kept in a user-defined order. You do this by defining a function for reordering
the list and adding it to the Store instance for which you want to change the list order. Subsequently,
the SimPy system will automatically call that function after any addition (put) to the queue.

An example:

class Parcel:
def __init__(self,weight):

self.weight=weight

35

lightFirst=Store()

def getLightFirst(self,par):
"""Lighter parcels to front of queue"""
tmplist=[(x.weight,x) for x in par]
tmplist.sort()
return [x for (key,x) in tmplist]

lightFirst.addSort(getLightFirst)

Now any yield get will get the lightest parcel in lightFirst ’s queue.
The par parameter is automatically given the Store’s buffer list as value when the SimPy runtime

system calls the re-ordering function.
<aStore>.addSort(<reorderFunction>) adds a re-order function to <aStore>.
Note that such function only changes the sorting order of the Store instance, NOT of the Store class.

Master/Slave modelling with a Store

The items in a Store can be of any Python type. In particular, they may be SimPy processes. This
can be used to model a Master/Slave situation -- an asymmetrical cooperation between two or more
processes, with one process (the Master) being in charge of the cooperation.

The consumer (Master) requests one or more Slaves to be added to the Store’s contents by the
Producer (which may be the same process as the Slave). For Master/Slave cooperation, the Slave has
to be passivated (by a yield passivate or yield waitevent statement) after it is put and reactivated when
it is retrieved and finished with. As this is NOT done automatically by the Store, the Master has to
signal the end of the cooperation.

An example

Suppose that cars arrive randomly at a car wash and add themselves to the waitingCars queue. They
wait (passively) for a doneSignal. There are two Carwash washers. These get a car, if one is available,
wash it, and then send the doneSignal to reactivate it. We elect to model the Carwash as Master and
the Cars as slaves.

Four cars are put into the waiting list and these make up the initial set of cars waiting for service.
Additional cars are generated randomly by the CarGenerator process. Each car yield puts itself onto
the waitingCars Store and immediately passivates itself by waiting for a doneSignal from a car
washer. The car washers cycle round getting the next car on the queue, washing it and then sending a
doneSignal to it when it has finished:

from SimPy.Simulation import *

"""Carwash is master
"""
class Carwash(Process):

"""Carwash is master"""
def __init__(self,name):

Process.__init__(self,name)

def lifecycle(self):
while True:

yield get,self,waitingCars,1
carBeingWashed=self.got[0]
yield hold,self,washtime
carBeingWashed.doneSignal.signal(self.name)

36

class Car(Process):
"""Car is slave"""
def __init__(self,name):

Process.__init__(self,name)
self.doneSignal=SimEvent()

def lifecycle(self):
yield put,self,waitingCars,[self]
yield waitevent,self,self.doneSignal
whichWash=self.doneSignal.signalparam
print ’%s car %s done by %s’ %(now(),self.name,whichWash)

class CarGenerator(Process):
def generate(self):

i=0
while True:

yield hold,self,2
c=Car(i)
activate(c,c.lifecycle())
i+=1

washtime=5
initialize()
waiting=[] # put four cars into the waiting list
for j in range(1,5):

c=Car(name=-j)
activate(c,c.lifecycle())

waitingCars=Store(capacity=40,initialBuffered=waiting)
for i in range(2):

cw=Carwash(’Carwash %s’ %‘i‘)
activate(cw,cw.lifecycle())

cg=CarGenerator()
activate(cg,cg.generate())
simulate(until=100)
print ’waitingCars’,[x.name for x in waitingCars.theBuffer]

The last 11 lines output by this program are:

80 car 26 done by Carwash 0
80 car 27 done by Carwash 1
85 car 28 done by Carwash 0
85 car 29 done by Carwash 1
90 car 30 done by Carwash 0
90 car 31 done by Carwash 1
95 car 32 done by Carwash 0
95 car 33 done by Carwash 1
100 car 34 done by Carwash 0
100 car 35 done by Carwash 1
waitingCars [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]

It is also possible to model this car wash with the cars as Master and the Carwash as Slaves.
[Return to Top]

37

Random Number Generation

Simulations usually need random numbers. As SimPy does not supply random number generators of
its own, users need to import them from some other source. Perhaps the most convenient source is
the standard Python random module. It can generate random variates from the following continuous
distributions: uniform, beta, exponential, gamma, normal, lognormal, weibull, and vonMises. It can
also generate random variates from some discrete distributions. Consult the module’s documentation
for details. (Excellent brief descriptions of these distributions, and many others, can be found in the
Wikipedia.)

