
NCO User’s Guide
A suite of netCDF operators

Edition 2.9.9, for NCO Version 2.9.9
September 2004

by Charlie Zender
Department of Earth System Science
University of California at Irvine

Copyright c© 1995–2004 Charlie Zender.

This is the first edition of the NCO User’s Guide,
and is consistent with version 2 of ‘texinfo.tex’.

Published by Charlie Zender
Department of Earth System Science
University of California at Irvine
Irvine, CA 92697-3100 USA

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. The license is available online at http://www.gnu.ai.mit.edu/copyleft/fdl.html

The original author of this software, Charlie Zender, wants to improve it with the help of
your suggestions, improvements, bug-reports, and patches.
Charlie Zender <zender at uci dot edu>
Department of Earth System Science
University of California at Irvine
Irvine, CA 92697-3100

http://www.gnu.ai.mit.edu/copyleft/fdl.html

1

Foreword

NCO is the result of software needs that arose while I worked on projects funded by NCAR,
NASA, and ARM. Thinking they might prove useful as tools or templates to others, it
is my pleasure to provide them freely to the scientific community. Many users (most of
whom I have never met) have encouraged the development of NCO. Thanks espcially to Jan
Polcher, Keith Lindsay, Arlindo da Silva, John Sheldon, and William Weibel for stimulating
suggestions and correspondence. Your encouragment motivated me to complete the NCO
User’s Guide. So if you like NCO, send me a note! I should mention that NCO is not
connected to or officially endorsed by Unidata, ACD, ASP, CGD, or Nike.

Charlie Zender
May 1997
Boulder, Colorado

Major feature improvements entitle me to write another Foreword. In the last five years
a lot of work has been done refining NCO. NCO is now an open source project and appears
to be much healthier for it. The list of illustrious institutions which do not endorse NCO
continues to grow, and now includes UCI.

Charlie Zender
October 2000
Irvine, California

The most remarkable advances in NCO capabilities in the last few years are due to con-
tributions from the Open Source community. Especially noteworthy are the contributions
of Henry Butowsky and Rorik Peterson.

Charlie Zender
January 2003
Irvine, California

2 NCO 2.9.9 User’s Guide

3

Summary

This manual describes NCO, which stands for netCDF Operators. NCO is a suite of programs
known as operators. Each operator is a standalone, command line program executed at the
shell-level like, e.g., ls or mkdir. The operators take netCDF file(s) (or HDF4 files) as
input, perform an operation (e.g., averaging or hyperslabbing), and produce a netCDF file
as output. The operators are primarily designed to aid manipulation and analysis of data.
The examples in this documentation are typical applications of the operators for processing
climate model output. This reflects their origin, but the operators are as general as netCDF
itself.

4 NCO 2.9.9 User’s Guide

Chapter 1: Introduction 5

1 Introduction

1.1 Availability

The complete NCO source distribution is currently distributed as a compressed tarfile from
http://sf.net/projects/nco and from http://dust.ess.uci.edu/nco/nco.tar.gz.
The compressed tarfile must be uncompressed and untarred before building NCO. Uncom-
press the file with ‘gunzip nco.tar.gz’. Extract the source files from the resulting tarfile
with ‘tar -xvf nco.tar’. GNU tar lets you perform both operations in one step with ‘tar
-xvzf nco.tar.gz’.

The documentation for NCO is called the NCO User’s Guide. The User’s Guide is
available in Postscript, HTML, DVI, TEXinfo, and Info formats. These formats are in-
cluded in the source distribution in the files ‘nco.ps’, ‘nco.html’, ‘nco.dvi’, ‘nco.texi’,
and ‘nco.info*’, respectively. All the documentation descends from a single source file,
‘nco.texi’1. Hence the documentation in every format is very similar. However, some of
the complex mathematical expressions needed to describe ncwa can only be displayed in the
Postscript and DVI formats.

If you want to quickly see what the latest improvements in NCO are (without downloading
the entire source distribution), visit the NCO homepage at http://nco.sf.net. The HTML
version of the User’s Guide is also available online through the World Wide Web at URL
http://nco.sf.net/nco.html. To build and use NCO, you must have netCDF installed.
The netCDF homepage is http://www.unidata.ucar.edu/packages/netcdf.

New NCO releases are announced on the netCDF list and on the nco-announce mailing
list http://lists.sf.net/mailman/listinfo/nco-announce.

1.2 Operating systems compatible with NCO

NCO has been successfully ported and tested and is known to work on the following 32 and
64 bit platforms: IBM AIX 4.x, 5.x, FreeBSD 4.x, GNU/Linux 2.x, LinuxPPC, LinuxAlpha,
LinuxSparc64, SGI IRIX 5.x and 6.x, MacOS X 10.x, NEC Super-UX 10.x, DEC OSF, Sun
SunOS 4.1.x, Solaris 2.x, Cray UNICOS 8.x–10.x, all MS Windows. If you port the code to
a new operating system, please send me a note and any patches you required.

The major prerequisite for installing NCO on a particular platform is the success-
ful, prior installation of the netCDF library (and, as of 2003, the UDUnits library).
Unidata has shown a commitment to maintaining netCDF and UDUnits on all popu-
lar UNIX platforms, and is moving towards full support for the Microsoft Windows op-
erating system (OS). Given this, the only difficulty in implementing NCO on a partic-
ular platform is standardization of various C and Fortran interface and system calls.
NCO code is tested for ANSI compliance by compiling with C compilers including those
from GNU (‘gcc -std=c99 -pedantic -D_BSD_SOURCE’ -Wall)2, Comeau Computing (‘como

1 To produce these formats, ‘nco.texi’ was simply run through the freely available programs texi2dvi,
dvips, texi2html, and makeinfo. Due to a bug in TEX, the resulting Postscript file, ‘nco.ps’, contains
the Table of Contents as the final pages. Thus if you print ‘nco.ps’, remember to insert the Table of
Contents after the cover sheet before you staple the manual.

2 The ‘_BSD_SOURCE’ token is required on some Linux platforms where gcc dislikes the network header
files like ‘netinet/in.h’).

http://sf.net/projects/nco
http://dust.ess.uci.edu/nco/nco.tar.gz
http://nco.sf.net
http://nco.sf.net/nco.html
http://www.unidata.ucar.edu/packages/netcdf
http://lists.sf.net/mailman/listinfo/nco-announce

6 NCO 2.9.9 User’s Guide

--c99’), Cray (‘cc’), HP/Compaq/DEC (‘cc’), IBM (‘xlc -c -qlanglvl=extended’), In-
tel (‘icc’), NEC (‘cc’), SGI (‘cc -LANG:std’), and Sun (‘cc’). NCO (all commands
and the libnco library) and the C++ interface to netCDF (called libnco_c++) com-
ply with the ISO C++ standards as implemented by Comeau Computing (‘como’), Cray
(‘CC’), GNU (‘g++ -Wall’), HP/Compaq/DEC (‘cxx’), IBM (‘xlC’), Intel (‘icc’), NEC
(‘c++’), SGI (‘CC -LANG:std’), and Sun (‘CC -LANG:std’). See ‘nco/bld/Makefile’ and
‘nco/src/nco_c++/Makefile.old’ for more details and exact settings.

Until recently (and not even yet), ANSI-compliant has meant compliance with the 1989
ISO C-standard, usually called C89 (with minor revisions made in 1994 and 1995). C89
lacks variable-size arrays, restricted pointers, and some useful printf formats. These are
valuable features of C99, the 1999 ISO C-standard. NCO is C99-compliant where possible
and C89-compliant where necessary. Certain branches in the code are required to satisfy
the native SGI and SunOS C compilers, which are strictly ANSI C89 compliant, and cannot
benefit from C99 features. However, C99 features are fully supported by modern AIX, GNU,
Intel, NEC, Solaris, and UNICOS compilers. NCO requires a C99-compliant compiler as of
NCO version 2.9.8, released in August, 2004.

The most time-intensive portion of NCO execution is spent in arithmetic operations,
e.g., multiplication, averaging, subtraction. These operations were performed in Fortran
by default until August, 1999. This was a design decision based on the relative speed of
Fortran-based object code vs. C-based object code in late 1994. C compilers have dramati-
cally improved their vectorization capabilities since 1994. We have accordingly replaced all
Fortran subroutines with C functions. This greatly simplifies the task of building NCO on
nominally unsupported platforms. As of August 1999, NCO built entirely in C by default.
This allowed NCO to compile on any machine with an ANSI C compiler. In August 2004,
the first C99 feature, the restrict type qualifier, entered NCO in version 2.9.8. C compilers
can obtain better performance with C99 restricted pointers since they inform the compiler
when it may make Fortran-like assumptions regarding pointer contents alteration. Subse-
quently, NCO requires a C99 compiler to build correctly3. Furthermore, NCO automagically
takes advantage of extensions to ANSI C when compiled with the GNU compiler collection,
GCC.

As of July 2000 and NCO version 1.2, NCO no longer supports performing arithmetic op-
erations in Fortran. We decided to sacrifice executable speed for code maintainability Since
no objective statistics were ever performed to quantify the difference in speed between the
Fortran and C code, the performance penalty incurred by this decision is unknown. Sup-
porting Fortran involves maintaining two sets of routines for every arithmetic operation.
The USE_FORTRAN_ARITHMETIC flag is still retained in the ‘Makefile’. The file containing
the Fortran code, ‘nco_fortran.F’, has been deprecated but can be resurrected if a vol-
unteer comes forward. If you would like to volunteer to maintain ‘nco_fortran.F’ please
contact me.

1.2.1 Compiling NCO for Microsoft Windows OS

NCO has been successfully ported and tested on the Microsoft Windows
(95/98/NT/2000/XP) operating systems. The switches necessary to accomplish this are

3 NCO may still build with an ANSI or ISO C89 or C94/95-compliant compiler if the C pre-processor
undefines the restrict type qualifier, e.g., by invoking the compiler with ‘-Drestrict=’’’.

Chapter 1: Introduction 7

included in the standard distribution of NCO. Using the freely available Cygwin (formerly
gnu-win32) development environment4, the compilation process is very similar to installing
NCO on a UNIX system. Set the PVM_ARCH preprocessor token to WIN32. Note that defining
WIN32 has the side effect of disabling Internet features of NCO (see below). Unless you have
a Fortran compiler (like g77 or f90) available, no other tokens are required. Users with fast
Fortran compilers may wish to activate the Fortran arithmetic routines. To do this, define
the preprocessor token USE_FORTRAN_ARITHMETIC in the makefile which comes with NCO,
‘Makefile’, or in the compilation shell.

The least portable section of the code is the use of standard UNIX and Internet proto-
cols (e.g., ftp, rcp, scp, getuid, gethostname, and header files ‘<arpa/nameser.h>’ and
‘<resolv.h>’). Fortunately, these UNIX-y calls are only invoked by the single NCO sub-
routine which is responsible for retrieving files stored on remote systems (see Section 3.7
[Remote storage], page 23). In order to support NCO on the Microsoft Windows platforms,
this single feature was disabled (on Windows OS only). This was required by Cygwin 18.x—
newer versions of Cygwin may support these protocols (let me know if this is the case). The
NCO operators should behave identically on Windows and UNIX platforms in all other
respects.

1.3 Libraries

Like all executables, the NCO operators can be built using dynamic linking. This reduces
the size of the executable and can result in significant performance enhancements on mul-
tiuser systems. Unfortunately, if your library search path (usually the LD_LIBRARY_PATH
environment variable) is not set correctly, or if the system libraries have been moved, re-
named, or deleted since NCO was installed, it is possible NCO operators will fail with a
message that they cannot find a dynamically loaded (aka shared object or ‘.so’) library.
This will produce a distinctive error message, such as ‘ld.so.1: /usr/local/bin/ncea:
fatal: libsunmath.so.1: can’t open file: errno=2’. If you received an error message
like this, ask your system administrator to diagnose whether the library is truly missing5,
or whether you simply need to alter your library search path. As a final remedy, you may
re-compile and install NCO with all operators statically linked.

1.4 netCDF 2.x vs. 3.x

netCDF version 2.x was released in 1993. NCO (specifically ncks) began soon after this
in 1994. netCDF 3.0 was released in 1996, and we were eager to reap the performance
advantages of the newer netCDF implementation. One netCDF 3.x interface call (nc_inq_
libvers) was added to NCO in January, 1998, to aid in maintainance and debugging. In
March, 2001, the final conversion of NCO to netCDF 3.x was completed (coincidentally on
the same day netCDF 3.5 was released). NCO versions 2.0 and higher are built with the
-DNO_NETCDF_2 flag to ensure no netCDF 2.x interface calls are used.

4 The Cygwin package is available from
http://sourceware.redhat.com/cygwin

Currently, Cygwin 20.x comes with the GNU C/C++/Fortran compilers (gcc, g++, g77). These GNU

compilers may be used to build the netCDF distribution itself.
5 The ldd command, if it is available on your system, will tell you where the executable is looking for each

dynamically loaded library. Use, e.g., ldd ‘which ncea‘.

8 NCO 2.9.9 User’s Guide

However, the ability to compile NCO with only netCDF 2.x calls is worth maintaining be-
cause HDF version 46 (available from HDF) supports only the netCDF 2.x library calls (see
http://hdf.ncsa.uiuc.edu/UG41r3_html/SDS_SD.fm12.html#47784). Note that there
are multiple versions of HDF. Currently HDF version 4.x supports netCDF 2.x and thus
NCO version 1.2.x. If NCO version 1.2.x (or earlier) is built with only netCDF 2.x calls
then all NCO operators should work with HDF4 files as well as netCDF files7. The prepro-
cessor token NETCDF2_ONLY exists in NCO version 1.2.x to eliminate all netCDF 3.x calls.
Only versions of NCO numbered 1.2.x and earlier have this capability. The NCO 1.2.x
branch will be maintained with bugfixes only (no new features) until HDF begins to fully
support the netCDF 3.x interface (which is employed by NCO 2.x). If, at compilation time,
NETCDF2_ONLY is defined, then NCO version 1.2.x will not use any netCDF 3.x calls and,
if linked properly, the resulting NCO operators will work with HDF4 files. The ‘Makefile’
supplied with NCO 1.2.x is written to simplify building in this HDF capability. When NCO
is built with make HDF4=Y, the ‘Makefile’ sets all required preprocessor flags and library
links to build with the HDF4 libraries (which are assumed to reside under /usr/local/hdf4,
edit the ‘Makefile’ to suit your installation).

HDF version 5.x became available in 1999, but did not support netCDF (or, for that
matter, Fortran) as of December 1999. By early 2001, HDF version 5.x did support For-
tran90. However, support for netCDF 3.x in HDF 5.x is incomplete. Much of the HDF5-
netCDF3 interface is complete, however, and it may be separately downloaded from the
HDF5-netCDF website. Now that NCO uses only netCDF 3.x system calls we are eager for
HDF5 to add complete netCDF 3.x support. This is scheduled to occur sometime in 2005,
with the release of netCDF version 4, a collaboration between Unidata and NCSA.

1.5 Help and Bug reports

We generally receive three categories of mail from users: help requests, bug reports, and
feature requests. Notes saying the equivalent of "Hey, NCO continues to work great and it
saves me more time everyday than it took to write this note" are a distant fourth.

There is a different protocol for each type of request. The common procedural etiquette
is to communicate with us via NCO Project Forums. Unless your request comes with money
or you have damaging information about our personal lives, use the Forums. They preserve
a record of the questions and answers so that others might learn from our exchange. Also,
should NCO ever be funded (as is our hope), this record will provide program officers with
information they need to evaluate us.

Before posting to the NCO forums described below, you might first register your name
and email address with SourceForge.net or else all of your postings will be attributed to
"nobody". Once registered you may choose to "monitor" any forum and to receive (or not)
email when there are any postings including responses to your questions. We usually reply
to the forum message, not to the original poster.

6 The Hierarchical Data Format, or HDF, is another self-describing data format similar to, but more
elaborate than, netCDF.

