
ATD

Adjustable Type Definitions

release 1.0.1

Martin Jambon
c© 2010 MyLife

February 8, 2011

Contents

1 Introduction 2

1.1 Scope . 3

1.2 Language overview . 4

1.3 Editing and validating ATD files 6

2 ATD language 7

2.1 Notations . 7

2.2 Lexical rules . 7

2.3 Grammar . 9

2.4 Predefined type names . 9

2.5 Shared values . 9

3 OCaml atd library 10

1

1 INTRODUCTION 2

1 Introduction

ATD stands for Adjustable Type Definitions.

(* This is a sample ATD file *)

type profile = {
id : string;
email : string;
~email_validated : bool;
name : string;
?real_name : string option;
~about_me : string list;
?gender : gender option;
?date_of_birth : date option;

}

type gender = [Female | Male]

type date = {
year : int;
month : int;
day : int;

}

ATD is a language for defining data types across multiple programming lan-
guages and multiple data formats. That’s it.

We provide an OCaml library that provides a parser and a collection of tools
that make it easy to write data validators and code generators based on ATD
definitions.

Unlike the big“frameworks”that provide“everything”in one monolithic package,
we split the problem of data exchange into logical modules and ATD is one of
them. In particular, we acknowledge that the following pieces have little in
common and should be defined and implemented separately:

• data type specifications

• transport protocols

• serialization formats

Ideally we want just one single language for defining data types and it should
accomodate all programming languages and data formats. ATD can play this
role, but its OCaml implementation makes it particularly easy to translate ATD
specifications into other interface definition languages if needed.

1 INTRODUCTION 3

It is however much harder to imagine that a single transport protocol and a single
serialization format would ever become the only ones used. A reader from the
future might wonder why we are even considering defining a transport protocol
and a serialization format together. This has been a widespread practice at
least until the beginning of the 21st century (ONC RPC, ICE, Thrift, etc.).
For mysterious reasons, people somehow became convinced that calls to remote
services should be made to mimic internal function calls, pretending that nothing
really bad could happen on the way between the caller and the remote service.
Well, I don’t let my 3-old daughter go to school by herself because the definition
of the external world is precisely that it is unsafe.

Data input is by definition unsafe. A program whose internal data is corrupted
should abort but a failed attempt to read external data should not cause a
program to abort. On the contrary, a program should be very resistent to all
forms of data corruption and attacks and provide the best diagnosis possible
when problems with external data occur.

Because data exchange is critical and involves multiple partners, we depart
from magic programming language-centric or company-centric approaches. We
define ATD, a data type definition language designed for maximum expressivity,
compatibility across languages and static type checking of programs using such
data.

1.1 Scope

ATD offers a core syntax for type definitions, i.e. an idealized view of the
structure of data. Types are mapped to each programming language or data
format using language-specific conventions. Annotations can complete the type
definitions in order to specify options for a particular language. Annotations
are placed in angle brackets after the element they refer to:

type profile = {
id : int <ocaml repr="int64">;
(*

An int here will map to an OCaml int64 instead of
OCaml’s default int type.
Other languages than OCaml will use their default int type.

*)

age : int;
(* No annotation here, the default int type will be used. *)

}

ATD supports:

• the following atomic types: bool, int, float, string and unit;

1 INTRODUCTION 4

• built-in list and option types;

• records aka structs with a syntax for optional fields with or with default;

• tuples;

• sum types aka variant types, algebraic data types or tagged unions;

• parametrized types;

• inheritance for both records and sum types;

• abstract types;

• arbitrary annotations.

ATD by design does not support:

• function types, function signatures or method signatures;

• a syntax to represent values;

• a syntax for submodules.

1.2 Language overview

ATD was strongly inspired by the type system of ML and OCaml. Such a
type system allows static type checking and type inference, properties which
contribute to the safety and conciseness of the language.

Unlike mainstream languages like Java, C++, C# or Python to name a few,
languages such as Haskell or OCaml offer sum types, also known as algebraic
data types or variant types. These allow to specify that an object is of one kind
or another without ever performing dynamic casts.