Python’s random module can be used in two ways: you can import the methods directly or you
can import the Random class and make your own random objects. In the second method, each object
gives a different random number sequence, thus providing multiple random streams as in Simscript and
ModSim.

Here the first method is described. A single pseudo-random sequence is used for all calls. You import
the methods you need from the random module. For example:

from random import seed, random, expovariate, normalvariate

In simulation it is good practice to set the initial seed for the pseudo-random sequence at the start
of each run. Then you have control over the random numbers used. Replications and comparisons
are much easier and, with variance reduction techniques, can provide more accurate estimates. In the
following code snippet we set the initial seed to 333555. X and Y are pseudo-random variates from the
two distributions. Both distributions have the same mean:

from random import seed, expovariate, normalvariate

seed(333555)
X = expovariate(0.1)
Y = normalvariate(10.0, 1.0)

[Return to Top]

Recording Simulation Results

A Recorder is a device used to observe variables of interest and to return a simple data summary either
during or at the completion of a simulation run. SimPy simulations often use Tally and Monitor class
objects for this purpose. Both Tallys and Monitors use the observe Recorder to record data on one
variable. For example we might use a Monitor object to record the waiting times for a sequence of
customers and another to record the total number of customers in the shop. In a discrete-event system
the number of customers changes only at arrival or departure events and it is at those events that the
waiting times and number in the shop is observed. Monitors and Tallys provide elementary statistics
useful either alone or as the start of a more sophisticated statistical analysis and have proved invaluable
in many simulations.

The Tally class records enough information (such as sums and sums of squares) while the simulation
runs to return simple data summaries. This has the advantage of speed and low memory use. Tallys can
also furnish data for a histogram. However, they do not preserve a time-series usable in more advanced
statistical analysis.

The Monitor class does preserve a complete time-series of the observed data values, y, and their
associated times, t. It calculates the data summaries using these series only when they are needed.
It is slower and uses more memory than Tally. In long simulations its memory demands may be a
disadvantage.

A cew more tools associated with recording results are:

• All Monitors are registered in the list variable allMonitors and all Tallys in variable allTallies.
Then, when the simulation is completed results can more easily be tabulated and summarised.

38

http://www.python.org/doc/current/lib/module-random.html
http://www.wikipedia.com/

• The function startCollection() can be called to initialise Monitors and Tallys at a certain time.

Defining Tallys and Monitors

To define a new Tally object:

• m=Tally(name=’a Tally’, ylab=’y’, tlab=’t’)

• name is a descriptive name for the tally object (default=’a_Tally’).

• ylab and tlab are descriptive labels used by the SimPlot package when plotting graphs
of the recorded data. They default to ’y’ and ’t’, respectively. (If a histogram is
required the method setHistogram must be called before recording starts).

To define a new Monitor object:

• m=Monitor(name=’a Monitor’, ylab=’y’, tlab=’t’)

• name is a descriptive name for the Monitor object (default=’a_Monitor’).

• ylab and tlab are descriptive labels used by the SimPlot package when plotting graphs
of the recorded data. They default to ’y’ and ’t’, respectively. (A histogram can be
requested at any time).

Observing data

Both Tallys and Monitors use the observe method to record data. Here and in the next section, r is
either a Tally or a Monitor object:

• r.observe(y [,t]) records the current value of the variable, y and time t (or the current time,
now(), if t is missing). A Monitor retains the two values as a sublist [t,y]. A Tally uses them
to update the accumulated statistics.

To assure that time averages are calculated correctly observe should be called immediately after
a change in the variable. For example, if we are using Monitor r to record the number N of jobs
in a system, the correct sequence of commands on an arrival is:

N = N+1 # FIRST, increment the number of jobs
r.observe(N) # THEN observe the new value of N using r

The recording of data can be reset to start at any time in the simulation:

• r.reset([t]) resets the observations. The recorded data is re-initialized, and the observation
starting time is set to t, or to the current simulation time, now(), if t is missing.

Data summaries

The following simple data summaries can be obtained from either Monitors or Tallys at any time during
or after the simulation run:

• r.count(), the current number of observations. (If r is a Monitor this is the same as len(r)).