7 One must link the NCO code to the HDF4 MFHDF library instead of the usual netCDF library. Does
‘MF’ stands for Mike Folk? Perhaps. In any case, the MFHDF library only supports netCDF 2.x calls.
Thus I will try to keep this capability in NCO as long as it is not too much trouble.

http://hdf.ncsa.uiuc.edu
http://hdf.ncsa.uiuc.edu/UG41r3_html/SDS_SD.fm12.html#47784
http://hdf.ncsa.uiuc.edu/HDF5/papers/netcdfh5.html
https://sf.net/account/register.php

Chapter 1: Introduction 9

If you want us to include a new feature in NCO, check first to see if that feature is already
on the TODO list. If it is, why not implement that feature yourself and send us the patch?
If the feature is not yet on the list, then send a note to the NCO Discussion forum.

Read the manual before reporting a bug or posting a help request. Sending questions
whose answers are not in the manual is the best way to motivate us to write more docu-
mentation. We would also like to accentuate the contrapositive of this statement. If you
think you have found a real bug the most helpful thing you can do is simplify the problem to
a manageable size and then report it. The first thing to do is to make sure you are running
the latest publicly released version of NCO.

Once you have read the manual, if you are still unable to get NCO to perform a doc-
umented function, write help request. Follow the same procedure as described below for
reporting bugs (after all, it might be a bug). That is, describe what you are trying to do,
and include the complete commands (run with ‘-D 5’), error messages, and version of NCO
(with ‘-r’). Post your help request to the NCO Help forum.

If you think you are using the right command, but NCO is misbehaving, then you might
have found a bug. Incorrect numerical answers are the highest priority. We usually fix those
within one or two days. Core dumps and sementation violations receive lower priority. They
are always fixed.

How do you simplify a problem that may be revealing a bug? Cut out extraneous
variables, dimensions, and metadata from the offending files and re-run the command until
it no longer breaks. Then back up one step and report the problem. Usually the file(s) will
be very small, i.e., one variable with one or two small dimensions ought to suffice. Run the
operator with ‘-r’ and then run the command with ‘-D 5’ to increase the verbosity of the
debugging output. It is very important that your report contain the exact error messages
and compile-time environment. Include a copy of your sample input file, or place one on
a publically accessible location, of the file(s). Post the full bug report to the NCO Project
buglist.

Build failures
count as bugs. Our limited machine access means we cannot fix all build failures. The
information we need to diagnose, and often fix, build failures are the three files output by
GNU build tools, ‘nco.config.log.${GNU_TRP}.foo’, ‘nco.configure.${GNU_TRP}.foo’,
and ‘nco.make.${GNU_TRP}.foo’. The file ‘configure.eg’ shows how to produce these
files. Here ${GNU_TRP} is the "GNU architecture triplet", the chip-vendor-OS string re-
turned by ‘config.guess’. Please send us your improvements to the examples supplied in
‘configure.eg’. The regressions archive at http://dust.ess.uci.edu/nco/rgr contains
the build output from our standard test systems. You may find you can solve the build
problem yourself by examining the differences between these files and your own.

file:./TODO
http://sf.net/forum/forum.php?forum_id=9829
http://sf.net/forum/forum.php?forum_id=9830
http://sf.net/bugs/?group_id=3331
http://sf.net/bugs/?group_id=3331
http://dust.ess.uci.edu/nco/rgr

10 NCO 2.9.9 User’s Guide

Chapter 2: Operator Strategies 11

2 Operator Strategies

2.1 NCO operator philosophy

The main design goal has been to produce operators that can be invoked from the command
line to perform useful operations on netCDF files. Many scientists work with models and
observations which produce too much data to analyze in tabular format. Thus, it is often
natural to reduce and massage this raw or primary level data into summary, or second level
data, e.g., temporal or spatial averages. These second level data may become the inputs to
graphical and statistical packages, and are often more suitable for archival and dissemination
to the scientific community. NCO performs a suite of operations useful in manipulating data
from the primary to the second level state. Higher level interpretive languages (e.g., IDL,
Yorick, Matlab, NCL, Perl, Python), and lower level compiled languages (e.g., C, Fortran)
can always perform any task performed by NCO, but often with more overhead. NCO, on
the other hand, is limited to a much smaller set of arithmetic and metadata operations than
these full blown languages.

Another goal has been to implement enough command line switches so that frequently
used sequences of these operators can be executed from a shell script or batch file. Finally,
NCO was written to consume the absolute minimum amount of system memory required to
perform a given job. The arithmetic operators are extremely efficient; their exact memory
usage is detailed in Section 2.9 [Memory usage], page 17.

2.2 Climate model paradigm

NCO was developed at NCAR to aid analysis and manipulation of datasets produced by
General Circulation Models (GCMs). Datasets produced by GCMs share many features
with all gridded scientific datasets and so provide a useful paradigm for the explication of
the NCO operator set. Examples in this manual use a GCM paradigm because latitude,
longitude, time, temperature and other fields related to our natural environment are as
easy to visualize for the layman as the expert.

2.3 Temporary output files

NCO operators are designed to be reasonably fault tolerant, so that if there is a system
failure or the user aborts the operation (e.g., with C-c), then no data are lost. The user-
specified output-file is only created upon successful completion of the operation1. This is
accomplished by performing all operations in a temporary copy of output-file. The name
of the temporary output file is constructed by appending .pid<process ID>.<operator
name>.tmp to the user-specified output-file name. When the operator completes its task
with no fatal errors, the temporary output file is moved to the user-specified output-file.
Note the construction of a temporary output file uses more disk space than just overwriting
existing files “in place” (because there may be two copies of the same file on disk until
the NCO operation successfully concludes and the temporary output file overwrites the
existing output-file). Also, note this feature increases the execution time of the operator

1 The ncrename operator is an exception to this rule. See Section 4.11 [ncrename netCDF Renamer],
page 88.

12 NCO 2.9.9 User’s Guide

by approximately the time it takes to copy the output-file. Finally, note this feature allows
the output-file to be the same as the input-file without any danger of “overlap”.

Other safeguards exist to protect the user from inadvertently overwriting data. If the
output-file specified for a command is a pre-existing file, then the operator will prompt
the user whether to overwrite (erase) the existing output-file, attempt to append to it, or
abort the operation. However, in processing large amounts of data, too many interactive
questions slows productivity. Therefore NCO also implements two ways to override its own
safety features, the ‘-O’ and ‘-A’ switches. Specifying ‘-O’ tells the operator to overwrite
any existing output-file without prompting the user interactively. Specifying ‘-A’ tells the
operator to attempt to append to any existing output-file without prompting the user inter-
actively. These switches are useful in batch environments because they suppress interactive
keyboard input.

2.4 Appending variables to a file

A frequently useful operation is adding variables from one file to another. This is referred
to as appending, although some prefer the terminology merging2 or pasting. Appending
is often confused with what NCO calls concatenation. In NCO, concatenation refers to
splicing a variable along the record dimension. Appending, on the other hand, refers to
adding variables from one file to another3. In this sense, ncks can append variables from
one file to another file. This capability is invoked by naming two files on the command line,
input-file and output-file. When output-file already exists, the user is prompted whether to
overwrite, append/replace, or exit from the command. Selecting overwrite tells the operator
to erase the existing output-file and replace it with the results of the operation. Selecting
exit causes the operator to exit—the output-file will not be touched in this case. Selecting
append/replace causes the operator to attempt to place the results of the operation in the
existing output-file, See Section 4.7 [ncks netCDF Kitchen Sink], page 71.

The simplest way to create the union of two files is

ncks -A fl_1.nc fl_2.nc

This puts the contents of ‘fl_1.nc’ into ‘fl_2.nc’. The ‘-A’ is optional. On output,
‘fl_2.nc’ is the union of the input files, regardless of whether they share dimensions and
variables, or are completely disjoint. The append fails if the input files have differently
named record dimensions (since netCDF supports only one), or have dimensions of the
same name but different sizes.

2.5 Addition Subtraction Division Multiplication and
Interpolation

Users comfortable with NCO semantics may find it easier to perform some simple mathe-
matical operations in NCO rather than higher level languages. ncbo (see Section 4.3 [ncbo
netCDF Binary Operator], page 59) does file addition, subtraction, multiplication, division,
and broadcasting. ncflint (see Section 4.6 [ncflint netCDF File Interpolator], page 68) does

2 The terminology merging is reserved for an (unwritten) operator which replaces hyperslabs of a variable
in one file with hyperslabs of the same variable from another file

3 Yes, the terminology is confusing. By all means mail me if you think of a better nomenclature. Should
NCO use paste instead of append?

Chapter 2: Operator Strategies 13

file addition, subtraction, multiplication and interpolation. Sequences of these commands
can accomplish simple but powerful operations from the command line.

2.6 Averagers vs. Concatenators

The most frequently used operators of NCO are probably the averagers and concatenators.
Because there are so many permutations of averaging (e.g., across files, within a file, over
the record dimension, over other dimensions, with or without weights and masks) and of
concatenating (across files, along the record dimension, along other dimensions), there are
currently no fewer than five operators which tackle these two purposes: ncra, ncea, ncwa,
ncrcat, and ncecat. These operators do share many capabilities4, but each has its unique
specialty. Two of these operators, ncrcat and ncecat, are for concatenating hyperslabs
across files. The other two operators, ncra and ncea, are for averaging hyperslabs across
files5. First, let’s describe the concatenators, then the averagers.

2.6.1 Concatenators ncrcat and ncecat

Joining independent files together along a record dimension is called concatenation. ncrcat
is designed for concatenating record variables, while ncecat is designed for concatenating
fixed length variables. Consider five files, ‘85.nc’, ‘86.nc’, . . . ‘89.nc’ each containing a
year’s worth of data. Say you wish to create from them a single file, ‘8589.nc’ containing
all the data, i.e., spanning all five years. If the annual files make use of the same record
variable, then ncrcat will do the job nicely with, e.g., ncrcat 8?.nc 8589.nc. The number
of records in the input files is arbitrary and can vary from file to file. See Section 4.10 [ncrcat
netCDF Record Concatenator], page 86, for a complete description of ncrcat.

However, suppose the annual files have no record variable, and thus their data are
all fixed length. For example, the files may not be conceptually sequential, but rather
members of the same group, or ensemble. Members of an ensemble may have no reason
to contain a record dimension. ncecat will create a new record dimension (named record
by default) with which to glue together the individual files into the single ensemble file. If
ncecat is used on files which contain an existing record dimension, that record dimension
is converted to a fixed-length dimension of the same name and a new record dimension
(named record) is created. Consider five realizations, ‘85a.nc’, ‘85b.nc’, . . . ‘85e.nc’
of 1985 predictions from the same climate model. Then ncecat 85?.nc 85_ens.nc glues
the individual realizations together into the single file, ‘85_ens.nc’. If an input variable
was dimensioned [lat,lon], it will have dimensions [record,lat,lon] in the output file.
A restriction of ncecat is that the hyperslabs of the processed variables must be the same
from file to file. Normally this means all the input files are the same size, and contain data
on different realizations of the same variables. See Section 4.5 [ncecat netCDF Ensemble
Concatenator], page 66, for a complete description of ncecat.

4 Currently ncea and ncrcat are symbolically linked to the ncra executable, which behaves slightly differ-
ently based on its invocation name (i.e., ‘argv[0]’). These three operators share the same source code,
but merely have different inner loops.

5 The third averaging operator, ncwa, is the most sophisticated averager in NCO. However, ncwa is in a
different class than ncra and ncea because it can only operate on a single file per invocation (as opposed
to multiple files). On that single file, however, ncwa provides a richer set of averaging options—including
weighting, masking, and broadcasting.

14 NCO 2.9.9 User’s Guide

ncpdq makes it possible to concatenate files along any dimension, not just the record
dimension. First, use ncpdq to convert the dimension to be concatenated (i.e., extended
with data from other files) into the record dimension. Second, use ncrcat to concatenate
these files. Finally, if desirable, use ncpdq to revert to the original dimensionality. As a
concrete example, say that files ‘x_01.nc’, ‘x_02.nc’, . . . ‘x_10.nc’ contain time-evolving
datasets from spatially adjacent regions. The time and spatial coordinates are time and x,
respectively. Initially the record dimension is time. Our goal is to create a single file that
contains joins all the spatially adjacent regions into one single time-evolving dataset.

for idx in 01 02 03 04 05 06 07 08 09 10; do # Bourne Shell
ncpdq -a x,time x_${idx}.nc foo_${idx}.nc # Make x record dimension

done
ncrcat foo_??.nc out.nc # Concatenate along x
ncpdq -a time,x out.nc out.nc # Revert to time as record dimension

Note that ncrcat will not concatenate fixed-length variables, whereas ncecat concate-
nates both fixed-length and record variables along a new record variable. To conserve system
memory, use ncrcat where possible.

2.6.2 Averagers ncea, ncra, and ncwa

The differences between the averagers ncra and ncea are analogous to the differences be-
tween the concatenators. ncra is designed for averaging record variables from at least one
file, while ncea is designed for averaging fixed length variables from multiple files. ncra per-
forms a simple arithmetic average over the record dimension of all the input files, with each
record having an equal weight in the average. ncea performs a simple arithmetic average
of all the input files, with each file having an equal weight in the average. Note that ncra
cannot average fixed-length variables, but ncea can average both fixed-length and record
variables. To conserve system memory, use ncra rather than ncea where possible (e.g., if
each input-file is one record long). The file output from ncea will have the same dimensions
(meaning dimension names as well as sizes) as the input hyperslabs (see Section 4.4 [ncea
netCDF Ensemble Averager], page 64, for a complete description of ncea). The file output
from ncra will have the same dimensions as the input hyperslabs except for the record
dimension, which will have a size of 1 (see Section 4.9 [ncra netCDF Record Averager],
page 84, for a complete description of ncra).

2.6.3 Interpolator ncflint

ncflint can interpolate data between or two files. Since no other operators have this ability,
the description of interpolation is given fully on the ncflint reference page (see Section 4.6
[ncflint netCDF File Interpolator], page 68). Note that this capability also allows ncflint
to linearly rescale any data in a netCDF file, e.g., to convert between differing units.

2.7 Working with large numbers of input files

Occasionally one desires to digest (i.e., concatenate or average) hundreds or thousands of
input files. Unfortunately, data archives (e.g., NASA EOSDIS) may not name netCDF files
in a format understood by the ‘-n loop ’ switch (see Section 3.5 [Specifying input files],
page 21) that automagically generates arbitrary numbers of input filenames. The ‘-n loop ’
switch has the virtue of being concise, and of minimizing the command line. This helps keeps

Chapter 2: Operator Strategies 15

output file small since the command line is stored as metadata in the history attribute (see
Section 3.21 [History attribute], page 43). However, the ‘-n loop ’ switch is useless when
there is no simple, arithmetic pattern to the input filenames (e.g., ‘h00001.nc’, ‘h00002.nc’,
. . . ‘h90210.nc’). Moreover, filename globbing does not work when the input files are too
numerous or their names are too lengthy (when strung together as a single argument) to be
passed by the calling shell to the NCO operator6. When this occurs, the ANSI C-standard
argc-argv method of passing arguments from the calling shell to a C-program (i.e., an
NCO operator) breaks down. There are (at least) three alternative methods of specifying
the input filenames to NCO in environment-limited situations.

The recommended method for sending very large numbers (hundreds or more, typically)
of input filenames to the multi-file operators is to use the standard input, aka stdin, feature
of UNIX.

Pipe large numbers of filenames to stdin
/bin/ls | grep ${CASEID}_’......’.nc | ncecat -O -o foo.nc

This method avoids all constraints on command line size imposed by the operating
system. A drawback to this method is that the history attribute (see Section 3.21 [History
attribute], page 43) does not record the name of any input files since the names were not
passed on the command line. This makes determining the data provenance at a later date
difficult. To remedy this situation, multi-file operators store the number of input files in the
nco_input_file_number global attribute and the input file list itself in the nco_input_
file_list global attribute (see Section 3.22 [Input file list attributes], page 44). Although
this does not preserve the exact command used to generate the file, it does retains all the
information required to reconstruct the command and determine the data provenance.

A second option is to use the UNIX xargs command. This simple example selects
as input to xargs all the filenames in the current directory that match a given pattern.
For illustration, consider a user trying to average millions of files which each have a six
character filename. If the shell buffer can not hold the results of the corresponding globbing
operator, ‘??????.nc’, then the filename globbing technique will fail. Instead we express the
filename pattern as an extended regular expression, ‘......\.nc’ (see Section 3.9 [Variable
subsetting], page 27). We use grep to filter the directory listing for this pattern and to pipe
the results to xargs which, in turn, passes the matching filenames to an NCO multi-file
operator, e.g., ncecat.

