
Unconstrained Optimization with

MINTOOLKIT for GNU Octave

Michael Creel∗

March 2004

Abstract

The paper documentsMINTOOLKIT for GNUOctave. MINTOOLKIT

provides functions for minimization and numeric differentiation. The

main algorithms are BFGS, LBFGS, and simulated annealing. Examples

are given.

1 Introduction

Unconstrained optimization is a basic tool in many disciplines, and there is no

need to discuss its importance. This paper discusses how unconstrained opti-

mization may be done using GNU Octave (Eaton, www.octave.org) using the

package MINTOOLKIT (Creel, http://pareto.uab.es/mcreel/MINTOOLKIT).

If you would just like to see some examples of how to use the algorithms, skip

to section 4. Otherwise, here’s some introductory information that explains

how algorithms we selected for inclusion into MINTOOLKIT.

1.1 Types of problems

We first briefly discuss types of optimization problems, in order to identify the

cases where GNU Octave will be a good platform for analysis, and which of

the algorithms in MINTOOLKIT will likely work well for given cases.

1.1.1 Large/small

What is the number of parameters to be minimized? Let k be the number of

parameters. Memory usage of an algorithm will be some function f (k). If this

∗Dept. of Economics and Economic History, Universitat Autònoma de Barcelona.
michael.creel@uab.es

1

http://www.octave.org
http://pareto.uab.es/mcreel/MINTOOLKIT

function is growing rapidly for a certain algorithm, that algorithm will cease

to be useful for ”large” problems, since memory will be exhausted. Of course,

”large” is a relative term that increases over time as memory becomes cheaper.

For ”small” problems, the speed of convergence of the algorithm will be of

primary importance, since memory resources will not be a bottleneck.

1.1.2 Continuous/discontinuous

Gradient-based methods such as Newton’s algorithm or quasi-Newton meth-

ods rely on the function being differentiable. This will not hold if the function

is not continuous. Search-type algorithms will be appropriate here.

1.1.3 Convex/nonconvex

A convex objective function will have a single global minimizer, whereas non-

convex functions may have additional local minima. Quasi-Newton methods

only use local information in their updates, so they may well converge to a

non-global minimum, depending upon starting values. A possible solution is

to try a number of starting values. This is likely to work well if the nonconvex-

ity problem is not too severe. When there aremany local minima, a search-type

algorithm may become more efficient, since the problem of local minima is

dealt with automatically and doesn’t require the analysts’ intervention. After

all, who’s time is more important, yours, or your computer’s?

1.1.4 Costly/cheap

Can the objective function be evaluated quickly, or is it time-consuming? Oc-

tave is an interpreted language, and is in general slower than FORTRAN, C,

or similar. So expensive objective functions are best not implemented in pure

Octave. One might go to a different environment for analysis, but in fact it

is relatively easy to convert objective functions written in Octave to C++, and

call them dynamically from Octave scripts. In this way, the expensive calcula-

tions are done using a fast language, while the user deals with the convenient,

friendly Octave environment. In fact, C++ functions may make use of the Oc-

tave classes, so converting an Octave function to C++ is not very difficult. The

algorithms in MINTOOLKIT serve as examples of how this may be done.

2

2 Algorithms

The algorithms in MINTOOLKIT were chosen based upon many sources of

information, two of which are Nocedal (1992), for continuous, convex prob-

lems, and Mittelmann for global minimization. The goal of MINTOOLKIT is

to be able to solve well-posed problems quickly and robustly, using the small-

est set of algorithms possible. ”Well-posed” is an important adjective here -

MINTOOLKIT is not meant to be able to solve poorly conditioned problems

or problems that can easily fall into numeric precision traps. Please pay atten-

tion to how your data is scaled, try to ”bullet-proof” your objective function

to avoid divisions by zero, etc. Nevertheless, if you find bugs, or have sugges-

tions or comments, please contact the author.

2.1 BFGSMIN

The BFGS algorithm is probably the most widely-used quasi-Newton method

for moderately-sized continuous problems that are not extremely nonconvex.