• r.total(), the sum of the y values

• r.mean(), the simple average of the observed y values, ignoring the times at which they were
made. This is r.total()/N where N=r.count(). (If there are no observations, the message:
“SimPy: No observations for mean” is printed). See Recording Resource queue lengths for the
difference between the simple or numerical average and the time-average.

39

file:SimPlotManual/ManualPlotting.html
file:SimPlotManual/ManualPlotting.html

Figure 1: r.mean is the simple average of the y values observed.

• r.var() the sample variance of the observations, ignoring the times at which they were made. If an
unbiased estimate of the population variance is desired, the sample variance should be multiplied
by n/(n-1), where n = r.count(). In either case the standard deviation is, of course, the square-
root of the variance (If there are no observations, the message: “SimPy: No observations for
sample variance” is printed).

• r.timeAverage([t]) the average of the time-weighted y graph, calculated from time 0 (or the last
time r.reset([t]) was called) to time t (or to the current simulation time, now(), if t is missing).
This is determined from the area under the graph shown in the figure, divided by the total time
of observation. For accurate time-average results y most be piecewise constant and observed just
after each change in its value. (If there are no observations, the message “SimPy: No observations
for timeAverage”. If no time has elapsed, the message “SimPy: No elapsed time for timeAverage”
is printed).

Figure 2: r.timeAverage() is the time-weighted average of the observed y values. Each y value is
weighted by the time for which it exists. The average is the area under the above curve divided by the
total time, t.

• r. str () is a string that briefly describes the current state of the monitor. This can be used
in a print statement.

Special methods for Monitor

The Monitor variety of Recorder is a sub-class of List and has a few extra methods:

• m[i] holds the i-th observation as a two-item list, [ti, yi]

• m.yseries() is a list of the recorded data values, yi

• m.tseries() is a list of the recorded times, ti

40

Histograms

A Histogram is a derived class of list that counts the observations that fall into a number of specified
ranges, called bins. A histogram object can be displayed either by printing it out in text form using
printHistogram method or using the plotHistogram method in the SimPlot package.

• h = Histogram(low=<float>,high=<float>,nbins=<integer>) is a histogram object
that counts the number of y values in each of its bins, based on the recorded y values.

– low is the nominal lowest value of the histogram (default=0.0)

– high is the nominal highest value of the histogram (default=100.0)

– nbins is the number of bins between low and high into which the histogram is to be divided
(default=10). SimPy automatically constructs an additional two bins to count the number
of y values under the low value and the number over the high value. Thus, the total number
of bins actually used is nbins + 2. The number of y values in each of these bins is counted
and assigned to the appropriate bin.

Figure 3: A Histogram contains the number of observed y values falling into each of its nbin+2 bins.

A Histogram, h, can be printed out in text form using

• h.printHistogram(fmt=“%s”) prints out a histogram in a standard format.

– fmt is a python string format for the bin range values.

An example of printing a histogram from a Tally:

from SimPy.Simulation import *
import random as r

print version

t=Tally(name="myTally",ylab="wait time (sec)")
t.setHistogram(low=0.0,high=1.0,nbins=10)
for i in range(100000):

t.observe(y=r.random())
print t.printHistogram(fmt="%6.4f")

This gives printed histogram like this:

Histogram for myTally:
Number of observations: 100000

wait time (sec) < 0.0000: 0 (cum: 0/ 0.0%)
0.0000 <= wait time (sec) < 0.1000: 9983 (cum: 9983/ 10.0%)
0.1000 <= wait time (sec) < 0.2000: 10121 (cum: 20104/ 20.1%)

41

file:SimPlotManual/ManualPlotting.html

0.2000 <= wait time (sec) < 0.3000: 9800 (cum: 29904/ 29.9%)
0.3000 <= wait time (sec) < 0.4000: 9911 (cum: 39815/ 39.8%)
0.4000 <= wait time (sec) < 0.5000: 9996 (cum: 49811/ 49.8%)
0.5000 <= wait time (sec) < 0.6000: 9881 (cum: 59692/ 59.7%)
0.6000 <= wait time (sec) < 0.7000: 10144 (cum: 69836/ 69.8%)
0.7000 <= wait time (sec) < 0.8000: 10029 (cum: 79865/ 79.9%)
0.8000 <= wait time (sec) < 0.9000: 10088 (cum: 89953/ 90.0%)
0.9000 <= wait time (sec) < 1.0000: 10047 (cum: 100000/100.0%)
1.0000 <= wait time (sec) : 0 (cum: 100000/100.0%)

Although both Tallys and Monitors can return a histogram of the data, they furnish histogram data
in different ways.