Use xargs to transfer filenames on the command line
/bin/ls | grep ${CASEID}_’......’.nc | xargs -x ncecat -o foo.nc

The single quotes protect the only sensitive parts of the extended regular expression
(the grep argument), and allow shell interpolation (the ${CASEID} variable substitution)
to proceed unhindered on the rest of the command. xargs uses the UNIX pipe feature
to append the suitably filtered input file list to the end of the ncecat command options.
The -o foo.nc switch ensures that the input files supplied by xargs are not confused with
the output file name. xargs does, unfortunately, have its own limit (usually about 20,000

6 The exact length which exceeds the operating system internal limit for command line lengths varies
from OS to OS and from shell to shell. GNU bash may not have any arbitrary fixed limits to the size of
command line arguments. Many OSs cannot handle command line arguments (including results of file
globbing) exceeding 4096 characters.

16 NCO 2.9.9 User’s Guide

characters) on the size of command lines it can pass. Give xargs the ‘-x’ switch to ensure it
dies if it reaches this internal limit. When this occurs, use either the stdin method above,
or the symbolic link presented next.

Even when its internal limits have not been reached, the xargs technique may not be
sophisticated enough to handle all situations. A full scripting language like Perl can handle
any level of complexity of filtering input filenames, and any number of filenames. The
technique of last resort is write a script that creates symbolic links between the irregular
input filenames and a set of regular, arithmetic filenames that ‘-n loop ’ switch understands.
For example, the following Perl script a monotonically enumerated symbolic link to up to
one million ‘.nc’ files in a directory. If there are 999,999 netCDF files present, the links are
named ‘000001.nc’ to ‘999999.nc’:

Create enumerated symbolic links
/bin/ls | grep \.nc | perl -e \
’$idx=1;while(<STDIN>){chop;symlink $_,sprintf("%06d.nc",$idx++);}’
ncecat -O -n 999999,6,1 000001.nc foo.nc
Remove symbolic links when finished
/bin/rm ??????.nc

The ‘-n loop ’ option tells the NCO operator to automatically generate the filnames of
the symbolic links. This circumvents any OS and shell limits on command line size. The
symbolic links are easily removed once NCO is finished. One drawback to this method is that
the history attribute (see Section 3.21 [History attribute], page 43) retains the filename
list of the symbolic links, rather than the data files themselves. This makes it difficult to
determine the data provenance at a later date.

2.8 Working with large datasets

Large datasets are those files that are comparable in size to the amount of random access
memory (RAM) in your computer. Many users of NCO work with files larger than 100 MB.
Files this large not only push the current edge of storage technology, they present special
problems for programs which attempt to access the entire file at once, such as ncea and
ncecat. If you work with a 300 MB files on a machine with only 32 MB of memory then you
will need large amounts of swap space (virtual memory on disk) and NCO will work slowly,
or even fail. There is no easy solution for this. The best strategy is to work on a machine
with sufficient amounts of memory and swap space. Since about 2004, many users have
begun to produce or analyze files exceeding 2 GB in size. These users should familiarize
themselves with NCO’s Large File Support (LFS) capabilities (see Section 3.3 [Large File
Support], page 20). The next section will increase your familiarity with NCO’s memory
requirements. With this knowledge you may re-design your data reduction approach to
divide the problem into pieces solvable in memory-limited situations.

If your local machine has problems working with large files, try running NCO from
a more powerful machine, such as a network server. Certain machine architectures, e.g.,
Cray UNICOS, have special commands which allow one to increase the amount of interactive
memory. On Cray systems, try to increase the available memory with the ilimit command.
If you get a memory-related core dump (e.g., ‘Error exit (core dumped)’) on a GNU/Linux
system, try increasing the process-available memory with ulimit.

Chapter 2: Operator Strategies 17

The speed of the NCO operators also depends on file size. When processing large files
the operators may appear to hang, or do nothing, for large periods of time. In order to see
what the operator is actually doing, it is useful to activate a more verbose output mode.
This is accomplished by supplying a number greater than 0 to the ‘-D debug-level ’ (or
‘--debug-level’, or ‘--dbg_lvl’) switch. When the debug-level is nonzero, the operators
report their current status to the terminal through the stderr facility. Using ‘-D’ does not
slow the operators down. Choose a debug-level between 1 and 3 for most situations, e.g.,
ncea -D 2 85.nc 86.nc 8586.nc. A full description of how to estimate the actual amount
of memory the multi-file NCO operators consume is given in Section 2.9 [Memory usage],
page 17.

2.9 Approximate NCO memory requirements

Many people use NCO on gargantuan files which dwarf the memory available (free RAM plus
swap space) even on today’s powerful machines. These users will want NCO to consume the
absolute minimum peak memory possible so that their scripts do not have to tediously cut
files into smaller pieces that fit into memory. We commend these greedy users for pushing
NCO to its limits!

This section describes the memory NCO requires during operation. The required memory
is based on the underlying algorithms. The description below is the memory usage per
thread. Users with shared memory machines may use the threaded NCO operators (see
Section 3.2 [OpenMP threading], page 19). The peak and sustained memory usage will
scale accordingly, i.e., by the number of threads. Memory consumption patterns of all
operators are similar, with the exception of ncap.

2.9.1 Memory Usage of Single and Multi-file Operators

The multi-file operators currently comprise the record operators, ncra and ncrcat, and the
ensemble operators, ncea and ncecat. The record operators require much less memory than
the ensemble operators. This is because the record operators operate on one single record
(i.e., time-slice) at a time, wherease the ensemble operators retrieve the entire variable
into memory. Let MS be the peak sustained memory demand of an operator, FT be the
memory required to store the entire contents of all the variables to be processed in an
input file, FR be the memory required to store the entire contents of a single record of
each of the variables to be processed in an input file, V R be the memory required to store
a single record of the largest record variable to be processed in an input file, V T be the
memory required to store the largest variable to be processed in an input file, V I be the
memory required to store the largest variable which is not processed, but is copied from
the initial file to the output file. All operators require MI = V I during the initial copying
of variables from the first input file to the output file. This is the initial (and transient)
memory demand. The sustained memory demand is that memory required by the operators
during the processing (i.e., averaging, concatenation) phase which lasts until all the input
files have been processed. The operators have the following memory requirements: ncrcat
requires MS <= V R. ncecat requires MS <= V T . ncra requires MS = 2FR+V R. ncea
requires MS = 2FT + V T . ncbo requires MS <= 2V T . ncpdq requires MS <= 2V T .
ncflint requires MS <= 2V T . Note that only variables which are processed, i.e., averaged
or concatenated, contribute to MS. Memory is never allocated to hold variables which do
not appear in the output file (see Section 3.9 [Variable subsetting], page 27).

18 NCO 2.9.9 User’s Guide

2.9.2 Memory Usage of ncap

ncap has unique memory requirements due its ability to process arbitrarily long scripts
of any complexity. All script acceptable to ncap are ultimately processed as a sequence
of binary or unary operations. ncap requires MS <= 2V T under most conditions. An
exception to this is when left hand casting (see Section 4.1.1 [Left hand casting], page 48)
is used to stretch the size of derived variables beyond the size of any input variables. Let
V C be the memory required to store the largest variable defined by left hand casting. In
this case, MS <= 2V C.

ncap scripts are complete dynamic and may be of arbitrary length. A script that contains
many thousands of operations, may uncover a slow memory leak even though each single
operation consumes little additional memory. Memory leaks are usually identifiable by their
memory usage signature. Leaks cause peak memory usage to increase monotonically with
time regardless of script complexity. Slow leaks are very difficult to find. Sometimes a
malloc() failure is the only noticeable clue to their existance. If you have good reasons
to believe that a malloc() failure is ultimately due to an NCO memory leak (rather than
inadequate RAM on your system), then we would be very interested in receiving a detailed
bug report.

2.10 Performance limitations of the operators
1. No buffering of data is performed during ncvarget and ncvarput operations. Hyper-

slabs too large too hold in core memory will suffer substantial performance penalties
because of this.

2. Since coordinate variables are assumed to be monotonic, the search for bracketing the
user-specified limits should employ a quicker algorithm, like bisection, than the two-
sided incremental search currently implemented.

3. C format, FORTRAN format, signedness, scale format and add offset attributes are
ignored by ncks when printing variables to screen.

4. Some random access operations on large files on certain architectures (e.g., 400 MB on
UNICOS) are much slower with these operators than with similar operations performed
using languages that bypass the netCDF interface (e.g., Yorick). The cause for this is
not understood at present.

Chapter 3: Features common to most operators 19

3 Features common to most operators

Many features have been implemented in more than one operator and are described here
for brevity. The description of each feature is preceded by a box listing the operators for
which the feature is implemented. Command line switches for a given feature are consistent
across all operators wherever possible. If no “key switches” are listed for a feature, then
that particular feature is automatic and cannot be controlled by the user.

3.1 Internationalization� �
Availability: All operators
Short options: All
Long options: All

 	
NCO support for internationalization of textual input and output (e.g., Warning mes-

sages) is nascent. We hope to produce foreign language string catalogues in 2004.

3.2 OpenMP threading� �
Availability: ncbo, ncea, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-t’
Long options: ‘--thr_nbr’, ‘--threads’, ‘--omp_num_threads’

 	
NCO supports shared memory parallelism (SMP) when compiled with an OpenMP-

enabled compiler. Threads requests and allocations occur in two stages. First, users may
request a specific number of threads thr nbr with the ‘-t’ switch (or its long option equiva-
lents, ‘--thr_nbr’, ‘--threads’, and ‘--omp_num_threads’). If not user-specified, OpenMP
obtains thr nbr from the OMP_NUM_THREADS environment variable, if present, or from the
OS, if not.

NCO may modify thr nbr according to its own internal settings before it requests any
threads from the system. Certain operators contain hard-code limits to the number of
threads they request. We base these limits on our experience and common sense, and
to reduce potentially wasteful system usage by inexperienced users. For example, ncrcat
is extremely I/O-intensive. No one has demonstrated that threading improves ncrcat
performance so we restrict thr nbr <= 1 for ncrcat. Compute-intensive operators (ncwa
and ncpdq) are expected to benefit the most from threading. The greatest increases in
throughput due to threading will occur on large dataset where each thread performs millions
or more floating point operations. Otherwise, the system overhead of setting up threads
may outweigh the theoretical speed enhancements due to SMP parallelism. However, no one
has ever demonstrated that the SMP parallelism scales well beyone four threads for these
operators. Hence we restrict thr nbr <= 4 for all operators. We encourage users to play
with these limits (edit file ‘nco_omp.c’) and send us their feedback.

20 NCO 2.9.9 User’s Guide

Once the initial thr nbr has been modified for any operator-specific limits, NCO requests
the system to allocate a team of thr nbr threads for the body of the code. The operating
system then decides how many threads to allocate based on this request. Users may keep
track of this information by running the operator with dbg lvl > 0.

By default, operators with thread attach one global attribute to any file they create or
modify. The nco_openmp_thread_number global attribute contains the number of threads
the operator used to process the input files. This information helps to verify that the
answers with threaded and non-threaded operators are equal to within machine precision.
This information is also useful for benchmarking.

3.3 Large File Support� �
Availability: All operators
Short options: All
Long options: All

 	
NCO support for large files is in place and works but is not well documented yet.

3.4 Command line options� �
Availability: All operators
Short options: All
Long options: All

 	
NCO achieves flexibility by using command line options. These options are implemented

in all traditional UNIX commands as single letter switches, e.g., ‘ls -l’. For many years
NCO used only single letter option names. In late 2002, we implemented GNU/POSIX
extended or long option names for all options. This was done in a backward compatible
way such that the full functionality of NCO is still available through the familiar single
letter options. In the future, however, some features of NCO may require the use of long
options, simply because we have nearly run out of single letter options. More importantly,
mnemonics for single letter options are often non-intuitive so that long options provide a
more natural way of expressing intent.

Extended options, also called long options, are implemented using the system-supplied
‘getopt.h’ header file, if possible. This provides the getopt_long function to NCO1.

The syntax of short options (single letter options) is -key value (dash-key-space-value).
Here, key is the single letter option name, e.g., ‘-D 2’.

The syntax of long options (multi-letter options) is --long_name value (dash-dash-key-
space-value), e.g., ‘--dbg_lvl 2’ or --long_name=value (dash-dash-key-equal-value), e.g.,

1 If a getopt_long function cannot be found on the system, NCO will use the getopt_long from the
my_getopt package by Benjamin Sittler bsittler@iname.com. This is BSD-licensed software available
from http://www.geocities.com/ResearchTriangle/Node/9405/#my_getopt.

mailto:bsittler@iname.com
http://www.geocities.com/ResearchTriangle/Node/9405/#my_getopt

Chapter 3: Features common to most operators 21

‘--dbg_lvl=2’. Thus the following are all valid for the ‘-D’ (short version) or ‘--dbg_lvl’
(long version) command line option.

ncks -D 3 in.nc # Short option
ncks --dbg_lvl=3 in.nc # Long option, preferred form
ncks --dbg_lvl 3 in.nc # Long option, alternate form

The last example is preferred for two reasons. First, ‘--dbg_lvl’ is more specific and less
ambiguous than ‘-D’. The long option form makes scripts more self documenting and less
error prone. Often long options are named after the source code variable whose value they
carry. Second, the equals sign = joins the key (i.e., long name) to the value in an unin-
terruptible text block. Experience shows that users are less likely to mis-parse commands
when restricted to this form.

GNU implements a superset of the POSIX standard which allows any unambiguous trun-
cation of a valid option to be used.

ncks -D 3 in.nc # Short option
ncks --dbg_lvl=3 in.nc # Long option, full form
ncks --dbg=3 in.nc # Long option, unambiguous truncation
ncks --db=3 in.nc # Long option, unambiguous truncation
ncks --d=3 in.nc # Long option, ambiguous truncation

The first four examples are equivalent and will work as expected. The final example will
exit with an error since ncks cannot disambiguate whether ‘--d’ is intended as a truncation
of ‘--dbg_lvl’, of ‘--dimension’, or of some other long option.

NCO provides many long options for common switches. For example, the debugging level
may be set in all operators with any of the switches ‘-D’, ‘--debug-level’, or ‘--dbg_lvl’.
This flexibility allows users to choose their favorite mnemonic. For some, it will be ‘--debug’
(an unambiguous truncation of ‘--debug-level’, and other will prefer ‘--dbg’. Interactive
users usually prefer the minimal amount of typing, i.e., ‘-D’. We recommend that scripts
which are re-usable employ some form of the long options for future maintainability.

This manual generally uses the short option syntax. This is for historical reasons and to
conserve space. The remainder of this manual specifies the full long name of each option.
Users are expected to pick the unambiguous truncation of each option name that most suits
their taste.

3.5 Specifying input files� �
Availability (-n): ncea, ncecat, ncra, ncrcat
Availability (-p): All operators
Short options: ‘-n’, ‘-p’
Long options: ‘--nintap’, ‘--pth’, ‘--path’

 	
It is important that the user be able to specify multiple input files without tediously

typing in each by its full name. There are four different ways of specifying input files to
NCO: explicitly typing each, using UNIX shell wildcards, and using the NCO ‘-n’ and ‘-p’

22 NCO 2.9.9 User’s Guide

switches (or their long option equivalents, ‘--nintap’ or ‘--pth’ and ‘--path’, respectively).
To illustrate these methods, consider the simple problem of using ncra to average five input
files, ‘85.nc’, ‘86.nc’, . . . ‘89.nc’, and store the results in ‘8589.nc’. Here are the four
methods in order. They produce identical answers.

ncra 85.nc 86.nc 87.nc 88.nc 89.nc 8589.nc
ncra 8[56789].nc 8589.nc
ncra -p input-path 85.nc 86.nc 87.nc 88.nc 89.nc 8589.nc
ncra -n 5,2,1 85.nc 8589.nc

The first method (explicitly specifying all filenames) works by brute force. The sec-
ond method relies on the operating system shell to glob (expand) the regular expression
8[56789].nc. The shell passes valid filenames which match the expansion to ncra. The
third method uses the ‘-p input-path ’ argument to specify the directory where all the in-
put files reside. NCO prepends input-path (e.g., ‘/data/usrname/model’) to all input-files
(but not to output-file). Thus, using ‘-p’, the path to any number of input files need only
be specified once. Note input-path need not end with ‘/’; the ‘/’ is automatically generated
if necessary.

