
Restricted permutations; using the permute

Package

Gavin L. Simpson
Environmental Change Research Centre — UCL

Abstract

Keywords: permutations, restricted permutations, time series, transects, spatial grids, split-plot
designs, Monte Carlo resampling, R.

1. Introduction

In classical frequentist statistics, the significance of a relationship or model is determined by
reference to a null distribution for the test statistic. This distribution is derived mathematically
and the probability of achieving a test statistic as large or larger if the null hypothesis were true
is looked-up from this null distribution. In deriving this probability, some assumptions about the
data or the errors are made. If these assumptions are violated, then the validity of the derived
p-value may be questioned.
An alternative to deriving the null distribution from theory is to generate a null distribution for
the test statistic by randomly shuffling the data in some manner, refitting the model and deriving
values for the test statistic for the permuted data. The level of significance of the test can be
computed as the proportion of values of the test statistic from the null distribution that are equal
to or larger than the observed value.
In many data sets, simply shuffling the data at random is inappropriate; under the null hypothesis,
that data are not freely exchangeable. If there is temporal or spatial correlation, or the samples
are clustered in some way, such as multiple samples collected from each of a number of fields. The
permute was designed to provide facilities for generating these restricted permutations for use in
randomisation tests.

2. Simple randomisation

As an illustration of both randomisation and the use of the permute package we consider a small
data set of mandible length measurements on specimens of the golden jackal (Canis aureus) from
the British Museum of Natural History, London, UK. These data were collected as part of a study
comparing prehistoric and modern canids (Higham et al. 1980), and were analysed by Manly
(2007). There are ten measurements of mandible length on both male and female specimens. The
data are available in the jackal data frame supplied with permute.

R> require(permute)

R> data(jackal)

R> jackal

Length Sex
1 120 Male



2 Using the permuet Package

2 107 Male
3 110 Male
4 116 Male
5 114 Male
6 111 Male
7 113 Male
8 117 Male
9 114 Male
10 112 Male
11 110 Female
12 111 Female
13 107 Female
14 108 Female
15 110 Female
16 105 Female
17 107 Female
18 106 Female
19 111 Female
20 111 Female

The interest is whether there is a difference in the mean mandible length between male and female
golden jackals. The null hypothesis is that there is zero difference in mandible length between the
two sexes or that females have larger mandible. The alternative hypothesis is that males have
larger mandibles. The usual statistical test of this hypothesis is a one-sided t test, which can be
applied using t.test()

R> jack.t <-t.test(Length ~ Sex, data = jackal, var.equal = TRUE, alternative = "greater")

R> jack.t

Two Sample t-test

data: Length by Sex
t = 3.4843, df = 18, p-value = 0.001324
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
2.411156 Inf
sample estimates:
mean in group Male mean in group Female

113.4 108.6

The observed t is 3.484 with 18 df. The probability of observing a value this large or larger if the
null hypothesis were true is 0.0013. Several assumptions have been made in deriving this p-value,
namely

1. random sampling of individuals from the populations of interest,

2. equal population standard deviations for males and females, and

3. that the mandible lengths are normally distributed within the sexes.

Assumption 1 is unlikely to be valid for museum specimens such as these, that have been collected
in some unknown manner. Assumption 2 may be valid, Fisher’s F -test and a Fligner-Killeen test
both suggest that the standard deviations of the two populations do not differ significantly

R> var.test(Length ~ Sex, data = jackal)



Gavin L. Simpson 3

F test to compare two variances

data: Length by Sex
F = 2.681, num df = 9, denom df = 9, p-value = 0.1579
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.665931 10.793829

sample estimates:
ratio of variances

2.681034

R> fligner.test(Length ~ Sex, data = jackal)

Fligner-Killeen test of homogeneity of variances

data: Length by Sex
Fligner-Killeen:med chi-squared = 0.7808, df = 1, p-value = 0.3769

This assumption may be relaxed using var.equal = FALSE (the default) in our call to t.test(),
to employ Welch’s modification for unequal variances. Assumption 3 may be valid, but with such
a small sample we are able to reliably test this.
A randomisation test of the same hypothesis can be performed by randomly allocating ten of the
mandible lengths to the male group and the remaining lengths to the female group. This ran-
domisation is justified under the null hypothesis because the observed difference in mean mandible
length between the two sexes is just a typical value for the difference in a sample if there were
no difference in the population. An appropriate test statistic needs to be selected. We could use
the t statistic as derived in the t-test. Alternatively, we could base our randomisation test on the
difference of means Di (male - female).
The main function in permute for providing random permutations is shuffle(). We can write our
own randomisation test for the jackal data by first creating a function to compute the difference
of means for two groups

R> meanDif <- function(x, grp) {

+ mean(x[grp == "Male"]) - mean(x[grp == "Female"])

+ }

which can be used in a simple for() loop to generate the null distribution for the difference of
means. First, we allocate some storage to hold the null difference of means; here we use 4999
random permutations so allocate a vector of length 5000. Then we iterate, randomly generating
an ordering of the Sex vector and computing the difference means for that permutation.