• The Tally object accumulates the histogram’s bin counts as each value is observed during the
simulation run. Since none of the individual values are preserved, the setHistogram method must
be called to provide a histogram object to hold the accumulated bin counts before any values are
actually observed.

• The Monitor object stores all its data, so the accumulated bin counts can be computed whenever
they are desired. Thus, the histogram need not be set up until it is needed and this can be done
after the data has been gathered.

Setting up a Histogram for a Tally object

To establish a histogram for a Tally object, r, we call the setHistogram method with appropriate
arguments before we observe any data, e.g.,

• r.setHistogram(name = ”,low=0.0,high=100.0,nbins=10)

As usual, name is a descriptive title for the histogram (defaults to blank). Then, after observing the
data:

• h=r.getHistogram() returns a completed histogram using the histogram parameters as set up.

In the following example we establish a Tally recorder to observe values of an exponential random
variate. It uses a histogram with 30 bins (plus the under- and over-count bins):

from SimPy.Simulation import *
from random import expovariate

r = Tally(’Tally’) # define a tally object, r
r.setHistogram(name=’exponential’,

low=0.0,high=20.0,nbins=30) # set before observations

for i in range(1000): # make the observations
y = expovariate(0.1)
r.observe(y)

h = r.getHistogram() # return the completed histogram

Setting up a Histogram for a Monitor object

For Monitor objects, a histogram can be set up and returned in a single call, e.g.,

• h = r.histogram(low=0.0,high=100.0,nbins=10)

42

This call is equivalent to the following pair:

• r.setHistogram(name = ”,low=0.0,high=100.0,nbins=10)

• h = r.getHistogram(), which returns the completed histogram.

In the following example we establish a Monitor to observe values of an exponential random variate.
It uses a histogram with 30 bins (plus the under- and over-count bins):

from SimPy.Simulation import *
from random import expovariate

m = Monitor() # define the Monitor object, m

for i in range(1000): # make the observations
y = expovariate(0.1)
m.observe(y)

set up and return the completed histogram
h = m.histogram(name=’exponential’,low=0.0, high=20, nbins=30)

[Return to Top]

Other Links

Several example SimPy models are included with the SimPy code distribution.
Klaus Muller and Tony Vignaux, SimPy: Simulating Systems in Python, O’Reilly ONLamp.com,

2003-Feb-27, http://www.onlamp.com/pub/a/python/2003/02/27/simpy.html
Norman Matloff, Introduction to the SimPy Discrete-Event Simulation Package, U Cal: Davis, 2003,

http://heather.cs.ucdavis.edu/˜matloff/simpy.html
David Mertz, Charming Python: SimPy simplifies complex models, IBM Developer Works, Dec 2002,

http://www-106.ibm.com/developerworks/linux/library/l-simpy.html
[Return to Top]

Acknowledgements

We will be grateful for any further corrections or suggestions that will improve it.
[Return to Top]

Appendices

A0. Changes from the previous version of SimPy

SimPy 1.8 differs from version 1.7 in the following ways. It requires Python 2.3 or later. It fixes a few
bugs and adds:

• a compound put and get for Levels and Stores like the compound get for Resources.

• startCollection() to initialise Monitors and Tallys at a certain time.

• code to register all Monitors in variable allMonitors and all Tallys in variable allTallies.

• a variable version which returns the SimPy version number and date.

[Return to Top]

43

file:LISTOFMODELS.html
http://www.onlamp.com/pub/a/python/2003/02/27/simpy.html
http://heather.cs.ucdavis.edu/~matloff/simpy.html
http://www-106.ibm.com/developerworks/linux/library/l-simpy.html

A1. SimPy Error Messages

Advisory messages

These messages are returned by simulate(), as in message=simulate(until=123).
Upon a normal end of a simulation, simulate() returns the message:

• SimPy: Normal exit. This means that no errors have occurred and the simulation has run to
the time specified by the until parameter.