The last method passes (with ‘-n’) syntax concisely describing the entire set of filenames2.
This option is only available with the multi-file operators: ncra, ncrcat, ncea, and ncecat.
By definition, multi-file operators are able to process an arbitrary number of input-files.
This option is very useful for abbreviating lists of filenames representable as alphanu-
meric prefix+numeric suffix+‘.’+filetype where alphanumeric prefix is a string of arbitrary
length and composition, numeric suffix is a fixed width field of digits, and filetype is a
standard filetype indicator. For example, in the file ‘ccm3_h0001.nc’, we have alphanu-
meric prefix = ‘ccm3_h’, numeric suffix = ‘0001’, and filetype = ‘nc’.

NCO is able to decode lists of such filenames encoded using the ‘-n’ option. The
simpler (3-argument) ‘-n’ usage takes the form -n file_number,digit_number,numeric_
increment where file number is the number of files, digit number is the fixed number
of numeric digits comprising the numeric suffix, and numeric increment is the constant,
integer-valued difference between the numeric suffix of any two consecutive files. The value
of alphanumeric prefix is taken from the input file, which serves as a template for decoding
the filenames. In the example above, the encoding -n 5,2,1 along with the input file name
‘85.nc’ tells NCO to construct five (5) filenames identical to the template ‘85.nc’ except
that the final two (2) digits are a numeric suffix to be incremented by one (1) for each
successive file. Currently filetype may be either be empty, ‘nc’, ‘cdf’, ‘hdf’, or ‘hd5’. If
present, these filetype suffixes (and the preceding ‘.’) are ignored by NCO as it uses the ‘-n’
arguments to locate, evaluate, and compute the numeric suffix component of filenames.

Recently the ‘-n’ option has been extended to allow convenient specification of filenames
with “circular” characteristics. This means it is now possible for NCO to automatically gen-
erate filenames which increment regularly until a specified maximum value, and then wrap
back to begin again at a specified minimum value. The corresponding ‘-n’ usage becomes
more complex, taking one or two additional arguments for a total of four or five, respec-
tively: -n file_number,digit_number,numeric_increment[,numeric_max[,numeric_
min]] where numeric max, if present, is the maximum integer-value of numeric suffix

2 The ‘-n’ option is a backward compatible superset of the NINTAP option from the NCAR CCM Processor.

Chapter 3: Features common to most operators 23

and numeric min, if present, is the minimum integer-value of numeric suffix. Consider,
for example, the problem of specifying non-consecutive input files where the filename suf-
fixes end with the month index. In climate modeling it is common to create summertime
and wintertime averages which contain the averages of the months June–July–August, and
December–January–February, respectively:

ncra -n 3,2,1 85_06.nc 85_0608.nc
ncra -n 3,2,1,12 85_12.nc 85_1202.nc
ncra -n 3,2,1,12,1 85_12.nc 85_1202.nc

The first example shows that three arguments to the ‘-n’ option suffice to specify con-
secutive months (06, 07, 08) which do not “wrap” back to a minimum value. The second
example shows how to use the optional fourth and fifth elements of the ‘-n’ option to specify
a wrap value to NCO. The fourth argument to ‘-n’, if present, specifies the maximum integer
value of numeric suffix. In this case the maximum value is 12, and will be formatted as ‘12’
in the filename string. The fifth argument to ‘-n’, if present, specifies the minimum integer
value of numeric suffix. The default minimum filename suffix is 1, which is formatted as
‘01’ in this case. Thus the second and third examples have the same effect, that is, they
automatically generate, in order, the filenames ‘85_12.nc’, ‘85_01.nc’, and ‘85_02.nc’ as
input to NCO.

3.6 Specifying output files� �
Availability: All operators
Short options: ‘-o’
Long options: ‘--fl_out’, ‘--output’

 	
NCO commands produce no more than one output file, fl out. Traditionally, users spec-

ify fl out as the final argument to the operator, following all input file names. This is the
positional argument method of specifying input and ouput file names. The positional ar-
gument method works well in most applications. NCO also supports specifying fl out using
the command line switch argument method, ‘-o fl_out ’.

Specifying fl out with a switch, rather than as a positional argument, allows fl out to
precede input files in the argument list. This is particularly useful with multi-file operators
for three reasons. Multi-file operators may be invoked with hundreds (or more) filenames.
Visual or automatic location of fl out in such a list is difficult when the only syntactic
distinction between input and output files is their position. Second, specification of a long
list of input files may be difficult (see Section 2.7 [Large numbers of input files], page 14).
Making the input file list the final argument to an operator facilitates using xargs for this
purpose. Some alternatives to xargs are very ugly and undesirable. Finally, many users
are more comfortable specifying output files with ‘-o fl_out ’ near the beginning of an
argument list. Compilers and linkers are usually invoked this way.

24 NCO 2.9.9 User’s Guide

3.7 Accessing files stored remotely� �
Availability: All operators
Short options: ‘-p’, ‘-l’
Long options: ‘--pth’, ‘--path’, ‘--lcl’, ‘--local’

 	
All NCO operators can retrieve files from remote sites as well as from the local file system.

A remote site can be an anonymous FTP server, a machine on which the user has rcp or scp
privileges, or NCAR’s Mass Storage System (MSS). To access a file via an anonymous FTP
server, supply the remote file’s URL. To access a file using rcp or scp, specify the Internet
address of the remote file. Of course in this case you must have rcp or scp privileges which
allow transparent (no password entry required) access to the remote machine. This means
that ‘~/.rhosts’ or ‘~/ssh/authorized_keys’ must be set accordingly on both local and
remote machines.

To access a file on NCAR’s MSS, specify the full MSS pathname of the remote file.
NCO will attempt to detect whether the local machine has direct (synchronous) MSS ac-
cess. In this case, NCO attempts to use the NCAR msrcp command3, or, failing that,
/usr/local/bin/msread. Otherwise NCO attempts to retrieve the MSS file through the
(asynchronous) Masnet Interface Gateway System (MIGS) using the nrnet command.

The following examples show how one might analyze files stored on remote systems.

ncks -l ./ ftp://dust.ess.uci.edu/pub/zender/nco/in.nc
ncks -l ./ dust.ess.uci.edu:/home/zender/nco/in.nc
ncks -l ./ /ZENDER/nco/in.nc
ncks -l ./ mss:/ZENDER/nco/in.nc
ncks -l ./ -p http://www.cdc.noaa.gov/cgi-bin/nph-nc/Datasets/\
ncep.reanalysis.dailyavgs/surface air.sig995.1975.nc

The first example will work verbatim on your system if your system is connected to the
Internet and is not behind a firewall. The second example will work on your system if you
have rcp or scp access to the machine dust.ess.uci.edu. The third example will work
from NCAR computers with local access to the msrcp, msread, or nrnet commands. The
fourth command will work if your local version of NCO was built with DODS/OPeNDAP
capability (see Section 3.7.1 [DODS/OPeNDAP], page 25). The above commands can be
rewritten using the ‘-p input-path ’ option as follows:

ncks -p ftp://dust.ess.uci.edu/pub/zender/nco -l ./ in.nc
ncks -p dust.ess.uci.edu:/home/zender/nco -l ./ in.nc
ncks -p /ZENDER/nco -l ./ in.nc
ncks -p mss:/ZENDER/nco -l ./ in.nc

Using ‘-p’ is recommended because it clearly separates the input-path from the filename
itself, sometimes called the stub. When input-path is not explicitly specified using ‘-p’,
NCO internally generates an input-path from the first input filename. The automatically

3 The msrcp command must be in the user’s path and located in one of the following directories:
/usr/local/bin, /usr/bin, /opt/local/bin, or /usr/local/dcs/bin.

Chapter 3: Features common to most operators 25

generated input-path is constructed by stripping the input filename of everything following
the final ‘/’ character (i.e., removing the stub). The ‘-l output-path ’ option tells NCO
where to store the remotely retrieved file and the output file. Often the path to a remotely
retrieved file is quite different than the path on the local machine where you would like
to store the file. If ‘-l’ is not specified then NCO internally generates an output-path by
simply setting output-path equal to input-path stripped of any machine names. If ‘-l’ is not
specified and the remote file resides on the NCAR MSS system, then the leading character
of input-path, ‘/’, is also stripped from output-path. Specifying output-path as ‘-l ./’ tells
NCO to store the remotely retrieved file and the output file in the current directory. Note
that ‘-l .’ is equivalent to ‘-l ./’ though the latter is recommended as it is syntactically
more clear.

3.7.1 DODS/OPeNDAP

The Distributed Oceanographic Data System (DODS) provides useful replacements for com-
mon data interface libraries like netCDF. The DODS versions of these libraries implement
network transparent access to data via a client-server data access protocol that uses the
HTTP protocol for communication. Although DODS-technology originated with oceanogra-
phy data, it applyies to virtually all scientific data. In recognition of this, the data access
protocol underlying DODS (which is what NCO cares about) has been renamed the Open-
source Project for a Network Data Access Protocol, OPeNDAP. We use the terms DODS
and OPeNDAP interchangeably, and often write DODS/OPeNDAP for now. In the future we
will deprecate DODS in favor of OPeNDAP4.

NCO may be DODS/OPeNDAP-enabled by linking NCO to the DODS/OPeNDAP li-
braries. This is described in the DODS/OPeNDAP documentation and automagically imple-
mented in NCO build mechanisms5. The ‘./configure’ mechanism automatically enables
NCO as DODS/OPeNDAP clients if it can find the required DODS/OPeNDAP libraries6.
in the usual locations. The $DODS_ROOT environment variable may be used to over-
ride the default DODS/OPeNDAP library location at NCO compile-time. Building NCO
with ‘bld/Makefile’ and the command make DODS=Y adds the (non-intuitive) commands
to link to the DODS/OPeNDAP libraries installed in the $DODS_ROOT directory. The file
‘doc/dods.sh’ contains a generic script intended to help users install DODS/OPeNDAP be-
fore building NCO. The documentation at the DODS Homepage is voluminous. Check
there and on the DODS mail lists. to learn more about the extensive capabilities of
DODS/OPeNDAP7.

4 DODS is being deprecated because it is ambiguous, referring both to a protocol and to a collection of
(oceanography) data. It is superceded by two terms. DAP is the discipline-neutral Data Access Protocol
at the heart of DODS. The National Virtual Ocean Data System (NVODS) refers to the collection of
oceanography data and oceanographic extensions to DAP. In other words, NVODS is implemented with
OPeNDAP. OPeNDAP is also the open source project which maintains, develops, and promulgates the
DAP standard. OPeNDAP and DAP really are interchangeable. Got it yet?

5 Automagic support for DODS/OPeNDAP version 3.2.x was deprecated in December, 2003 with NCO

2.8.4. NCO now supports DODS/OPeNDAP version 3.4.x.
6 The minimal set of libraries required to build NCO as DODS/OPeNDAP clients are ‘DODS-dap-3.4.x’,

‘DODS-nc3-dods-3.4.5’, and ‘DODS-packages-3.4.x’.
7 We are most familiar with the DODS/OPeNDAP ability to enable network-transparent data access.

DODS/OPeNDAP has many other features, including sophisticated hyperslabbing and server-side pro-
cessing via constraint expressions. If you know more about this, please consider writing a section on
"DODS/OPeNDAP Capabilities of Interest to NCO Users" for incorporation in the NCO User’s Guide.

http://www.unidata.ucar.edu/packages/dods
http://www.unidata.ucar.edu/packages/dods/home/mailLists/

26 NCO 2.9.9 User’s Guide

Once NCO is DODS/OPeNDAP-enabled the operators are DODS/OPeNDAP clients. All
DODS/OPeNDAP clients have network transparent access to any files controlled by a
DODS/OPeNDAP server. Simply specify the input file path(s) in URL notation and all
NCO operations may be performed on remote files made accessible by a DODS/OPeNDAP
server. For example, this extracts (remotely) an equatorial hyperslab, from NCEP daily
reanalyses data of the year 1969 made freely available by a NOAA DODS/OPeNDAP server.
Then it sends the hyperslab to the local ncwa client which computes and stores (locally)
the regional mean surface pressure (in Pa).

ncwa -O -C -a lat,lon,time -d lon,-10.,10. -d lat,-10.,10. -l ./ -p \
http://www.cdc.noaa.gov/cgi-bin/nph-nc/Datasets/ncep.reanalysis.dailyavgs/surface \
pres.sfc.1969.nc foo.nc

All with one command! The data in this particular input file also happen to be packed (see
Section 4.1.3 [Intrinsic functions], page 49), although this is completely transparent to the
user since NCO automatically unpacks them before attempting arithmetic.

NCO obtains remote files from the DODS/OPeNDAP server (e.g., ‘www.cdc.noaa.gov’)
rather than the local machine. Input files are first copied to the local machine, then pro-
cessed. The DODS/OPeNDAP server performs data access, hyperslabbing, and transfer to
the local machine. This allows the I/O to appear to NCO as if the input files were local.
The local machine performs all arithmetic operations. Only the hyperslabbed output data
are transferred over the network (to the local machine) for the number-crunching to begin.
The advantages of this are obvious if you are examining small parts of large files stored at
remote locations.

3.8 Retention of remotely retrieved files� �
Availability: All operators
Short options: ‘-R’
Long options: ‘--rtn’, ‘--retain’

 	
In order to conserve local file system space, files retrieved from remote locations are

automatically deleted from the local file system once they have been processed. Many NCO
operators were constructed to work with numerous large (e.g., 200 MB) files. Retrieval of
multiple files from remote locations is done serially. Each file is retrieved, processed, then
deleted before the cycle repeats. In cases where it is useful to keep the remotely-retrieved
files on the local file system after processing, the automatic removal feature may be disabled
by specifying ‘-R’ on the command line.

Note that the remote retrieval features of NCO can always be used to retrieve any file,
including non-netCDF files, via SSH, anonymous FTP, or msrcp. Often this method is
quicker than using a browser, or running an FTP session from a shell window yourself. For
example, say you want to obtain a JPEG file from a weather server.

ncks -R -p ftp://weather.edu/pub/pix/jpeg -l ./ storm.jpg

In this example, ncks automatically performs an anonymous FTP login to the remote
machine and retrieves the specified file. When ncks attempts to read the local copy of

Chapter 3: Features common to most operators 27

‘storm.jpg’ as a netCDF file, it fails and exits, leaving ‘storm.jpg’ in the current direc-
tory.

If your NCO is DODS-enabled (see Section 3.7.1 [DODS/OPeNDAP], page 25), then you
may use NCO to retrieve any files (including netCDF, HDF, etc.) served by a DODS server
to your local machine. For example,

ncks -R -l ./ -p \
http://www.cdc.noaa.gov/cgi-bin/nph-nc/Datasets/ncep.reanalysis.dailyavgs/surface \
pres.sfc.1969.nc

Note that NCO is never the preffered way to transport files from remote machines. For
large jobs, that is best handled by FTP, SSH, or wget. It may occasionally be useful to use
NCO to transfer files when your other preferred methods are not available locally.

3.9 Including/Excluding specific variables� �
Availability: (ncap), ncbo, ncea, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-v’, ‘-x’
Long options: ‘--variable’, ‘--exclude’ or ‘--xcl’

 	
Variable subsetting is implemented with the ‘-v var[,...]’ and ‘-x’ options. A list

of variables to extract is specified following the ‘-v’ option, e.g., ‘-v time,lat,lon’. Not
using the ‘-v’ option is equivalent to specifying all variables. The ‘-x’ option causes the
list of variables specified with ‘-v’ to be excluded rather than extracted. Thus ‘-x’ saves
typing when you only want to extract fewer than half of the variables in a file. Remember, if
averaging or concatenating large files stresses your systems memory or disk resources, then
the easiest solution is often to use the ‘-v’ option to retain only the variables you really need
(see Section 2.9 [Memory usage], page 17). Note that, due to its special capabilities, ncap
interprets the ‘-v’ switch differently (see Section 4.1 [ncap netCDF Arithmetic Processor],
page 48). For ncap, the ‘-v’ switch takes no arguments and indicates that only user-defined
variables should be output. ncap neither accepts nor understands the -x switch.