It is more robust than other quasi-Newton methods such as DFP (Nocedal,

1992), and it is faster than Newton’s method, since the Hessian matrix need

not be calculated. One could easily create aNewton algorithm using the source

code for bfgsmin.

2.2 LBFGSMIN

For large problems, the BFGS algorithm may not be feasible, since it requires

storing a k × k matrix. The LBFGS (”L” is for ”limited memory”) method is

able to store all information for updates in vectors, which substantially re-

duced memory requirements. It may also be faster than the BFGS algorithm

in some circumstances, since it may use fewer floating point operations per

iteration, depending upon the size of the problem. While it will usually re-

quire more iterations that BFGS, it may be faster if each iteration is faster.

Liu and Nocecal 1989 is a reference.

2.3 SAMIN

When problems aremildly nonconvex, the quasi-Newtonmethods above, com-

bined with a number of trial start values, may be the fastest way to find the

global minimum. This solution is implemented in battery.m. But when the

problem becomes less smooth, with many local minima, this solution may fail.

Simulated annealing is one of the algorithms that works well in this case. The

3

http://www.ece.northwestern.edu/~nocedal/PDFfiles/acta.pdf
http://plato.la.asu.edu/topics/problems/global.html
http://www.ece.northwestern.edu/~nocedal/PDFfiles/limited-memory.pdf

implementation by Goffe has been used widely, and is the basis for the version

included in MINTOOLKIT. An additional reference is Goffe (1996).

samin differs from the Goffe code in two important ways:

1. The ”temperature” is determined automatically. In a first stage, the tem-

perature is increased until the active search region covers the entire pa-

rameter space defined as the k-dimensional rectangle×k
j=1(lbj, ubj)where

lbj and ubj are the jth elements of the LB and UB vectors that are the

lower and upper bounds for the parameters (these are user-specified ar-

guments to samin. Once this is achieved, the temperature decreases as

usual.

2. Convergence is defined as two conditions holding simultaneously.

(a) The last NEPS best function values cannot differ bymore than FUNC-

TOL. This is as in Goffe’s code.

(b) The width of the search interval must be less than PARAMTOL for

each parameter. This allows to avoid accepting points on a flat

plateau.

3 Obtaining the code

• MINTOOLKIT is available directly from the author, at http://pareto.uab.es/mcreel/MINTOOLKIT

If you get it this way, uncompress the file where you like, change to the

MINTOOLKIT directory, and compile by typing ”make all” (this sup-

poses that you have Octave installed already). Make sure that Octave

knows where the MINTOOLKIT directory is. This option guarantees

that you have the most recent version.

• Otherwise, you can obtain MINTOOLKIT as part of the octave-forge

package.

• If you happen to be runningDebian Linux, you can install a pre-compiled

version of octave-forge and all required files by typing ”apt-get install

octave-forge”. This is the easiest (and recommended) option.

4 Examples

MINTOOLKIT contains some functions for use by users, and some other func-

tions that users can ignore. The functions for users are

4

http://www.netlib.no/netlib/opt/simann.f
http://pareto.uab.es/mcreel/MINTOOLKIT
http://sourceforge.net/project/showfiles.php?group_id=2888
http://www.debian.org
http://www.linux.org

Function Purpose

bfgsmin Ordinary BFGS algorithm

battery Calls bfgsmin with a set of starting values

lbfgsmin Limited-memory BFGS, for large problems

samin Simulated annealing, for global minimization

numgradient numeric first derivative of vector-valued function

numhessian numeric second derivative matrix

This section gives some very simple examples of the use of the algorithms

and functions in MINTOOLKIT. The first examples are intended to clearly il-

lustrate how to use the algorithms. Realism is not important. Then some more

difficult problems are considered.