(* Example of a sum type in ATD. The vertical bar reads ‘or’. *)
type shape = [

Square of float (* argument: side length *)
| Rectangle of (float * float) (* argument: width and height *)
| Circle of float (* argument: radius *)
| Dot (* no argument *)

]

A notable example of sum types is the predefined option type. An object of
an option type contains either one value of a given type or nothing. We could
define our own int_option type as follows:

type int_option = [None | Some of int]

1 INTRODUCTION 5

ATD supports parametrized types also known as generics in Java or templates
in C++. We could define our own generic option type as follows:

type ’a opt = [None | Some of ’a]
(* ’a denotes a type parameter. *)

type opt_int = int opt
(* equivalent to int_option defined in the previous example *)

type opt_string = string opt
(* same with string instead of int *)

In practice we shall use the predefined option type. The option type is funda-
mentally different from nullable objects since the latter don’t allow values that
would have type ’a option option.

ATD also support product types. They come in two forms: tuples and records:

type tuple_example = (string * int)

type record_example = {
name : string;
age : int;

}

Although tuples in theory are not more expressive than records, they are much
more concise and languages that support them natively usually do not require
type definitions.

Finally, ATD supports multiple inheritance which is a simple mechanism for
adding fields to records or variants to sum types:

type builtin_color = [
Red | Green | Blue | Yellow

| Purple | Black | White
]

type rgb = (float * float * float)
type cmyk = (float * float * float * float)

(* Inheritance of variants *)
type color = [

inherit builtin_color
| Rgb of rgb
| Cmyk of cmyk

]

1 INTRODUCTION 6

type basic_profile = {
id : string;
name : string;

}

(* Inheritance of record fields *)
type full_profile = {
inherit basic_profile;
date_of_birth : (int * int * int) option;
street_address1 : string option;
street_address2 : string option;
city : string option;
zip_code : string option;
state : string option;

}

1.3 Editing and validating ATD files

The extension for ATD files is .atd. Editing ATD files is best achieved using an
OCaml-friendly editor since the ATD syntax is vastly compatible with OCaml
and uses a subset of OCaml’s keywords.

Emacs users can use caml-mode or tuareg-mode to edit ATD files. Adding the
following line to the ~/.emacs file will automatically use tuareg-mode when
opening a file with a .atd extension:

(add-to-list ’auto-mode-alist ’("\\.atd\\’" . tuareg-mode))

The syntax of an ATD file can be checked with the program atdcat provided
with the OCaml library atd. atdcat pretty-prints its input data, optionally
after some transformations such as monomorphization or inheritance. Here is
the output of atdcat -help:

Usage: atdcat FILE
-x

make type expressions monomorphic
-xk

keep parametrized type definitions and imply -x.
Default is to return only monomorphic type definitions

-xd
debug mode implying -x

-i
expand all ‘inherit’ statements

-if
expand ‘inherit’ statements in records

2 ATD LANGUAGE 7

-iv
expand ‘inherit’ statements in sum types

-ml <name>
output the ocaml code of the ATD abstract syntax tree

-version
print the version of atd and exit

-help Display this list of options
--help Display this list of options

2 ATD language

This is a precise description of the syntax of the ATD language, not a tutorial.

2.1 Notations

Lexical and grammatical rules are expressed using a BNF-like syntax. Graphical
terminal symbols use unquoted strings in typewriter font. Non-graphical
characters use their official uppercase ASCII name such as LF for the newline
character or SPACE for the space character. Non-terminal symbols use the
regular font and link to their definition. Parentheses are used for grouping.

The following postfix operators are used to specify repeats:

x* 0, 1 or more occurrences of x
x? 0 or 1 occurrence of x
x+ 1 or more occurrences of x

2.2 Lexical rules

ATD does not enforce a particular character encoding other than ASCII com-
patibility. Non-ASCII text and data found in annotations and in comments
may contain arbitrary bytes in the non-ASCII range 128-255 without escaping.
The UTF-8 encoding is however strongly recommended for all text. The use of
hexadecimal or decimal escape sequences is recommended for binary data.