As of NCO 2.8.1 (August, 2003), variable name arguments of the ‘-v’ switch may contain
extended regular expressions. For example, ‘-v ’^DST’’ selects all variables beginning with
the string ‘DST’. Extended regular expressions are defined by the GNU egrep command.
The meta-characters used to express pattern matching operations are ‘^$+?.*[]{}|’. If
the regular expression pattern matches any part of a variable name then that variable is
selected. This capability is called wildcarding, and is very useful for sub-setting large data
files.

Because of its wide availability, NCO uses the POSIX regular expression library regex.
Regular expressions of arbitary complexity may be used. Since netCDF variable names are
relatively simple constructs, only a few varieties of variable wildcards are likely to be useful.
For convenience, we define the most useful pattern matching operators here:

‘^’ Matches the beginning of a string

‘$’ Matches the end of a string

28 NCO 2.9.9 User’s Guide

‘.’ Matches any single character

The most useful repetition and combination operators are

‘?’ The preceding regular expression is optional and matched at most once

‘*’ The preceding regular expression will be matched zero or more times

‘+’ The preceding regular expression will be matched one or more times

‘|’ The preceding regular expression will be joined to the following regular ex-
pression. The resulting regular expression matches any string matching either
subexpression.

To illustrate the use of these operators in extracting variables, consider a file with vari-
ables Q, Q01–Q99, Q100, QAA–QZZ, Q_H2O, X_H2O, Q_CO2, X_CO2.

ncks -v ’Q+’ in.nc # Select variables that start with Q
ncks -v ’^Q+.?.’ in.nc # Select Q, Q01--Q99, QAA--QZZ, etc.
ncks -v ’^Q..’ in.nc # Select Q01--Q99, QAA--QZZ, etc.
ncks -v ’^Q[0-9][0-9]’ in.nc # Select Q01--Q99
ncks -v ’^Q[[:digit:]]{2}’ in.nc # Select Q01--Q99
ncks -v ’H2O$’ in.nc # Select Q_H2O, X_H2O
ncks -v ’H2O$|CO2$’ in.nc # Select Q_H2O, X_H2O, Q_CO2, X_CO2
ncks -v ’^Q[0-9][0-9]’ in.nc # Select Q01--Q99, Q100
ncks -v ’^Q[0-9][0-9]$’ in.nc # Select Q01--Q99
ncks -v ’^[a-z]_[a-z]{3}$’ in.nc # Select Q_H2O, X_H2O, Q_CO2, X_CO2

Beware—two of the most frequently used repetition pattern matching operators, ‘*’
and ‘?’, are also valid pattern matching operators for filename expansion (globbing) at the
shell-level. Confusingly, they have different meanings in extended regular expressions than
in shell-level filename expansion. In an extended regular expression, ‘*’ matches zero or
more occurences of the preceding regular expression. Thus ‘Q*’ selects all variables, and
‘Q+.*’ selects all variables containing ‘Q’ (the ‘+’ ensures the preceding item matches at least
once). To match zero or one occurence of the preceding regular expression, use ‘?’. Thus
‘Q?’ selects all variables, ‘Q+.?’ selects all Documentation for the UNIX egrep command
details the extended regular expressions that NCO supports.

One must be careful to protect any special characters in the regular expression specifica-
tion from being interpreted (globbed) by the shell. This is accomplish by enclosing special
characters within single or double quotes

ncra -v Q?? in.nc out.nc # Error: Shell attempts to glob wildcards
ncra -v ’^Q+..’ in.nc out.nc # Correct: NCO interprets wildcards
ncra -v ’^Q+..’ in*.nc out.nc

The final example shows that commands may use a combination of variable wildcarding
and shell filename expansion (globbing). For globbing, ‘*’ and ‘?’ have nothing to do with
the preceding regular expression! In shell-level filename expansion, ‘*’ matches any string,
including the null string and ‘?’ matches any single character. Documentation for bash and
csh describe the rules of filename expansion (globbing).

Chapter 3: Features common to most operators 29

3.10 Including/Excluding coordinate variables� �
Availability: ncap, ncbo, ncea, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-C’, ‘-c’
Long options: ‘--no-coords’, ‘--no-crd’, ‘--crd’, ‘--coords’

 	
By default, coordinates variables associated with any variable appearing in the output-

file will also appear in the output-file, even if they are not explicitly specified, e.g., with the
‘-v’ switch. Thus variables with a latitude coordinate lat always carry the values of lat
with them into the output-file. This feature can be disabled with ‘-C’, which causes NCO to
not automatically add coordinates to the variables appearing in the output-file. However,
using ‘-C’ does not preclude the user from including some coordinates in the output files
simply by explicitly selecting the coordinates with the -v option. The ‘-c’ option, on the
other hand, is a shorthand way of automatically specifying that all coordinate variables in
the input-files should appear in the output-file. Thus ‘-c’ allows the user to select all the
coordinate variables without having to know their names.

3.11 C & Fortran index conventions� �
Availability: ncbo, ncea, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-F’
Long options: ‘--fortran’

 	
The ‘-F’ switch changes NCO to read and write with Fortran index conventions. By

default, NCO uses C-style (0-based) indices for all I/O. In C, indices count from 0 (rather
than 1), and dimensions are ordered from slowest (inner-most) to fastest (outer-most) vary-
ing. In Fortran, indices count from 1 (rather than 0), and dimensions are ordered from
fastest (inner-most) to slowest (outer-most) varying. Hence C and Fortran data storage
conventions represent mathematical transposes of eachother. Note that record variables
contain the record dimension as the most slowly varying dimension. See Section 4.8 [ncpdq
netCDF Permute Dimensions Quickly], page 77 for techniques to re-order (including trans-
poses) dimensionse and to reverse data storage order.

Consider a file ‘85.nc’ containing 12 months of data in the record dimension time. The
following hyperslab operations produce identical results, a June-July-August average of the
data:

ncra -d time,5,7 85.nc 85_JJA.nc
ncra -F -d time,6,8 85.nc 85_JJA.nc

Printing variable three dmn var in file ‘in.nc’ first with C indexing conventions, then
with Fortran indexing conventions results in the following output formats:

% ncks -v three_dmn_var in.nc
lat[0]=-90 lev[0]=1000 lon[0]=-180 three_dmn_var[0]=0
...

30 NCO 2.9.9 User’s Guide

% ncks -F -v three_dmn_var in.nc
lon(1)=0 lev(1)=100 lat(1)=-90 three_dmn_var(1)=0
...

3.12 Hyperslabs� �
Availability: ncbo, ncea, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-d’
Long options: ‘--dimension’, ‘--dmn’

 	
A hyperslab is a subset of a variable’s data. The coordinates of a hyperslab are specified

with the -d dim,[min][,[max]] short option (or with the ‘--dimension’ or ‘--dmn’ long
options). The bounds of the hyperslab to be extracted are specified by the associated
min and max values. A half-open range is specified by omitting either the min or max
parameter but including the separating comma. The unspecified limit is interpreted as
the maximum or minimum value in the unspecified direction. A cross-section at a specific
coordinate is extracted by specifying only the min limit and omitting a trailing comma.
Dimensions not mentioned are passed with no reduction in range. The dimensionality of
variables is not reduced (in the case of a cross-section, the size of the constant dimension
will be one). If values of a coordinate-variable are used to specify a range or cross-section,
then the coordinate variable must be monotonic (values either increasing or decreasing). In
this case, command-line values need not exactly match coordinate values for the specified
dimension. Ranges are determined by seeking the first coordinate value to occur in the closed
range [min,max] and including all subsequent values until one falls outside the range. The
coordinate value for a cross-section is the coordinate-variable value closest to the specified
value and must lie within the range or coordinate-variable values.

Coordinate values should be specified using real notation with a decimal point required in
the value, whereas dimension indices are specified using integer notation without a decimal
point. This convention serves only to differentiate coordinate values from dimension indices.
It is independent of the type of any netCDF coordinate variables. For a given dimension, the
specified limits must both be coordinate values (with decimal points) or dimension indices
(no decimal points).

User-specified coordinate limits are promoted to double precision values while searching
for the indices which bracket the range. Thus, hyperslabs on coordinates of type NC_BYTE
and NC_CHAR are computed numerically rather than lexically, so the results are unpre-
dictable.

The relative magnitude of min and max indicate to the operator whether to expect a
wrapped coordinate (see Section 3.15 [Wrapped coordinates], page 34), such as longitude.
If min > max, the NCO expects the coordinate to be wrapped, and a warning message will
be printed. When this occurs, NCO selects all values outside the domain [max < min], i.e.,
all the values exclusive of the values which would have been selected if min and max were
swapped. If this seems confusing, test your command on just the coordinate variables with
ncks, and then examine the output to ensure NCO selected the hyperslab you expected
(coordinate wrapping is currently only supported by ncks).

Chapter 3: Features common to most operators 31

Because of the way wrapped coordinates are interpreted, it is very important to make
sure you always specify hyperslabs in the monotonically increasing sense, i.e., min < max
(even if the underlying coordinate variable is monotonically decreasing). The only exception
to this is when you are indeed specifying a wrapped coordinate. The distinction is crucial
to understand because the points selected by, e.g., -d longitude,50.,340., are exactly the
complement of the points selected by -d longitude,340.,50..

Not specifying any hyperslab option is equivalent to specifying full ranges of all dimen-
sions. This option may be specified more than once in a single command (each hyperslabed
dimension requires its own -d option).

3.13 Multislabs� �
Availability: ncks
Short options: ‘-d’
Long options: ‘--dimension’, ‘--dmn’

 	
In late 2002, ncks added support for specifying a multislab for any variable. A multislab

is a union of one or more hyperslabs which is specified by chaining together hyperslab
commands, i.e., -d options (see Section 3.12 [Hyperslabs], page 30). This allows multislabs
to overcome some restraints which limit hyperslabs.

A single -d option can only specify a contiguous and/or regularly spaced multi-
dimensional array of data. Multislabs are constructed from multiple -d options and may
therefore have non-regularly spaced arrays. For example, suppose it is desired to operate
on all longitudes from 10.0 to 20.0 and from 80.0 to 90.0 degrees. The combined range of
longitudes is not selectable in a single hyperslab specfication of the form ‘-d lon,min,max ’
or ‘-d lon,min,max,stride ’ because its elements are irregularly spaced in coordinate space
(and presumably in index space too). The multislab specification for obtaining these values
is simply the union of the hyperslabs specifications that comprise the multislab, i.e.,

ncks -d lon,10.,20. -d lon,80.,90. in.nc out.nc
ncks -d lon,10.,15. -d lon,15.,20. -d lon,80.,90. in.nc out.nc

Any number of hyperslabs specifications may be chained together to specify the multislab.
Multislabs are more efficient than the alternative of sequentially performing hyperslab op-
erations and concatenating the results. This is because NCO employs a novel multislab
algorithm to minimize the number of I/O operations when retrieving irregularly spaced
data from disk.

Users may specify redundant ranges of indices in a multislab, e.g.,

ncks -d lon,0,4 -d lon,2,9,2 in.nc out.nc

This command retrieves the first five longitudes, and then every other longitude value up
to the tenth. Elements 0, 2, and 4 are specified by both hyperslab arguments (hence this
is redundant) but will count only once if an arithmetic operation is being performed. The
NCO multislab algorithm retrieves each element from disk once and only once. Thus users
may take some shortcuts in specifying multislabs and the algorithm will obtain the intended

32 NCO 2.9.9 User’s Guide

values. Specifying redundant ranges is not encouraged, but may be useful on occasion and
will not result in unintended consequences.

A final example shows the real power of multislabs. Suppose the Q variable contains
three dimensional arrays of distinct chemical constituents in no particular order. We are
interested in the NOy species in a certain geographic range. Say that NO, NO2, and N2O5
are elements 0, 1, and 5 of the species dimension of Q. The multislab specification might
look something like

ncks -d species,0,1 -d species,5 -d lon,0,4 -d lon,2,9,2 in.nc out.nc

Multislabs are powerful because they may be specified for every dimension at the same
time. Thus multislabs obsolete the need to execute multiple ncks commands to gather the
desired range of data. We envision adding multislab support to all arithmetic operators in
the future.

3.14 UDUnits Support� �
Availability: ncbo, ncea, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-d’
Long options: ‘--dimension’, ‘--dmn’

 	
There is more than one way to hyperslab a cat. The UDUnits package provides a library

which, if present, NCO uses to translate user-specified physical dimensions into the physical
dimensions of data stored in netCDF files. Unidata provides UDUnits under the same terms
as netCDF, so sites should install both. Compiling NCO with UDUnits support is currently
optional but may become required in a future version of NCO.

Two examples suffice to demonstrate the power and convenience of UDUnits support.
First, consider extraction of a variable containing non-record coordinates with physical
dimensions stored in MKS units. In the following example, the user extracts all wavelengths
in the visible portion of the spectrum in terms of the units very frequently used in visible
spectroscopy, microns:

% ncks -O -C -u -v wvl -d wvl,"0.4 micron","0.7 micron" in.nc
wvl[0]=5e-07 meter

The hyperslab returns the correct values because the wvl variable is stored on disk with
a length dimension that UDUnits recognizes in the units attribute. The automagical
algorithm that implements this functionality is worth describing since understanding it
helps one avoid some potential pitfalls. First, the user includes the physical units of the
hyperslab dimensions she supplies, separated by a simple space from the numerical values of
the hyperslab limits. She encloses each coordinate specifications in quotes so that the shell
does not break the value-space-unit string into separate arguments before passing them to
NCO. Double quotes ("foo") or single quotes (’foo’) are equally valid for this purpose.
Second, NCO recognizes that units translation is requested because each hyperslab argument
contains text characters and non-initial spaces. Third, NCO determines whether the wvl is
dimensioned with a coordinate variable that has a units attribute. In this case, wvl itself is
a coordinate variable. The value of its units attribute is meter. Thus wvl passes this test

http://www.unidata.ucar.edu/packages/udunits

Chapter 3: Features common to most operators 33

so UDUnits conversion is attempted. If the coordinate associated with the variable does not
contain a units attribute, then NCO aborts. Fourth, NCO passes the specified and desired
dimension strings (microns are specified by the user, meters are required by NCO) to the
UDUnits library. Fifth, the UDUnits library that these dimension are commensurate and
it returns the appropriate linear scaling factors to convert from microns to meters to NCO.
If the units are incommensurate (i.e., not expressible in the same fundamental MKS units),
or are not listed in the UDUnits database, then NCO aborts since it cannot determine
the user’s intent. Finally, NCO uses the scaling information to convert the user-specified
hyperslab limits into the same physical dimensions as those of the corresponding cooridinate
variable on disk. At this point, NCO can perform a coordinate hyperslab using the same
algorithm as if the user had specified the hyperslab without requesting units conversion.

The translation and dimennterpretation of time coordinates shows a more powerful, and
probably more common, application of the UDUnits feature. In this example, the user
prints all data between the eighth and ninth of December, 1999, from a variable whose time
dimension is hours since the year 1900:

% ncks -O -C -u -v time_udunits -d time_udunits,"1999-12-08 \
12:00:0.0","1999-12-09 00:00:0.0",2 in.nc foo2.nc
% time_udunits[1]=876018 hours since 1900-01-01 00:00:0.0

Here, the user invokes the stride (see Section 3.16 [Stride], page 34) capability to obtain every
other timeslice. This is possible because the UDUnits feature is additive, not exclusive—it
works in conjunction with all other hyperslabbing (see Section 3.12 [Hyperslabs], page 30)
options and in all operators which support hyperslabbing. The following example shows
how one might average data in a time period spread across multiple input files

ncra -O -d time,"1939-09-09 12:00:0.0","1945-05-08 00:00:0.0" \
in1.nc in2.nc in3.nc out.nc

Note that there is no excess whitespace before or after the individual elements of the ‘-d’ ar-
gument. This is important since, as far as the shell knows, ‘-d’ takes only one command-line
argument. Parsing this argument into its component dim,[min],[max],stride elements
(see Section 3.12 [Hyperslabs], page 30) is the job of NCO. When unquoted whitespace is
present between these elements, the shell passes NCO arugment fragments which will not
parse as intended.