The functions in MINTOOLKIT allowminimization or differentiation with

respect to any of the arguments of a function, holding the other arguments

fixed. The other arguments can include data or fixed parameters of the func-

tion, for example. The argument with respect to which minimization or differ-

entiation is done is denoted by minarg, which by default is equal to 1. Any

function to be minimized or differentiated by algorithms in MINTOOLKIT

must follow one of the forms

value = f (arg1, arg2, ..., argp)

[value, return2, ..., returnn] = f (arg1, arg2, ..., argp)

Special case: If the second form is used and return2 is a k× 1 vector, where k is

the dimension of minarg, then is assumed to be the gradient of f with respect

to minarg, if the algorithm called uses the gradient. Otherwise, it (and any

other returns from f) are ignored by MINTOOLKIT.

4.1 Minimization

4.1.1 bfgsmin

bfgsmin is called as

[theta, value, convergence] = b f gsmin(” f”, {args}, {control})

The first argument ” f” is a string variable that holds the name of the function

to be minimized. The second argument, args, is a cell array that hold the argu-

ments of f . The third argument control is an optional cell array of 4 elements.

The elements of control are described in Table 1. The outputs of bfgsmin are

5

Table 1: Controls for bfgsmin
Element Purpose Default Value Other possible values

1 maxiters -1 (infinity) any positive integer

2 verbosity 0 1: summary every iteration; 2: only final summary

3 criterion 1: strict convergence (f, g, ∆p) 2: weak convergence (only f)

4 minarg 1: first argument int: 1 ≤ minarg ≤ k, k = #args

obvious, except the code values that convergence can take on. These are -1 for

no convergence, maxiters exceeded; 1: convergence according to the specified

strong or weak criterion; 2: no convergence due to failure of the algorithm (e.g.,

the gradient calculation fails, or a stepsize cannot be found).

Consider a simple example - minimizing a quadratic function. The pro-

gram bfgsmin-example.m follows:

• The first example uses numeric derivatives, and minimizes with respect

to x, the first argument of the objective function. The second argument,

y, is treated as fixed.

• The second example uses analytic derivatives, since it calls objective2,

and minimizes with respect to x, the first argument of the objective func-

tion. The second argument, y, is treated as fixed.

• The third example uses numeric derivatives, andminimizes with respect

to y, the second argument of the objective function, since the 4th element

of control, minarg, is 2 . The first argument, x, is treated as fixed.

The output of running this example is

Notice that analytic gradients lead to faster convergence that do numeric

gradients. Also note in the third example, where minarg=2, that minimiza-

tion can be with respect to any of the arguments of the objective function.

4.1.2 lbfgsmin

When the problem is very large, a limited-memory bfgs algorithm may be

needed, if bfgsmin is not feasible due to memory limitations. lbfgsmin is

called as

[theta, value, convergence] = lb f gsmin(” f”, {args}, {control})

The first argument ” f” is a string variable that holds the name of the func-

tion to be minimized. The second argument, args, is a cell array that hold the

6

http://pareto.uab.es/mcreel/MINTOOLKIT/bfgsmin-example.m

Table 2: Controls for lbfgsmin
Element Purpose Default Value Other possible values

1 maxiters -1 (infinity) any positive integer

2 verbosity 0 1: summary every iteration; 2: only final summary

3 criterion 1: strict convergence (f, g, ∆p) 2: weak convergence (only f)

4 minarg 1: first argument int: 1 ≤ minarg ≤ k, k = #args

5 memory 5 any positive integer

arguments of f . The third argument control is an optional cell array of 5 ele-

ments. The elements of control are the same as for bfgsmin, except that there

is one more element that controls how many iterations are used to form the

quasi-Hessian matrix (this is the memory of the method). The control vector is

fully described in Table 3. You can easily modify the above example to use the

lbfgsminmethod.

It is possible that lbfgsmin can outperform bfgsmin even when mem-

ory is not an issue. Remember that both of these algorithms are approximating

the Hessian matrix using previous gradient evaluations. If the true Hessian is

changing rapidly, then a limited memory approximation may be better than

a long memory approximation. The Rosenbrock function is such a case. The

program lbfgsmin-example.m minimizes a 200-dimensional Rosenbrock func-

tion using both algorithms. The outputshows that the limited memory algo-

rithm uses significantly more iterations that the ordinary BFGS algorithm, but

it is almost 4 times as fast. In general, though, the ordinary BFGS algorithm is

recommended when memory limitations are not a problem.