An ATD lexer splits its input into a stream of tokens, discarding whitespace
and comments.

2 ATD LANGUAGE 8

token ::= keyword | lident | uident | tident | string
ignorable ::= space | comment discarded

space ::= SPACE | TAB | CR | LF
blank ::= SPACE | TAB

comment ::= (* (comment | string | byte)* *)
lident ::= (lower | _ identchar) identchar* lowercase identifier

uident ::= upper identchar* uppercase identifier
tident ::= ’ lident type parameter
lower ::= a...z
upper ::= A...Z

identchar ::= upper | lower | digit | _ | ’
string ::= " substring* " string literal, used in annotations

substring ::= \\ single backslash
| \" double quote
| \x hex hex single byte in hexadecimal notation
| \ digit digit digit single byte in decimal notation
| \n LF
| \r CR
| \t TAB
| \b BS
| \ CR? LF blank* discarded
| not-backslash any byte except \ or "

digit ::= 0...9
hex ::= 0...9 | a...f | A...F

keyword ::= (|) | [|] | { | } | < | >
| ; | , | : | * | | | = | ? | ~
| type | of | inherit all keywords

2 ATD LANGUAGE 9

2.3 Grammar

module ::= annot* typedef* entry point
annot ::= < lident annot-field* > annotation

annot-field ::= (lident (= string)?)
typedef ::= type params? lident annot = expr type definition
params ::= tident one parameter

| (tident (, tident)+) two or more parameters
expr ::= expr-body annot* type expression

| tident
expr-body ::= args? lident

| (cell (* cell)*) tuple type
| { ((field (; field)*) ;?)? } record type
| [(|? variant (| variant)*)?] sum type

args ::= expr one argument
| (expr (, expr)+) two or more arguments

cell ::= (annot+ :)? expr
field ::= (? | ~)? lident = expr

| inherit expr
variant ::= uident annot* of expr

| uident annot*
| inherit expr

2.4 Predefined type names

The following types are considered predefined and may not be redefined.

Type name Intended use
unit Type of just one value, useful with parametrized types
bool Boolean
int Integer
float Floating-point number
string Sequence of bytes or characters
’a option Zero or one element
’a list Collection or sequence of elements
’a shared Values for which sharing must be preserved
abstract Type defined elsewhere

2.5 Shared values

ATD supports a special type x shared where x can be any monomorphic type
expression. It allows notably to represent cyclic values and to enforce that cycles
are preserved during transformations such as serialization.

(* Example of a simple graph type *)

3 OCAML ATD LIBRARY 10

type shared_node = node shared (* sharing point *)
type graph = shared_node list
type node = {
label : string;
neighbors : shared_node list;

}

Two shared values that are physically identical must remain physically identical
after any translation from one data format to another.

Each occurrence of a shared type expression in the ATD source definition defines
its own sharing point. Therefore the following attempt at defining a graph type
will not preserve cycles because two sharing points are defined:

(* Incorrect definition of a graph type *)
type node = {
label : string;
neighbors : node shared (* sharing point 1 *) list;

}

(* Second occurrence of "shared", won’t preserve cycles! *)
type graph = node shared (* sharing point 2 *) list

There is actually a way of having multiple shared type expressions using the
same sharing point but this feature is designed for code generators and should
not be used in handwritten ATD definitions. The technique consists in providing
an annotation of the form <share id=x> where x is any string identifying the
sharing point. The graph example can be rewritten correctly as:

type node = {
label : string;
neighbors : node shared <share id="1"> list;

}

type graph = node shared <share id="1"> list

3 OCaml atd library

The documentation for the atd library is available in HTML form at http:
//oss.wink.com/atd/atd-1.0.1/odoc/index.html.

http://oss.wink.com/atd/atd-1.0.1/odoc/index.html
http://oss.wink.com/atd/atd-1.0.1/odoc/index.html

	Introduction
	Scope
	Language overview
	Editing and validating ATD files

	ATD language
	Notations
	Lexical rules
	Grammar
	Predefined type names
	Shared values

	OCaml atd library