The UDUnits package documentation describes the supported formats of time dimen-
sions. Among the metadata conventions which adhere to these formats are the Climate and
Forecast (CF) Conventions and the Cooperative Ocean/Atmosphere Research Data Ser-
vice (COARDS) Conventions. The following ‘-d arguments’ extract the same data using
commonly encountered time dimension formats:

-d time,"1918-11-11 11:00:0.0","1939-09-09 00:00:0.0"

All of these formats include at least one dash - in a non-leading character position (a dash
in a leading character position is a negative sign). NCO assumes that a non-leading dash in
a limit string indicates that a UDUnits date conversion is requested.

netCDF variables should always be stored with MKS (i.e., God’s) units, so that appli-
cation programs may assume MKS dimensions apply to all input variables. The UDUnits

http://www.unidata.ucar.edu/packages/udunits
http://www.cgd.ucar.edu/cms/eaton/cf-metadata/CF-working.html
http://www.cgd.ucar.edu/cms/eaton/cf-metadata/CF-working.html
http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html
http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html

34 NCO 2.9.9 User’s Guide

feature is intended to alleviate some of the NCO user’s pain when handling MKS units. It
connects users who think in human-friendly units (e.g., miles, millibars, days) to extract
data which are always stored in God’s units, MKS (e.g., meters, Pascals, seconds). The
feature is not intended to encourage writers to store data in esoteric units (e.g., furlongs,
pounds per square inch, fortnights).

3.15 Wrapped coordinates� �
Availability: ncks
Short options: ‘-d’
Long options: ‘--dimension’, ‘--dmn’

 	
A wrapped coordinate is a coordinate whose values increase or decrease monotonically

(nothing unusual so far), but which represents a dimension that ends where it begins (i.e.,
wraps around on itself). Longitude (i.e., degrees on a circle) is a familiar example of a
wrapped coordinate. Longitude increases to the East of Greenwich, England, where it is
defined to be zero. Halfway around the globe, the longitude is 180 degrees East (or West).
Continuing eastward, longitude increases to 360 degrees East at Greenwich. The longitude
values of most geophysical data are either in the range [0,360), or [−180,180). In either case,
the Westernmost and Easternmost longitudes are numerically separated by 360 degrees,
but represent contiguous regions on the globe. For example, the Saharan desert stretches
from roughly 340 to 50 degrees East. Extracting the hyperslab of data representing the
Sahara from a global dataset presents special problems when the global dataset is stored
consecutively in longitude from 0 to 360 degrees. This is because the data for the Sahara
will not be contiguous in the input-file but is expected by the user to be contiguous in the
output-file. In this case, ncks must invoke special software routines to assemble the desired
output hyperslab from multiple reads of the input-file.

Assume the domain of the monotonically increasing longitude coordinate lon is 0 <
lon < 360. ncks will extract a hyperslab which crosses the Greenwich meridian simply by
specifying the westernmost longitude as min and the easternmost longitude as max. The
following commands extract a hyperslab containing the Saharan desert:

ncks -d lon,340.,50. in.nc out.nc
ncks -d lon,340.,50. -d lat,10.,35. in.nc out.nc

The first example selects data in the same longitude range as the Sahara. The second exam-
ple further constrains the data to having the same latitude as the Sahara. The coordinate
lon in the output-file, ‘out.nc’, will no longer be monotonic! The values of lon will be,
e.g., ‘340, 350, 0, 10, 20, 30, 40, 50’. This can have serious implications should you run
‘out.nc’ through another operation which expects the lon coordinate to be monotonically
increasing. Fortunately, the chances of this happening are slim, since lon has already been
hyperslabbed, there should be no reason to hyperslab lon again. Should you need to hy-
perslab lon again, be sure to give dimensional indices as the hyperslab arguments, rather
than coordinate values (see Section 3.12 [Hyperslabs], page 30).

Chapter 3: Features common to most operators 35

3.16 Stride� �
Availability: ncks, ncra, ncrcat
Short options: ‘-d’
Long options: ‘--dimension’, ‘--dmn’

 	
ncks offers support for specifying a stride for any hyperslab, while ncra and ncrcat

suport the stride argument only for the record dimension. The stride is the spacing between
consecutive points in a hyperslab. A stride of 1 means pick all the elements of the hyperslab,
but a stride of 2 means skip every other element, etc. Using the stride option with ncra and
ncrcat makes it possible, for instance, to average or concatenate regular intervals across
multi-file input data sets.

The stride is specified as the optional fourth argument to the ‘-d’ hyperslab specification:
-d dim,[min][,[max]][,[stride]]. Specify stride as an integer (i.e., no decimal point)
following the third comma in the ‘-d’ argument. There is no default value for stride. Thus
using ‘-d time,,,2’ is valid but ‘-d time,,,2.0’ and ‘-d time,,,’ are not. When stride
is specified but min is not, there is an ambiguity as to whether the extracted hyperslab
should begin with (using C-style, 0-based indexes) element 0 or element ‘stride-1’. NCO
must resolve this ambiguity and it chooses element 0 as the first element of the hyperslab
when min is not specified. Thus ‘-d time,,,stride ’ is syntactically equivalent to ‘-d
time,0,,stride ’. This means, for example, that specifying the operation ‘-d time,,,2’
on the array ‘1,2,3,4,5’ selects the hyperslab ‘1,3,5’. To obtain the hyperslab ‘2,4’
instead, simply explicitly specify the starting index as 1, i.e., ‘-d time,1,,2’.

For example, consider a file ‘8501_8912.nc’ which contains 60 consecutive months of
data. Say you wish to obtain just the March data from this file. Using 0-based subscripts
(see Section 3.11 [Fortran indexing], page 29) these data are stored in records 2, 14, . . . 50
so the desired stride is 12. Without the stride option, the procedure is very awkward. One
could use ncks five times and then use ncrcat to concatenate the resulting files together:

for idx in 02 14 26 38 50; do # Bourne Shell
ncks -d time,${idx} 8501_8912.nc foo.${idx}

done
foreach idx (02 14 26 38 50) # C Shell

ncks -d time,${idx} 8501_8912.nc foo.${idx}
end
ncrcat foo.?? 8589_03.nc
rm foo.??

With the stride option, ncks performs this hyperslab extraction in one operation:

ncks -d time,2,,12 8501_8912.nc 8589_03.nc

See Section 4.7 [ncks netCDF Kitchen Sink], page 71, for more information on ncks.

The stride option is supported by ncra and ncrcat for the record dimension only. This
makes it possible, for instance, to average or concatenate regular intervals across multi-file
input data sets.

36 NCO 2.9.9 User’s Guide

ncra -F -d time,3,,12 85.nc 86.nc 87.nc 88.nc 89.nc 8589_03.nc
ncrcat -F -d time,3,,12 85.nc 86.nc 87.nc 88.nc 89.nc 8503_8903.nc

3.17 Missing values� �
Availability: ncap, ncbo, ncea, ncflint, ncpdq, ncra, ncwa
Short options: None

 	
The phrase missing data refers to data points that are missing, invalid, or for any reason

not intended to be arithmetically processed in the same fashion as valid data. The NCO
arithmetic operators attempt to handle missing data in an intelligent fashion. There are
four steps in the NCO treatment of missing data:

1. Identifying variables which may contain missing data.

NCO follows the convention that missing data should be stored with the missing value
specified in the variable’s missing_value attribute. The only way NCO recognizes that
a variable may contain missing data is if the variable has a missing_value attribute. In
this case, any elements of the variable which are numerically equal to the missing value
are treated as missing data.

2. Converting the missing value to the type of the variable, if neccessary.

Consider a variable var of type var type with a missing_value attribute of type
att type containing the value missing value. As a guideline, the type of the missing_
value attribute should be the same as the type of the variable it is attached to. If
var type equals att type then NCO straightforwardly compares each value of var to
missing value to determine which elements of var are to be treated as missing data.
If not, then NCO converts missing value from att type to var type by using the im-
plicit conversion rules of C, or, if att type is NC_CHAR8, by typecasting the results of
the C function strtod(missing_value). You may use the NCO operator ncatted to
change the missing_value attribute and all data whose data is missing value to a new
value (see Section 4.2 [ncatted netCDF Attribute Editor], page 55).

3. Identifying missing data during arithmetic operations.

When an NCO arithmetic operator processes a variable var with a missing_value at-
tribute, it compares each value of var to missing value before performing an operation.
Note the missing value comparison inflicts a performance penalty on the operator.
Arithmetic processing of variables which contain the missing_value attribute always
incurs this penalty, even when none of the data are missing. Conversely, arithmetic
processing of variables which do not contain the missing_value attribute never incurs
this penalty. In other words, do not attach a missing_value attribute to a variable
which does not contain missing data. This exhortation can usually be obeyed for model
generated data, but it may be harder to know in advance whether all observational data
will be valid or not.

4. Treatment of any data identified as missing in arithmetic operators.

8 For example, the DOE ARM program often uses att type = NC_CHAR and missing value = ‘-99999.’.

Chapter 3: Features common to most operators 37

NCO averagers (ncra, ncea, ncwa) do not count any element with the value miss-
ing value towards the average. ncbo and ncflint define a missing value result when
either of the input values is a missing value. Sometimes the missing value may change
from file to file in a multi-file operator, e.g., ncra. NCO is written to account for this
(it always compares a variable to the missing value assigned to that variable in the
current file). Suffice it to say that, in all known cases, NCO does “the right thing”.
It is impossible to determine and store the correct result of a binary operation in
a single variable. One such corner case occurs when both operands have differing
missing value attributes, i.e., attributes with different numerical values. Since the
output (result) of the operation can only have one missing value, some information
may be lost. In this case, NCO always defines the output variable to have the same
missing value as the first input variable. Prior to performing the arithmetic operation,
all values of the second operand equal to the second missing value are replaced with
the first missing value. Then the arithmetic operation proceeds as normal, comparing
each element of each operand to a single missing value. Comparing each element to
two distinct missing value’s would be much slower and would be no likelier to yield a
more satisfactory answer. In practice, judicious choice of missing value values prevents
any important information from being lost.

3.18 Operation Types� �
Availability: ncra, ncea, ncwa
Short options: ‘-y’
Long options: ‘--operation’, ‘--op_typ’

 	
The ‘-y op_typ ’ switch allows specification of many different types of operations Set op typ
to the abbreviated key for the corresponding operation:

avg Mean value (default)

sqravg Square of the mean

avgsqr Mean of sum of squares

max Maximium value

min Minimium value

rms Root-mean-square (normalized by N)

rmssdn Root-mean square (normalized by N-1)

sqrt Square root of the mean

ttl Sum of values

If an operation type is not specified with ‘-y’ then the operator will perform an arithmetic
average by default. The mathematical definition of each operation is given below. See
Section 4.12 [ncwa netCDF Weighted Averager], page 90, for additional information on
masks and normalization. Averaging is the default, and will be described first so the
terminology for the other operations is familiar.

38 NCO 2.9.9 User’s Guide

The masked, weighted average of a variable x can be generally represented as

x̄j =
∑i=N

i=1 µimiwixi∑i=N
i=1 µimiwi

where x̄j is the j’th element of the output hyperslab, xi is the i’th element of the input
hyperslab, µi is 1 unless xi equals the missing value, mi is 1 unless xi is masked, and wi is
the weight. This formiddable looking formula represents a simple weighted average whose
bells and whistles are all explained below. It is not too early to note, however, that when
µi = mi = wi = 1, the generic averaging expression above reduces to a simple arithmetic
average. Furthermore, mi = wi = 1 for all operators except ncwa. These variables are
included in the discussion below for completeness, and for possible future use in other
operators.

The size J of the output hyperslab for a given variable is the product of all the dimensions
of the input variable which are not averaged over. The size N of the input hyperslab
contributing to each x̄j is simply the product of the sizes of all dimensions which are
averaged over (i.e., dimensions specified with ‘-a’). Thus N is the number of input elements
which potentially contribute to each output element. An input element xi contributes to
the output element xj except in two conditions:

1. xi equals the missing value (see Section 3.17 [Missing values], page 36) for the variable.

2. xi is located at a point where the mask condition (see Section 4.12.1 [Mask condition],
page 91) is false.

Points xi in either of these two categories do not contribute to xj—they are ignored. We
now define these criteria more rigorously.

Each xi has an associated Boolean weight µi whose value is 0 or 1 (false or true). The
value of µi is 1 (true) unless xi equals the missing value (see Section 3.17 [Missing values],
page 36) for the variable. Thus, for a variable with no missing_value attribute, µi is
always 1. All NCO arithmetic operators (ncbo, ncra, ncea, ncflint, ncwa) treat missing
values analogously.

Besides (weighted) averaging, ncwa, ncra, and ncea also compute some common non-
linear operations which may be specified with the ‘-y’ switch (see Section 3.18 [Operation
Types], page 37). The other rank-reducing operations are simple variations of the generic
weighted mean described above. The total value of x (-y ttl) is

x̄j =
i=N∑
i=1

µimiwixi

Note that the total is the same as the numerator of the mean of x, and may also be obtained
in ncwa by using the ‘-N’ switch (see Section 4.12 [ncwa netCDF Weighted Averager],
page 90).

The minimum value of x (-y min) is

x̄j = min[µ1m1w1x1, µ2m2w2x2, . . . , µNmNwNxN]

Chapter 3: Features common to most operators 39

Analogously, the maximum value of x (-y max) is

x̄j = max[µ1m1w1x1, µ2m2w2x2, . . . , µNmNwNxN]

Thus the minima and maxima are determined after any weights are applied.

The square of the mean value of x (-y sqravg) is

x̄j =

(∑i=N
i=1 µimiwixi∑i=N

i=1 µimiwi

)2

The mean of the sum of squares of x (-y avgsqr) is

x̄j =
∑i=N

i=1 µimiwix
2
i∑i=N

i=1 µimiwi

If x represents a deviation from the mean of another variable, xi = yi−ȳ (possibly created by
ncbo in a previous step), then applying avgsqr to x computes the approximate variance of
y. Computing the true variance of y requires subtracting 1 from the denominator, discussed
below. For a large sample size however, the two results will be nearly indistinguishable.

The root mean square of x (-y rms) is

x̄j =

√√√√∑i=N
i=1 µimiwix2

i∑i=N
i=1 µimiwi

Thus rms simply computes the squareroot of the quantity computed by avgsqr.

The root mean square of x with standard-deviation-like normalization (-y rmssdn) is
implemented as follows. When weights are not specified, this function is the same as the
root mean square of x except one is subtracted from the sum in the denominator

x̄j =

√√√√ ∑i=N
i=1 µimix2

i

−1 +
∑i=N

i=1 µimi

If x represents the deviation from the mean of another variable, xi = yi − ȳ, then applying
rmssdn to x computes the standard deviation of y. In this case the −1 in the denominator
compensates for the degree of freedom already used in computing ȳ in the numerator.
Consult a statistics book for more details.

When weights are specified it is unclear how to compensate for this extra degree of
freedom. Weighting the numerator and denominator of the above by wi and subtracting
one from the denominator is only appropriate when all the weights are 1.0. When the weights
are arbitrary (e.g., Gaussian weights), subtracting one from the sum in the denominator
does not necessarily remove one degree of freedom. Therefore when -y rmssdn is requested
and weights are specified, ncwa actually implements the rms procedure. ncea and ncra,
which do not allow weights to be specified, always implement the rmssdn procedure when
asked.

40 NCO 2.9.9 User’s Guide

The square root of the mean of x (-y sqrt) is

x̄j =

√√√√∑i=N
i=1 µimiwixi∑i=N

i=1 µimiwi

The definitions of some of these operations are not universally useful. Mostly they were
chosen to facilitate standard statistical computations within the NCO framework. We are
open to redefining and or adding to the above. If you are interested in having other statistical
quantities defined in NCO please contact the NCO project (see Section 1.5 [Help and Bug
reports], page 8).