4.1.3 samin

For discontinuous and/or seriously nonconvex problems, the quasi-Newton

methods are not likely to work well. samin is called as

[theta, value, convergence] = samin(” f”, args, control)

The controls for samin are summarized in Table

The example program sa-example.m is listed here:The objective function is

the sum of k exponentiated cosine waves, each shifted down so the minimum

is zero, with some curvature added in to create a global minimum of f (x) = 0

at x = (0, 0, ..., 0). The (edited to shorten) output of the example is here:

You can see that the minimum was found correctly.

7

http://pareto.uab.es/mcreel/MINTOOLKIT/lbfgsmin-example.m
http://pareto.uab.es/mcreel/MINTOOLKIT/sa-example.m

Table 3: Controls for samin
Element Name Purpose Description

1 lb lower bounds vector of lower bounds for parameters

2 ub upper bounds vector of upper bounds for parameters

3 nt control looping loops per temp. reduction, e.g., nt=20

4 ns control looping loops per stepsize adjustment, e.g., ns=5

5 rt reduce temp. 0 < rt < 1, e.g., rt=0.75

6 maxevals limit evaluations usually, a large number, unless just exploratory, e.g., 1e10

7 neps convergence positive integer. Higher is stricter criterion, e.g., neps=5

8 functol convergence last neps function values must be this close to eachother

9 paramtol convergence width of search interval must be less than this value

10 verbosity output 0: no outout; 1: intermediate; 2: only final

11 minarg arg. for min. which arg to min. w.r.t., usually = 1

4.1.4 A more difficult problem

The Moré-Garbow-Hillstrom test suite contains some relatively difficult mini-

mization problems. bfgsmin by itself can solve some of these problems, but

not all of them, since some have multiple local minima, or completely flat re-

gions where a gradient-based method will not be able to find a decreasing

direction of search. The ”Biggs EXP6” problem #18 is one for which bfgsmin

fails to find the global minimum. This program shows how the global min-

imum may be found by combining an initial search that uses samin to find

good starting values with refinement using bfgsmin to sharpen up the final

results. The samin results from running this program, which use a fast tem-

perature reduction and a fairly low limit on function evaluations are:

NO CONVERGENCE: MAXEVALS exceeded
Stage 2, decreasing temperature
Obj. fn. value 0.000006
parameter search width
9.844228 0.000000
4.294696 0.000000
-5.231675 0.000000
-3.114330 0.000000
1.076916 0.000000
1.118343 0.000000

Then come the BFGS iterations to sharpen up the results. The final BFGS

results are:

BFGSMIN intermediate results: Iteration 33
Stepsize 0.0000000
Using analytic gradient
Objective function value 0.0000000000
Function conv 1 Param conv 1 Gradient conv 1

8

http://www.uni-graz.at/imawww/kuntsevich/solvopt/results/moreset.html
http://pareto.uab.es/mcreel/MINTOOLKIT/solvebiggs.m

params gradient change
10.0000 0.0000 0.0000
4.0000 -0.0000 -0.0000
-5.0000 0.0000 0.0000
-3.0000 -0.0000 0.0000
1.0000 -0.0000 0.0000
1.0000 0.0000 0.0000

• The minimum is found, but note that the solution values are in a differ-

ent order than those given on the SolvOpt web page, with some negative

signs. This problem suffers from a lack of identification - there are mul-

tiple values that give exactly the same value of zero.