The following messages, returned by simulate(), are produced at a premature termination of the
simulation but allow continuation of the program.

• SimPy: No more events at time x. All processes were completed prior to the endtime given
in simulate(until=endtime).

• SimPy: No activities scheduled. No activities were scheduled when simulate() was called.

Fatal error messages

These messages are generated when SimPy-related fatal exceptions occur. They end the SimPy program.
Fatal SimPy error messages are output to sysout.

• Fatal SimPy error: activating function which is not a generator (contains no ’yield’).
A process tried to (re)activate a function which is not a SimPy process (=Python generator).
SimPy processes must contain at least one yield . . . statement.

• Fatal SimPy error: Simulation not initialized. The SimPy program called simulate() before
calling initialize().

• SimPy: Attempt to schedule event in the past: A yield hold statement has a negative delay
time parameter.

• SimPy: initialBuffered exceeds capacity: Attempt to initialize a Store or Level with more
units in the buffer than its capacity allows.

• SimPy: initialBuffered param of Level negative: x: Attempt to initialize a Level with a
negative amount x in the buffer.

• SimPy: Level: wrong type of initialBuffered (parameter=x): Attempt to initialize a
buffer with a non-numerical initial buffer content x.

• SimPy: Level: put parameter not a number: Attempt to add a non-numerical amount to
a Level’s buffer.

• SimPy: Level: put parameter not positive number: Attempt to add a negative number to
a Level’s amount.

• SimPy: Level: get parameter not positive number: x: Attempt to get a negative amount
x from a Level.

• SimPy: Store: initialBuffered not a list: Attempt to initialize a Store with other than a list
of items in the buffer.

• SimPy: Item to put missing in yield put stmt: A yield put was malformed by not having
a parameter for the item(s) to put into the Store.

• SimPy: put parameter is not a list: yield put for a Store must have a parameter which is a
list of items to put into the buffer.

44

• SimPy: Store: get parameter not positive number: x: A yield get for a Store had a
negative value for the number to get from the buffer.

• SimPy: Fatal error: illegal command: yield x: A yield statement with an undefined
command code (first parameter) x was executed.

Monitor error messages

• SimPy: No observations for mean. No observations were made by the monitor before at-
tempting to calculate the mean.

• SimPy: No observations for sample variance. No observations were made by the monitor
before attempting to calculate the sample variance.

• SimPy: No observations for timeAverage, No observations were made by the monitor before
attempting to calculate the time-average.

• SimPy: No elapsed time for timeAverage. No simulation time has elapsed before attempting
to calculate the time-average.

A2. SimPy Process States

From the viewpoint of the model builder a SimPy process, p, can at any time be in one of the following
states:

• Active: Waiting for a scheduled event. This state simulates an activity in the model. Simulated
time passes in this state. The process state p.active() returns True.

• Passive: Not active or terminated. Awaiting (re-)activation by another process. This state
simulates a real world process which has not finished and is waiting for some trigger to continue.
Does not change simulation time. p.passive() returns True.

• Terminated: The process has executed all its action statements. If referenced, it serves as a data
instance. p.terminated() returns True

Initially (upon creation of the Process instance), a process returns passive.
In addition, a SimPy process, p, can be in the following (sub)states:

• Interrupted: Active process has been interrupted by another process. It can immediately re-
spond to the interrupt. This simulates an interruption of a simulated activity before its scheduled
completion time. p.interrupted() returns True.

• Queuing: Active process has requested a busy resource and is waiting (passive) to be reactivated
upon resource availability. p.queuing(a resource) returns True.

A3. SimPlot, The SimPy plotting utility

SimPlot provides an easy way to graph the results of simulation runs.

A4. SimGUI, The SimPy Graphical User Interface

SimGUI provides a way for users to interact with a SimPy program, changing its parameters and
examining the output.

45

file:SimPlotManual/ManualPlotting.html
file:SimGUIManual/SimGUImanual.html

A5. SimulationTrace, the SimPy tracing utility

SimulationTrace has been developed to give users insight into the dynamics of the execution of SimPy
simulation programs. It can help developers with testing and users with explaining SimPy models to
themselves and others (e.g., for documentation or teaching purposes).

A6. SimulationStep, the SimPy event stepping utility

SimulationStep can assist with debugging models, interacting with them on an event-by-event basis,
getting event-by-event output from a model (e.g. for plotting purposes), etc.