EXAMPLES

Suppose you wish to examine the variable prs_sfc(time,lat,lon) which contains a time
series of the surface pressure as a function of latitude and longitude. Find the minimium
value of prs_sfc over all dimensions:

ncwa -y min -v prs_sfc in.nc foo.nc

Find the maximum value of prs_sfc at each time interval for each latitude:

ncwa -y max -v prs_sfc -a lon in.nc foo.nc

Find the root-mean-square value of the time-series of prs_sfc at every gridpoint:

ncra -y rms -v prs_sfc in.nc foo.nc
ncwa -y rms -v prs_sfc -a time in.nc foo.nc

The previous two commands give the same answer but ncra is preferred because it has a
smaller memory footprint. Also, ncra leaves the (degenerate) time dimension in the output
file (which is usually useful) whereas ncwa removes the time dimension.

These operations work as expected in multi-file operators. Suppose that prs_sfc is stored
in multiple timesteps per file across multiple files, say ‘jan.nc’, ‘feb.nc’, ‘march.nc’. We
can now find the three month maximium surface pressure at every point.

ncea -y max -v prs_sfc jan.nc feb.nc march.nc out.nc

It is possible to use a combination of these operations to compute the variance and standard
deviation of a field stored in a single file or across multiple files. The procedure to compute
the temporal standard deviation of the surface pressure at all points in a single file ‘in.nc’
involves three steps.

ncwa -O -v prs_sfc -a time in.nc out.nc
ncbo -O --op_typ=sub -v prs_sfc in.nc out.nc out.nc
ncra -O -y rmssdn out.nc out.nc

First the output file ‘out.nc’ is contructed containing the temporal mean of prs_sfc.
Next ‘out.nc’ is overwritten with the deviation from the mean. Finally ‘out.nc’ is over-
written with the root-mean-square of itself. Note the use of ‘-y rmssdn’ (rather than ‘-y
rms’) in the final step. This ensures the standard deviation is correctly normalized by one
fewer than the number of time samples. The procedure to compute the variance is identical
except for the use of ‘-y var’ instead of ‘-y rmssdn’ in the final step.

Chapter 3: Features common to most operators 41

The procedure to compute the spatial standard deviation of a field in a single file ‘in.nc’
involves three steps.

ncwa -O -v prs_sfc,gw -a lat,lon -w gw in.nc out.nc
ncbo -O --op_typ=sub -v prs_sfc,gw in.nc out.nc out.nc
ncwa -O -y rmssdn -v prs_sfc -a lat,lon -w gw out.nc out.nc

First the appropriately weighted (with ‘-w gw’) spatial mean values are written to the
output file. This example includes the use of a weighted variable specified with ‘-w gw’.
When using weights to compute standard deviations one must remember to include the
weights in the initial output files so that they may be used again in the final step. The
initial output file is then overwritten with the gridpoint deviations from the spatial mean.
Finally the root-mean-square of the appropriately weighted spatial deviations is taken.

The procedure to compute the standard deviation of a time-series across multiple files
involves one extra step since all the input must first be collected into one file.

ncrcat -O -v tpt in.nc in.nc foo1.nc
ncwa -O -a time foo1.nc foo2.nc
ncbo -O --op_typ=sub -v tpt foo1.nc foo2.nc foo2.nc
ncra -O -y rmssdn foo2.nc out.nc

The first step assembles all the data into a single file. This may require a lot of temporary
disk space, but is more or less required by the ncbo operation in the third step.

3.19 Type conversion� �
Availability: ncap, ncbo, ncea, ncra, ncwa
Short options: None

 	
Type conversion (often called promotion or demotion) refers to the casting of one fun-

damental data type to another, e.g., converting NC_SHORT (two bytes) to NC_DOUBLE (eight
bytes). Type conversion is automatic when the language carries out this promotion accord-
ing to an internal set of rules without explicit user intervention. In contrast, manual type
conversion refers to explicit user commands to change the type of a variable or attribute.
Most type conversion happens automatically, yet there are situations in which manual type
conversion is advantageous.

3.19.1 Automatic type conversion

As a general rule, automatic type conversions should be avoided for at least two reasons.
First, type conversions are expensive since they require creating (temporary) buffers and
casting each element of a variable from the type it was stored at to some other type. Second,
the dataset’s creator probably had a good reason for storing data as, say, NC_FLOAT rather
than NC_DOUBLE. In a scientific framework there is no reason to store data with more
precision than the observations were made. Thus NCO tries to avoid performing automatic
type conversions when performing arithmetic.

42 NCO 2.9.9 User’s Guide

Automatic type conversion during arithmetic in the languages C and Fortran is per-
formed only when necessary. All operands in an operation are converted to the most precise
type before the operation takes place. However, following this parsimonious conversion rule
dogmatically results in numerous headaches. For example, the average of the two NC_SHORTs
17000s and 17000s results in garbage since the intermediate value which holds their sum
is also of type NC_SHORT and thus cannot represent values greater than 32,7679. There are
valid reasons for expecting this operation to succeed and the NCO philosophy is to make
operators do what you want, not what is most pure. Thus, unlike C and Fortran, but
like many other higher level interpreted languages, NCO arithmetic operators will perform
automatic type conversion when all the following conditions are met10:

1. The operator is ncea, ncra, or ncwa. ncbo is not yet included in this list because
subtraction did not benefit from type conversion. This will change in the future

2. The arithmetic operation could benefit from type conversion. Operations that could
benefit (e.g., from larger representable sums) include averaging, summation, or any
"hard" arithmetic. Type conversion does not benefit searching for minima and maxima
(‘-y min’, or ‘-y max’).

3. The variable on disk is of type NC_BYTE, NC_CHAR, NC_SHORT, or NC_INT. Type NC_
DOUBLE is not type converted because there is no type of higher precision to convert
to. Type NC_FLOAT is not type converted because, in our judgement, the performance
penalty of always doing so would outweigh the (extremely rare) potential benefits.

When these criteria are all met, the operator promotes the variable in question to type
NC_DOUBLE, performs all the arithmetic operations, casts the NC_DOUBLE type back to the
original type, and finally writes the result to disk. The result written to disk may not be
what you expect, because of incommensurate ranges represented by different types, and
because of (lack of) rounding. First, continuing the above example, the average (e.g., ‘-y
avg’) of 17000s and 17000s is written to disk as 17000s. The type conversion feature of NCO
makes this possible since the arithmetic and intermediate values are stored as NC_DOUBLEs,
i.e., 34000.0d and only the final result must be represented as an NC_SHORT. Without the
type conversion feature of NCO, the average would have been garbage (albeit predictable
garbage near -15768s). Similarly, the total (e.g., ‘-y ttl’) of 17000s and 17000s written to
disk is garbage (actually -31536s) since the final result (the true total) of 34000 is outside
the range of type NC_SHORT.

Type conversions use the floor function to convert floating point number to integers.
Type conversions do not attempt to round floating point numbers to the nearest integer.
Thus the average of 1s and 2s is computed in double precisions arithmetic as (1.0d +
1.5d)/2) = 1.5d. This result is converted to NC_SHORT and stored on disk as floor(1.5d) =
1s11. Thus no "rounding up" is performed. The type conversion rules of C can be stated
as follows: If n is an integer then any floating point value x satisfying n ≤ x < n + 1 will
have the value n when converted to an integer.

9 32767 = 215 − 1
10 Operators began performing type conversions before arithmetic in NCO version 1.2, August, 2000. Pre-

vious versions never performed unnecessary type conversion for arithmetic.
11 The actual type conversions are handled by intrinsic C-language type conversion, so the floor() function

is not explicitly called, though the results would be the same if it were.

Chapter 3: Features common to most operators 43

3.19.2 Manual type conversion

ncap provides intrinsic functions for performing manual type conversions. This, for example,
converts variable tpt to external type NC_SHORT (a C-type short), and variable prs to
external type NC_DOUBLE (a C-type double).

ncap -O -s "tpt=short(tpt);prs=double(prs);" in.nc out.nc

See Section 4.1 [ncap netCDF Arithmetic Processor], page 48, for more details.

3.20 Suppressing interactive prompts� �
Availability: All operators
Short options: ‘-O’, ‘-A’
Long options: ‘--ovr’, ‘--overwrite’, ‘--apn’, ‘--append’

 	
If the output-file specified for a command is a pre-existing file, then the operator will

prompt the user whether to overwrite (erase) the existing output-file, attempt to append
to it, or abort the operation. However, in processing large amounts of data, too many
interactive questions can be a curse to productivity. Therefore NCO also implements two
ways to override its own safety features, the ‘-O’ and ‘-A’ switches. Specifying ‘-O’ tells
the operator to overwrite any existing output-file without prompting the user interactively.
Specifying ‘-A’ tells the operator to attempt to append to any existing output-file without
prompting the user interactively. These switches are useful in batch environments because
they suppress interactive keyboard input.

3.21 History attribute� �
Availability: All operators
Short options: ‘-h’
Long options: ‘--hst’, ‘--history’

 	
All operators automatically append a history global attribute to any file they create or

modify. The history attribute consists of a timestamp and the full string of the invocation
command to the operator, e.g., ‘Mon May 26 20:10:24 1997: ncks in.nc foo.nc’. The full
contents of an existing history attribute are copied from the first input-file to the output-
file. The timestamps appear in reverse chronological order, with the most recent timestamp
appearing first in the history attribute. Since NCO and many other netCDF operators
adhere to the history convention, the entire data processing path of a given netCDF file
may often be deduced from examination of its history attribute. As of May, 2002, NCO
is case-insensitive to the spelling of the history attribute name. Thus attributes named
History or HISTORY (which are non-standard and not recommended) will be treated as valid
history attributes. When more than one global attribute fits the case-insensitive search
for "history", the first one found will be used. history attribute To avoid information
overkill, all operators have an optional switch (‘-h’, ‘--hst’, or ‘--history’) to override
automatically appending the history attribute (see Section 4.2 [ncatted netCDF Attribute

44 NCO 2.9.9 User’s Guide

Editor], page 55). Note that the ‘-h’ switch also turns off writing the nco_input_file_list
attribute for multi-file operators (see Section 3.22 [Input file list attributes], page 44).

3.22 Input file list attributes� �
Availability: ncea, ncecat, ncra, ncrcat
Short options: ‘-H’
Long options: ‘--fl_lst_in’, ‘--file_list’

 	
Many methods of specifying large numbers of input file names pass these names via

pipes, encodings, or argument transfer programs (see Section 2.7 [Large numbers of input
files], page 14). When these methods are used, the input file list is not explicitly passed
on the command line. This results in a loss of information since the history attribute no
longer contains the exact command by which the file was created.

NCO solves this dilemma by archiving input file list attributes. When the input file list
to a multi-file operator is specified via stdin, the operator, by default, attaches two global
attributes to any file they create or modify. The nco_input_file_number global attribute
contains the number of input files, and nco_input_file_list contains the file names,
specified as standard input to the multi-file operator. This information helps to verify that
all input files the user thinks were piped through stdin actually arrived. Without the nco_
input_file_list attribute, the information is lost forever and the “chain of evidence”
would be broken.

The ‘-H’ switch overrides (turns off) the default behavior of writing the input file list
global attributes when input is from stdin. The ‘-h’ switch does this too, and turns off
the history attribute as well (see Section 3.21 [History attribute], page 43). Hence both
switches allows space-conscious users to avoid storing what may amount to many thousands
of filenames in a metadata attribute.

3.23 NCAR CCSM Conventions� �
Availability: ncbo, ncea, ncecat, ncflint, ncra, ncwa
Short options: None

 	
NCO recognizes NCAR CCSM history tapes, and treats them specially. If you do not work

with NCAR CCSM data then you may skip this section. The CCSM netCDF convention is
described at http://www.cgd.ucar.edu/csm/experiments/output.format.html. Most
of the CCSM netCDF convention is transparent to NCO12. There are no known pitfalls
associated with using any NCO operator on files adhering to this convention13. However,

12 The exception is appending/altering the attributes x_op, y_op, z_op, and t_op for variables which have
been averaged across space and time dimensions. This feature is scheduled for future inclusion in NCO.

13 The CCSM convention recommends time be stored in the format time since base time, e.g., the units

attribute of time might be ‘days since 1992-10-8 15:15:42.5 -6:00’. A problem with this format
occurs when using ncrcat to concatenate multiple files together, each with a different base time. That

http://www.cgd.ucar.edu/csm/experiments/output.format.html

Chapter 3: Features common to most operators 45

to facilitate maximum user friendliness, NCO does treat certain variables in some CCSM
files specially. The special functions are not required by the CCSM netCDF convention, but
experience has shown they do make life easier.

Currently, NCO determines whether a datafile is a CCSM output datafile simply by
checking whether value of the global attribute convention (if it exists) equals ‘NCAR-CSM’.
Should convention equal ‘NCAR-CSM’ in the (first) input-file, NCO will attempt to treat
certain variables specially, because of their meaning in CCSM files. NCO will not average the
following variables often found in CCSM files: ntrm, ntrn, ntrk, ndbase, nsbase, nbdate,
nbsec, mdt, mhisf. These variables contain scalar metadata such as the resolution of the
host CCSM model and it makes no sense to change their values. Furthermore, the ncbo
operator does not operate on (i.e., add, subtract, etc.) the following variables: gw, ORO,
date, datesec, hyam, hybm, hyai, hybi. These variables represent the Gaussian weights,
the orography field, time fields, and hybrid pressure coefficients. These are fields which you
virtually always want to remain unaltered in the output file. If you decide you would like
any of the above CCSM fields processed, you must spoof NCO. For example rename the
variables first with ncrename, or alter the convention attribute.

3.24 ARM Conventions� �
Availability: ncrcat
Short options: None

 	
ncrcat has been programmed to recognize ARM (Atmospheric Radiation Measurement

Program) data files. If you do not work with ARM data then you may skip this section.
ARM data files store time information in two variables, a scalar, base_time, and a record
variable, time_offset. Subtle but serious problems can arise when these type of files are
just blindly concatenated. Therefore ncrcat has been specially programmed to be able to
chain together consecutive ARM input-files and produce and an output-file which contains
the correct time information. Currently, ncrcat determines whether a datafile is an ARM
datafile simply by testing for the existence of the variables base_time, time_offset, and
the dimension time. If these are found in the input-file then ncrcat will automatically
perform two non-standard, but hopefully useful, procedures. First, ncrcat will ensure that
values of time_offset appearing in the output-file are relative to the base_time appearing
in the first input-file (and presumably, though not necessarily, also appearing in the output-
file). Second, if a coordinate variable named time is not found in the input-files, then ncrcat
automatically creates the time coordinate in the output-file. The values of time are defined
by the ARM convention time = base time + time offset. Thus, if output-file contains the
time_offset variable, it will also contain the time coordinate. A short message is added
to the history global attribute whenever these ARM-specific procedures are executed.

is, any time values from files following the first file to be concatenated should be corrected to the
base time offset specified in the units attribute of time from the first file. The analogous problem has
been fixed in ARM files (see Section 3.24 [ARM Conventions], page 45) and could be fixed for CCSM files
if there is sufficient lobbying.

46 NCO 2.9.9 User’s Guide

3.25 Operator version� �
Availability: All operators
Short options: ‘-r’
Long options: ‘--revision’, ‘--version’, or ‘--vrs’

 	
All operators can be told to print their internal version number and copyright notice

and then quit with the ‘-r’ switch. The internal version number varies between opera-
tors, and indicates the most recent change to a particular operator’s source code. This
is useful in making sure you are working with the most recent operators. The version of
NCO you are using might be, e.g., 1.2. However using ‘-r’ on, say, ncks, will produce
something like ‘NCO netCDF Operators version 1.2 Copyright (C) 1995--2000 Charlie
Zender ncks version 1.30 (2000/07/31) "Bolivia"’. This tells you ncks contains all
patches up to version 1.30, which dates from July 31, 2000.

Chapter 4: Reference manual for all operators 47

4 Reference manual for all operators

This chapter presents reference pages for each of the operators individually. The operators
are presented in alphabetical order. All valid command line switches are included in the
syntax statement. Recall that descriptions of many of these command line switches are
provided only in Chapter 3 [Common features], page 19, to avoid redundancy. Only options
specific to, or most useful with, a particular operator are described in any detail in the
sections below.