R> Djackal <- numeric(length = 5000)

R> N <- nrow(jackal)

R> set.seed(42)

R> for(i in seq_len(length(Djackal) - 1)) {

+ perm <- shuffle(N)

+ Djackal[i] <- with(jackal, meanDif(Length, Sex[perm]))

+ }

R> Djackal[5000] <- with(jackal, meanDif(Length, Sex))

The observed difference of means was added to the null distribution, because under the null
hypothesis the observed allocation of mandible lengths to male and female jackals is just one of
the possible random allocations.
The null distribution of Di can be visualised using a histogram, as shown in Figure 1. The observed
difference of means (4.8) is indicated by the red tick mark.



4 Using the permuet Package

Mean difference (Male − Female) in mm

F
re

qu
en

cy

−6 −4 −2 0 2 4 6

0
20

0
40

0
60

0
80

0
10

00

Figure 1: Distribution of the difference of mean mandible length in random allocations, ten to
each sex.

R> hist(Djackal, main = "",

+ xlab = expression("Mean difference (Male - Female) in mm"))

R> rug(Djackal[5000], col = "red", lwd = 2)

The number of values in the randomisation distribution equal to or larger than the observed
difference is

R> (Dbig <- sum(Djackal >= Djackal[5000]))

[1] 12

giving a permutational p-value of

R> Dbig / length(Djackal)

[1] 0.0024

which is comparable with that determined from the frequentist t-test, and indicate strong evidence
against the null hypothesis of no difference.
In total there 20C10 = 184, 756 possible allocations of the 20 observations to two groups of ten

R> choose(20, 10)



Gavin L. Simpson 5

[1] 184756

so we have only evaluated a small proportion of these in the randomisation test.
The main workhorse function we used above was shuffle(). In this example, we could have used
the base R function sample() to generate the randomised indices perm that were used to permute
the Sex factor. Where shuffle() comes into it’s own is for generating permutation indices from
restricted permutation designs.

3. The shuffle() and shuffleSet() functions

In the previous section I introduced the shuffle() function to generate permutation indices for
use in a randomisation test. Now we will take a closer look at shuffle() and explore the various
restricted permutation designs from which it can generate permutation indices.
shuffle() has two arguments: i) n, the number of observations in the data set to be permuted,
and ii) control, a list that defines the permutation design describing how the samples should be
permuted.

R> args(shuffle)

function (n, control = permControl())
NULL

A series of convenience functions are provided that allow the user to set-up even quite complex
permutation designs with little effort. The user only needs to specify the aspects of the design
they require and the convenience functions ensure all configuration choices are set and passed on
to shuffle(). The main convenience function is permControl(), which return a list specifying
all the options available for controlling the sorts of permutations returned by shuffle()

R> str(permControl())

List of 10
$ strata : NULL
$ nperm : num 199
$ complete : logi FALSE
$ within :List of 5
..$ type : chr "free"
..$ constant: logi FALSE
..$ mirror : logi FALSE
..$ ncol : NULL
..$ nrow : NULL
$ blocks :List of 4
..$ type : chr "none"
..$ mirror: logi FALSE
..$ ncol : NULL
..$ nrow : NULL
$ maxperm : num 9999
$ minperm : num 99
$ all.perms : NULL
$ observed : logi FALSE
$ name.strata: chr "NULL"
- attr(*, "class")= chr "permControl"

The defaults describe a random permutation design where all objects are freely exchangeable.
Using these defaults, shuffle(10) amounts to sample(1:10, 10, replace = FALSE):



6 Using the permuet Package

R> set.seed(2)

R> (r1 <- shuffle(10))

[1] 2 7 5 10 6 8 1 3 4 9

R> set.seed(2)

R> (r2 <- sample(1:10, 10, replace = FALSE))

[1] 2 7 5 10 6 8 1 3 4 9

R> all.equal(r1, r2)

[1] TRUE

3.1. Generating restricted permutations

Several types of permutation are available in permute:

• Free permutation of objects

• Time series or line transect designs, where the temporal or spatial ordering is preserved.

• Spatial grid designs, where the spatial ordering is preserved in both coordinate directions

• Permutation of blocks or groups of samples.

The first three of these can be nested within the levels of a factor or to the levels of that factor,
or to both. Such flexibility allows the analysis of split-plot designs using permutation tests.
permControl() is used to set up the design from which shuffle() will draw a permutation.
permControl() has two main arguments that specify how samples are permuted within blocks of
samples or at the block level itself. These are within and blocks. Two convenience functions,
Within() and Blocks() can be used to set the various options for permutation.
For example, to permute the observations 1:10 assuming a time series design for the entire set of
observations, the following control object would be used

R> set.seed(4)

R> x <- 1:10

R> CTRL <- permControl(within = Within(type = "series"))

R> perm <- shuffle(10, control = CTRL)

R> perm

[1] 7 8 9 10 1 2 3 4 5 6

R> x[perm] ## equivalent

[1] 7 8 9 10 1 2 3 4 5 6

It is assumed that the observations are in temporal or transect order. We only specified the type
of permutation within blocks, the remaining options were set to their defaults via Within().
A more complex design, with three blocks, and a 3 by 3 spatial grid arrangement within each
block can be created as follows