It caters for:

• running a simulation model, while calling a user-defined procedure after every event,

• running a simulation model one event at a time by repeated calls,

• starting and stopping the event-stepping mode under program control.

A7. SimulationRT, a real-time synchronizing utility

SimulationRT allows synchronising simulation time and real (wall-clock) time. This capability can be
used to implement, e.g., interactive game applications or to demonstrate a model’s execution in real
time.

[Return to Top]

Glossary

(Note: Terms in italics refer to other special terms. Items in code font are code fragments or specific
code names.)

activeQ A Resource object automatically creates and maintains its own activeQ, the queue (list) of
process objects that are currently using one of the Resource’s units. See Resources. (See also the
Glossary entry for waitQ.)

activate Commands a process object to being executing its PEM. See Starting and stopping SimPy
process objects.

BNF notation This manual occasionally uses a modified BNF notation to exhibit command syntax,
as in the description of the activate command:

activate(p, p.PEM([args]) [,{at=t|delay=period}] [,prior=False])

In this notation, square brackets [] indicate items that are optional, braces { } indicate items of
which zero or more may be present, and a vertical bar | indicates a choice between alternatives
(with none of them being a possibility).

cancel Deletes all of a process object’s scheduled future events. See Starting and stopping SimPy
process objects.

entity An alternative name for process object.

event A SimEvent object. See Advanced synchronization/scheduling capabilities.

FIFO An attribute of a resource object (i.e., a Resource, Level, or Store) indicating that an associated
queue (e.g., the ActiveQ, waitQ, getQ, or putQ) is to be kept in FIFO order. (See also the Glossary
entries for PriorityQ and qType.)

46

file:Tracing.html
file:SimStepManual/SimStepManual.html
file:SimRTManual.html

getQ The queue of processes waiting to take something from a Level or Store resource. See also the
Glossary entry for putQ.

interrupt Requests a “victim” process object to interrupt (i.e., to immediately and prematurely end)
its current yield hold,... command. (Note: A process object cannot interrupt itself.) See
Asynchronous interruptions.

Level A particular type of resource facility that models the production and consumption of a homoge-
neous undifferentiated “material.” Process objects can increase or decrease the amount of material
in a Level resource facility. See Levels.

Monitor A data recorder that compiles basic statistics as a function of time on variables such as
waiting times and queue lengths. (Note: Monitors can also preserve complete time-series data for
post-simulation analyses.) See Recording Simulation Results.

monitorType The type of Recorder to be used for recording simulation results. Usually this is either
a Monitor or a Tally. (See also the Glossary entry for Recorder.)

monitored A (boolean) attribute of a resource object indicating whether to keep a record of its activity.
See Recorder.

passivate Halts (“freezes”) a process object’s PEM. The process object becomes “passive”. See Starting
and stopping SimPy Process Objects.

PEM An abbreviation for Process Execution Method, q.v.

preempt To force a process object currently using a resource unit to release it and make it available
for use by another process object. See Preemptive requests for a Resource unit.

preemptable A settable attribute of Resource objects. The Resource object’s units are preemptable
if preemptable==True, otherwise not. See Preemptive requests for a Resource unit.

priority A nonnegative integer or real value controlling the order of process objects in a queue. Higher
values represent higher priority. Higher priority process objects are placed ahead of lower priority
ones in the queue. See also the Glossary entry for FIFO.

PriorityQ An attribute of a resource object (i.e., a Resource, Level, or Store) indicating that an
associated queue (e.g., the ActiveQ, waitQ, getQ, or putQ) is to be kept in order of priority. (See
also the Glossary entries for FIFO, qType.)

process We usually call both process objects and their classes “processes” (with a small “p”). Thus,
“process” may refer to a Process class or to a process object, depending on context. To avoid
ambiguity or for added emphasis we often explicitly state whether a class or an object is intended.

Process class A class that inherits from SimPy’s Process class and contains at least one Process
Execution Method. Process classes may also contain other methods -- in particular they may
contain an __init__ method. See Processes.

Process Execution Method A Process class method that contains at least one yield ... state-
ment. See Defining a process.

process object An object created from (i.e., an instance of) a Process class. See Processes.

putQ The queue of processes waiting to add something to a Level or Store resource. See also the
Glossary entry for getQ.

reactivate Reactivates (“unfreezes”) a passivated or a terminated process object’s PEM. The process
object becomes “active”. See Starting and stopping SimPy Process Objects.