An alternative which will often be faster, but is less sure to find the global

minimum, is to call bfgsminwith many random starting values and a limited

number of iterations. This is implemented in battery.m. You can see an

example in This program. This leads to the results

BFGSMIN intermediate results: Iteration 130
Stepsize 0.0000000
Using analytic gradient
Objective function value 0.0000000000
Function conv 1 Param conv 1 Gradient conv 1
params gradient change
4.0000 -0.0000 0.0000
10.0000 0.0000 -0.0000
3.0000 0.0000 0.0000
5.0000 -0.0000 0.0000
1.0000 -0.0000 0.0000
1.0000 0.0000 0.0000

The minimum is found correctly, and you can see that the problem is not

identified.

4.1.5 Tips for successful minimization

Scaling Scaling the data and other constant parameters of the objective func-

tion so that the elements of the gradient are of approximately the same order

of magnitude will help improve accuracy of the Hessian approximation. This

can help a lot in obtaining convergence, and the results will have higher accu-

racy. This program illustrates. The output is You can see that the scaled data

gives a more accurate solution, using less than half the iterations.

9

http://pareto.uab.es/mcreel/MINTOOLKIT/solvebiggs2.m
http://pareto.uab.es/mcreel/MINTOOLKIT/tips.m

Bullet-proofing Writing your objective function so that it cannot return NaN

or otherwise crash can save a lot of grief. Insert something like if (((abs(obj_value)

== Inf)) || (isnan(obj_value)))

obj_value = realmax;

endif

at the end of the objective function, and then return obj_value. This way,

parameter values that lead to crashes are penalized, and will be avoided auto-

matically.

4.2 Numeric differentiation

numgradient and numhessian can be used for numeric differentiation. numgradient

returns the derivative of an n× 1 vector-valued function with respect to a k× 1

vector in a n× k matrix. numhessian returns the derivative of a real-valued

function with respect to a k × 1 vector in a k × k matrix. Both functions are

quite accurate. numderivatives.m, which follows, shows how it can be done.

The results are:

5 Testing the code

The programmgh-test.m allows testing the algorithms using theMoré-Garbow-

Hillstrom test suite, obtained from the SolvOpt source code. You can compare

the output with these results, if you like. Note that simply applying BFGSwith

a single start value will sometimes lead to a failure of convergence, or conver-

gence to a non-global minimum. This is expected, considering the nature of

the problems. See section 4.1.4 for an appropriate means of proceeding with

these problems.

If you find any bugs in the code, please contact me.

References

[1] Eaton, J.W., http://www.octave.org/

[2] Liu andNocedal, http://www.ece.northwestern.edu/~nocedal/PDFfiles/limited-memory.pdf

[3] Mittelmann, http://plato.asu.edu/topics/problems/global.html

[4] Nocedal (1992), http://www.ece.northwestern.edu/~nocedal/PDFfiles/acta.pdf

[5] Goffe, http://www.netlib.no/netlib/opt/simann.f

10

http://pareto.uab.es/mcreel/MINTOOLKIT/numderivatives.m
http://pareto.uab.es/mcreel/MINTOOLKIT/mgh-test.m
http://www.uni-graz.at/imawww/kuntsevich/solvopt/
http://www.uni-graz.at/imawww/kuntsevich/solvopt/results/table1.html
http://www.octave.org/
http://www.ece.northwestern.edu/~nocedal/PDFfiles/limited-memory.pdf
http://plato.asu.edu/topics/problems/global.html
http://www.ece.northwestern.edu/~nocedal/PDFfiles/acta.pdf
http://www.netlib.no/netlib/opt/simann.f

[6] Goffe, "SIMANN: A Global Optimization Algorithm using Simulated An-

nealing " Studies in Nonlinear Dynamics & Econometrics, Oct96, Vol. 1

Issue 3.

11

	Introduction
	Types of problems
	Large/small
	Continuous/discontinuous
	Convex/nonconvex
	Costly/cheap

	Algorithms
	BFGSMIN
	LBFGSMIN
	SAMIN

	Obtaining the code
	Examples
	Minimization
	bfgsmin
	lbfgsmin
	samin
	A more difficult problem
	Tips for successful minimization

	Numeric differentiation

	Testing the code