Gavin L. Simpson 7

R> set.seed(4)

R> block <- gl(3, 9)

R> CTRL <- permControl(strata = block,

+ within = Within(type = "grid", ncol = 3, nrow = 3))

R> perm <- shuffle(length(block), control = CTRL)

R> perm

[1] 6 4 5 9 7 8 3 1 2 14 15 13 17 18 16 11 12 10 22 23 24 25 26 27 19
[26] 20 21

Visualising the permutation as the 3 matrices may help illustrate how the data have been shuffled

R> ## Original

R> lapply(split(1:27, block), matrix, ncol = 3)

$‘1‘
[,1] [,2] [,3]

[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

$‘2‘
[,1] [,2] [,3]

[1,] 10 13 16
[2,] 11 14 17
[3,] 12 15 18

$‘3‘
[,1] [,2] [,3]

[1,] 19 22 25
[2,] 20 23 26
[3,] 21 24 27

R> ## Shuffled

R> lapply(split(perm, block), matrix, ncol = 3)

$‘1‘
[,1] [,2] [,3]

[1,] 6 9 3
[2,] 4 7 1
[3,] 5 8 2

$‘2‘
[,1] [,2] [,3]

[1,] 14 17 11
[2,] 15 18 12
[3,] 13 16 10

$‘3‘
[,1] [,2] [,3]

[1,] 22 25 19
[2,] 23 26 20
[3,] 24 27 21



8 Using the permuet Package

In the first grid, the lower-left corner of the grid was set to row 2 and column 2 of the original, to
row 1 and column 2 in the second grid, and to row 3 column 2 in the third grid.
To have the same permutation within each level of block, use the constant argument of the
Within() function, setting it to TRUE

R> set.seed(4)

R> CTRL <- permControl(strata = block,

+ within = Within(type = "grid", ncol = 3, nrow = 3,

+ constant = TRUE))

R> perm2 <- shuffle(length(block), control = CTRL)

R> lapply(split(perm2, block), matrix, ncol = 3)

$‘1‘
[,1] [,2] [,3]

[1,] 6 9 3
[2,] 4 7 1
[3,] 5 8 2

$‘2‘
[,1] [,2] [,3]

[1,] 15 18 12
[2,] 13 16 10
[3,] 14 17 11

$‘3‘
[,1] [,2] [,3]

[1,] 24 27 21
[2,] 22 25 19
[3,] 23 26 20

3.2. Generating sets of permutations with shuffleSet()

There are several reasons why one might wish to generate a set of n permutations instead of
repeatedly generating permutations one at a time. Interpreting the permutation design happens
each time shuffle() is called. This is an unnecessary computational burden, especially if you want
to perform tests with large numbers of permutations. Furthermore, having the set of permutations
available allows for expedited use with other functions, they can be iterated over using for loops
or the apply family of functions, and the set of permutations can be exported for use outside of
R.
The shuffleSet() function allows the generation of sets of permutations from any of the designs
available in permute. shuffleSet() takes an additional argument to that of shuffle(), nset,
which is the number of permutations required for the set. Internally, shuffle() and shuffleSet()
are very similar, with the major difference being that shuffleSet() arranges repeated calls to the
workhorse permutation-generating functions with only the overhead associated with interpreting
the permutation design once. shuffleSet() returns a matrix where the rows represent different
permutations in the set.
As an illustration, consider again the simple time series example from earlier. Here I generate a
set of 5 permutations from the design, with the results returned as a matrix

R> set.seed(4)

R> CTRL <- permControl(within = Within(type = "series"))

R> pset <- shuffleSet(10, nset = 5, control = CTRL)

R> pset



Gavin L. Simpson 9

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 7 8 9 10 1 2 3 4 5 6
[2,] 2 3 4 5 6 7 8 9 10 1
[3,] 4 5 6 7 8 9 10 1 2 3
[4,] 4 5 6 7 8 9 10 1 2 3
[5,] 10 1 2 3 4 5 6 7 8 9

Computational details

R> toLatex(sessionInfo())

• R version 2.15.0 Patched (2012-03-30 r58877), x86_64-unknown-linux-gnu

• Locale: LC_CTYPE=en_GB.utf8, LC_NUMERIC=C, LC_TIME=en_GB.utf8, LC_COLLATE=C,
LC_MONETARY=en_GB.utf8, LC_MESSAGES=en_GB.utf8, LC_PAPER=C, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_GB.utf8, LC_IDENTIFICATION=C

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: permute 0.7-0

• Loaded via a namespace (and not attached): tools 2.15.0

References

Higham C, Kijngam A, Manly B (1980). “An analysis of prehistoric canid remains from Thailand.”
Journal of Archaeological Science, 7, 149–165.

Manly B (2007). Randomization, bootstrap and Monte Carlo methods in biology. 3rd edition.
Chapman & Hall/CRC, Boca Raton.


	Introduction
	Simple randomisation
	The shuffle() and shuffleSet() functions
	Generating restricted permutations
	Generating sets of permutations with shuffleSet()