47

Recorder A device for recording simulation results. Unless otherwise specified, it usually refers either
to a Monitor or a Tally. However, Recorders also include histograms and observers. See Recording
Simulation Results for Monitors, Tallys, and the other devices for recording simulation results.

renege To leave a queue before acquiring a resource unit. See Reneging -- leaving a queue before
acquiring a resource.

resource Same as “resource facility.” A congestion point at which process objects may need to queue
for access to resources. The term “resource” (with a small “r”) is used as a generic term for the
individual resource facilities provided by SimPy (i.e., Resources, Levels, and Stores).

qType An attribute of resource objects indicating whether an associated queue is to be kept in FIFO
or PriorityQ order. See the Glossary entries for waitQ, ActiveQ, putQ,and getQ. See also the
treatment of these queues in the sections on the individual resources (i.e., Resources, Levels, and
Stores).

Resource A particular type of resource facility that possesses several identical resource units. A process
object may acquire one (and only one) of the Resource’s resource units. See Resources .

Resource unit One of the individual resources associated with a Resource type of resource facility.
See Resources.

SimEvent The SimPy class for defining and creating SimEvent objects. Occasionally designates a
SimEvent object when context makes that usage clear. See Advanced synchronization/scheduling
capabilities.

Store A particular type of resource facility that models the production and consumption of individual
items. Process objects can insert or remove items from the Store’s list of available items. See
Stores.

Tally A particular type of Recorder that compiles basic statistics as a function of time on variables
such as waiting times and queue lengths. (Note: Tallys do not preserve complete time-series data
for post-simulation analyses.) See Recording Simulation Results. (See also the Glossary entry for
monitorType.)

unit (of a Resource) One of the individual resource capabilities provided by a Resource. See Re-
sources.

waitQ A Resource object automatically creates and maintains its own waitQ, the queue (list) of process
objects that have requested but not yet received one of the Resource’s units. See Resources. (See
also the Glossary entry for activeQ.)

48

	Contents
	Introduction
	Simulation with SimPy
	Alternative SimPy simulation libraries

	Processes
	Defining a process
	Elapsing time in a Process
	Starting and stopping SimPy Process Objects
	Example 2
	A source fragment

	Asynchronous interruptions
	Advanced synchronization/scheduling capabilities
	Creating and Signalling SimEvents
	Waiting or Queueing for SimEvents
	Finding Which Processes Are Waiting/Queueing for an Event, and Which Events Fired
	An Example Using SimEvents

	``waituntil'' synchronization -- waiting for any condition
	``waituntil'' synchronization -- waiting for any condition

	Resources
	Defining a Resource object
	Requesting and releasing a unit of a Resource
	Priority requests for a Resource unit
	Preemptive requests for a Resource unit
	Note on preemptive requests with waitQ in FIFO order

	Reneging -- leaving a queue before acquiring a resource
	Reneging after a time limit
	Reneging when an event has happened
	Note on exiting conventions and preemptive queues

	Recording Resource queue lengths

	Levels
	Defining a Level
	Getting amounts from a Level
	Putting amounts into a Level
	An inventory example (without reneging)

	Reneging

	Stores
	Defining a Store
	Putting objects into a Store
	Getting objects from a Store
	Using the get filter function
	An example of a Store (without reneging)

	Reneging
	Storing objects in an order
	Master/Slave modelling with a Store
	An example

	Random Number Generation
	Recording Simulation Results
	Defining Tallys and Monitors
	Observing data
	Data summaries
	Special methods for Monitor
	Histograms
	Setting up a Histogram for a Tally object
	Setting up a Histogram for a Monitor object

	Other Links
	Acknowledgements
	Appendices
	A0. Changes from the previous version of SimPy
	A1. SimPy Error Messages
	Advisory messages
	Fatal error messages
	Monitor error messages

	A2. SimPy Process States
	A3. SimPlot, The SimPy plotting utility
	A4. SimGUI, The SimPy Graphical User Interface
	A5. SimulationTrace, the SimPy tracing utility
	A6. SimulationStep, the SimPy event stepping utility
	A7. SimulationRT, a real-time synchronizing utility

	Glossary