48 NCO 2.9.9 User’s Guide

4.1 ncap netCDF Arithmetic Processor

SYNTAX

ncap [-A] [-C] [-c] [-D dbg]
[-d dim,[min][,[max]][,[stride]]] [-F] [-f]
[-l path] [-O] [-o output-file] [-p path] [-R] [-r]
[-s algebra] [-S fl.nco] [-v]
input-file [output-file]

DESCRIPTION

ncap arithmetically processes a netCDF file. The processing instructions are contained
either in the NCO script file ‘fl.nco’ or in a sequence of command line arguments. The
options ‘-s’ (or long options ‘--spt’ or ‘--script’) are used for in-line scripts and ‘-S’
(or long options ‘--fl_spt’ or ‘--script-file’) are used to provide the filename where
(usually multiple) scripting commands are pre-stored. ncap was written to perform arbi-
trary albebraic transformations of data and archive the results as easily as possible. See
Section 3.17 [Missing values], page 36, for treatment of missing values. The results of the
algebraic manipulations are called derived fields.

Unlike the other operators, ncap does not accept a list of variables to be operated on as
an argument to ‘-v’ (see Section 3.9 [Variable subsetting], page 27). Rather, the ‘-v’ switch
takes no arguments and indicates that ncap should output only user-defined variables. ncap
does not accept or understand the -x switch.

4.1.1 Left hand casting

The following examples demonstrate the utility of the left hand casting ability of ncap.
Consider first this simple, artificial, example. If lat and lon are one dimensional coordinates
of dimensions lat and lon, respectively, then addition of these two one-dimensional arrays
is intrinsically ill-defined because whether lat lon should be dimensioned lat by lon or lon
by lat is ambiguous (assuming that addition is to remain a commutative procedure, i.e.,
one that does not depend on the order of its arguments). Differing dimensions are said to
be orthogonal to one another, and sets of dimensions which are mutually exclusive are or-
thogonal as a set and any arithmetic operation between variables in orthogonal dimensional
spaces is ambiguous without further information.

The ambiguity may be resolved by enumerating the desired dimension ordering of the
output expression inside square brackets on the left hand side (LHS) of the equals sign. This
is called left hand casting because the user resolves the dimensional ordering of the RHS of
the expression by specifying the desired ordering on the LHS.

ncap -O -s "lat_lon[lat,lon]=lat+lon" in.nc out.nc
ncap -O -s "lon_lat[lon,lat]=lat+lon" in.nc out.nc

The explicit list of dimensions on the LHS, [lat,lon] resolves the otherwise ambiguous
ordering of dimensions in lat lon. In effect, the LHS casts its rank properties onto the
RHS. Without LHS casting, the dimensional ordering of lat lon would be undefined and,
hopefully, ncap would print an error message.

Chapter 4: Reference manual for all operators 49

Consider now a slightly more complex example. In geophysical models, a coordinate
system based on a blend of terrain-following and density-following surfaces is called a hybrid
coordinate system. In this coordinate system, four variables must be manipulated to obtain
the pressure of the vertical coordinate: PO is the domain-mean surface pressure offset
(a scalar), PS is the local (time-varying) surface pressure (usually two horizontal spatial
dimensions, i.e, latitude by longitude), hyam is the weight given to surfaces of constant
density (one spatial dimension, pressure, which is orthogonal to the horizontal dimensions),
and hybm is the weight given to surfaces of constant elevation (also one spatial dimension).
This command constructs a four-dimensional pressure prs_mdp from the four input variables
of mixed rank and orthogonality:

ncap -O -s "prs_mdp[time,lat,lon,lev]=P0*hyam+PS*hybm" in.nc out.nc

Manipulating the four fields which define the pressure in a hybrid coordinate system is
easy with left hand casting.

4.1.2 Syntax of ncap statements

Mastering ncap is relatively simple. Each valid statement statement consists of standard
forward algebraic expression. The ‘fl.nco’, if present, is simply a list of such statements,
whitespace, and comments. The syntax of statements is most like the computer language C.
The following characteristics of C are preserved:

Array syntax
Arrays elements are placed within [] characters;

Array indexing
Arrays are 0-based;

Array storage
Last dimension is most rapidly varying;

Assignment statements
A semi-colon ‘;’ indicates the end of an assignment statement.

Comments
Multi-line comments are enclosed within /* */ characters. Single line comments
are preceded by // characters.

Nesting Files may be nested in scripts using #include script . Note that the #include
command is not followed by a semi-colon because it is a pre-processor directive,
not an assignment statement. The filename ‘script’ is interpreted relative to
the run directory.

Attribute syntax
The at-sign @ is used to delineate an attribute name from a variable name.

4.1.3 Intrinsic functions

ncap contains a small (and growing) library of intrinsic functions. In addition to the stan-
dard mathematical functions (see Section 4.1.6 [Intrinsic mathematical functions], page 51),
ncap currently supports packing and unpacking.

50 NCO 2.9.9 User’s Guide

Packing and Unpacking Algorithms
pack(x) Packing The standard packing algorithm is applied to variable x. The packing

algorithm is lossy, and produces data with the same dynamic range as the
original but which requires no more than half the space to store. The packed
variable is stored (usually) as type NC_SHORT with the two attributes required
to unpack the variable, scale_factor and add_offset, stored at the original
(unpacked) precision of the variable1. Let min and max be the minimum and
maximum values of x.

scale factor = (max−min)/ndrv
add offset = (min + max)/2

pck = (upk− add offset)/scale factor

=
ndrv× [upk− (min + max)/2]

max−min

where ndrv is the number of discrete representable values for given type of
packed variable. The theoretical maximum value for ndrv is two raised to the
number of bits used to store the packed variable. Thus if the variable is packed
into type NC_SHORT, a two-byte datatype, then there are at most 216 = 65536
distinct values representible. In practice, the number of discretely representible
values is taken to be one less than the theoretical maximum. This leaves extra
space and solves potential problems with rounding which can occur during the
unpacking of the variable. Thus for NC_SHORT, ndrv = 65536−1 = 65535. Less
often, the variable may be packed into type NC_CHAR, where ndrv = 256− 1 =
255, or type NC_INT where where ndrv = 4294967295− 1 = 4294967294.

unpack(x)
Unpacking The standard unpacking algorithm is applied to variable x. The
unpacking algorithm depends on the presence of two attributes, scale_factor
and add_offset. If scale_factor is present for a variable, the data are multi-
plied by the value scale factor after the data are read. If add_offset is present
for a variable, then the add offset value is added to the data after the data are
read. If both scale_factor and add_offset attributes are present, the data
are first scaled by scale factor before the offset add offset is added.

upk = scale factor× pck + add offset

=
pck× (max−min)

ndrv
+

min + max
2

When scale_factor and add_offset are used for packing, the associated vari-
able (containing the packed data) is typically of type byte or short, whereas
the unpacked values are intended to be of type int, float, or double. An
attribute’s scale_factor and add_offset and missing_value, if any, should
all be of the type intended for the unpacked data, i.e., int, float or double.

One useful feature of (lossy) netCDF packing algorithm is that additional, loss-less
packing algorithms perform well on top of it.

1 Although not a part of the standard, NCO enforces the policy that the missing_value attribute, if any,
of a packed variable is also stored at the original precision.

Chapter 4: Reference manual for all operators 51

Type Conversion Functions

These intrinsic functions allow ncap to convert variables on disk among the available types
supported by netCDF.

byte(x) Convert to NC_BYTE Converts x to external type NC_BYTE, a C-type signed
char.

char(x) Convert to NC_CHAR Converts x to external type NC_CHAR, a C-type unsigned
char.

double(x)
Convert to NC_DOUBLE Converts x to external type NC_DOUBLE, a C-type double.

float(x) Convert to NC_FLOAT Converts x to external type NC_FLOAT, a C-type float.

int(x) Convert to NC_INT Converts x to external type NC_INT, a C-type int.

short(x) Convert to NC_SHORT Converts x to external type NC_SHORT, a C-type short.

See Section 3.19 [Type conversion], page 41, for more details on automatic and manual
type conversion.

4.1.6 Intrinsic mathematical functions

ncap supports the standard mathematical functions supplied with most operating systems.
Standard calculator notation is used for addition +, subtraction -, multiplication *, division
/, exponentiation ^, and modulus %. The available elementary mathematical functions are:

abs(x) Absolute value Absolute value of x, |x|. Example: abs(−1) = 1

acos(x) Arc-cosine Arc-cosine of x where x is specified in radians. Example: acos(1.0) =
0.0

acosh(x) Hyperbolic arc-cosine Hyperbolic arc-cosine of x where x is specified in radians.
Example: acosh(1.0) = 0.0

asin(x) Arc-sine Arc-sine of x where x is specified in radians. Example: asin(1.0) =
1.57079632679489661922

asinh(x) Hyperbolic arc-sine Hyperbolic arc-sine of x where x is specified in radians.
Example: asinh(1.0) = 0.88137358702

atan(x) Arc-tangent Arc-tangent of x where x is specified in radians between −π/2 and
π/2. Example: atan(1.0) = 0.78539816339744830961

atanh(x) Hyperbolic arc-tangent Hyperbolic arc-tangent of x where x is specified in radi-
ans between −π/2 and π/2. Example: atanh(3.14159265358979323844) = 1.0

ceil(x) Ceil Ceiling of x. Smallest integral value not less than argument. Example:
ceil(0.1) = 1.0

cos(x) Cosine Cosine of x where x is specified in radians. Example: cos(0.0) = 1.0

cosh(x) Hyperbolic cosine Hyperbolic cosine of x where x is specified in radians. Ex-
ample: cosh(0.0) = 1.0

52 NCO 2.9.9 User’s Guide

erf(x) Error function Error function of x where x is specified between −1 and 1.
Example: erf(1.0) = 0.842701

erfc(x) Complementary error function Complementary error function of x where x is
specified between −1 and 1. Example: erfc(1.0) = 0.15729920705

exp(x) Exponential Exponential of x, ex. Example:
exp(1.0) = 2.71828182845904523536

floor(x) Floor Floor of x. Largest integral value not greater than argument. Example:
floor(1.9) = 1

gamma(x) Gamma function Gamma function of x, Γ(x). The well-known and loved con-
tinuous factorial function. Example: gamma(0.5) = sqrt(pi)

ln(x) Natural Logarithm Natural logarithm of x, ln(x). Example:
ln(2.71828182845904523536) = 1.0

log(x) Natural Logarithm Natural logarithm of x, ln(x). Example:
log(2.71828182845904523536) = 1.0

log10(x) Base 10 Logarithm Base 10 logarithm of x, log10(x). Example: log(10.0) = 1.0

nearbyint(x)
Round inexactly Nearest integer to x is returned in floating point format. No
exceptions are raised for inexact conversions. Example: nearbyint(0.1) = 0.0

pow(x,y) Power Value of x is raised to the power of y. Exceptions are raised for do-
main errors. Due to type-limitations in the C language pow function, integer
arguments are promoted (see Section 3.19 [Type conversion], page 41) to type
NC_FLOAT before evaluation. Example: pow(2, 3) = 8

rint(x) Round exactly Nearest integer to x is returned in floating point format. Ex-
ceptions are raised for inexact conversions. Example: rint(0.1) = 0

round(x) Round Nearest integer to x is returned in floating point format. Round halfway
cases away from zero, regardless of current IEEE rounding direction. Example:
round(0.5) = 1.0

sin(x) Sine Sine of x where x is specified in radians. Example:
sin(1.57079632679489661922) = 1.0

sinh(x) Hyperbolic sine Hyperbolic sine of x where x is specified in radians. Example:
sinh(1.0) = 1.1752

sqrt(x) Square Root Square Root of x,
√

x. Example: sqrt(4.0) = 2.0

tan(x) Tangent Tangent of x where x is specified in radians. Example:
tan(0.78539816339744830961) = 1.0

tanh(x) Hyperbolic tangent Hyperbolic tangent of x where x is specified in radians.
Example: tanh(1.0) = 0.761594155956

trunc(x) Truncate Nearest integer to x is returned in floating point format. Round half-
way cases toward zero, regardless of current IEEE rounding direction. Example:
trunc(0.5) = 0.0

Chapter 4: Reference manual for all operators 53

The complete list of mathematical functions supported is platform-specific. Functions man-
dated by ANSI C are guaranteed to be present and are indicated with an asterisk 2. and
are indicated with an asterisk. Use the ‘-f’ (or ‘fnc_tbl’ or ‘prn_fnc_tbl’) switch to
print a complete list of functions supported on your platform. This prints a list of func-
tions and whether they are supported for netCDF variables of intrinsic type NC_FLOAT and
NC_DOUBLE. 3

EXAMPLES

Define new attribute new for existing variable one as twice the existing attribute dou-
ble att of variable att var:

ncap -O -s "one@new=2*att_var@double_att" in.nc out.nc

Average variables of mixed types (result is of type double):

ncap -O -s "average=(var_float+var_double+var_int)/3" in.nc out.nc

Multiple commands may be given to ncap in three ways. First, the commands may
be placed in a script which is executed, e.g., ‘tst.nco’. Second, the commands may be
individually specified with multiple ‘-s’ arguments to the same ncap invocation. Third,
the commands may be chained together into a single ‘-s’ argument to ncap. Assuming
the file ‘tst.nco’ contains the commands a=3;b=4;c=sqrt(a^2+b^2);, then the following
ncap invocations produce identical results:

ncap -O -v -S tst.nco in.nc out.nc
ncap -O -v -s "a=3" -s "b=4" -s "c=sqrt(a^2+b^2)" in.nc out.nc
ncap -O -v -s "a=3;b=4;c=sqrt(a^2+b^2)" in.nc out.nc

The second and third examples show that ncap does not require that a trailing semi-
colon ‘;’ be placed at the end of a ‘-s’ argument, although a trailing semi-colon ‘;’ is always
allowed. However, semi-colons are required to separate individual assignment statements
chained together as a single ‘-s’ argument.

Imagine you wish to create a binary flag based on the value of an array. The flag should
have value 1.0 where the array exceeds 1.0, and value 0.0 elsewhere. Assume the array
named ORO is in ‘in.nc’. The variable ORO_flg in ‘out.nc’

Add degenerate "record" dimension to ORO for averaging
ncecat -O -v ORO in.nc foo.nc
Average degenerate "record" dimension using ORO as mask
ncwa -a record -O -m ORO -T gt -M 1.0 foo.nc foo.nc
ORO is either 0.0 or > 1.0 everywhere
Create ORO_frc in [0.0,1.0) then add 0.99 and convert to int

2 ANSI C compilers are guaranteed to support double precision versions of these functions. These func-
tions normally operate on netCDF variables of type NC_DOUBLE without having to perform intrinsic
conversions. For example, ANSI compilers provide sin for the sine of C-type double variables. The ANSI

standard does not require, but many compilers provide, an extended set of mathematical functions that
apply to single (float) and quadruple (long double) precision variables. Using these functions (e.g.,
sinf for float, sinl for long double), when available, is more efficient than casting variables to type
double, performing the operation, and then recasting. NCO uses the faster intrinsic functions when they
are available, and uses the casting method when they are not.

3 Linux supports more of these intrinsic functions than other OSs.

54 NCO 2.9.9 User’s Guide

ncap -O -s "ORO_frc=ORO-int(ORO)" -s "ORO_flg=int(ORO_frc+0.99)" foo.nc out.nc
ORO_flg now equals 0 or 1

This example uses ncap to compute the covariance of two variables. Let the variables
u and v be the horizontal wind components. The covariance of u and v is defined as
the time mean product of the deviations of u and v from their respective time means.
Symbolically, the covariance [u′v′] = [uv] − [u][v] where [x] denotes the time-average of x,
[x] ≡ 1

τ

∫ t=τ

t=0 x(t) dt and x′ denotes the deviation from the time-mean. The covariance tells
us how much of the correlation of two signals arises from the signal fluctuations versus the
mean signals. Sometimes this is called the eddy covariance. We will store the covariance in
the variable uprmvprm.

ncwa -O -a time -v u,v in.nc foo.nc # Compute time mean of u,v
ncrename -O -v u,uavg -v v,vavg foo.nc # Rename to avoid conflict
ncks -A -v uavg,vavg foo.nc in.nc # Place time means with originals
ncap -O -s "uprmvprm=u*v-uavg*vavg" in.nc in.nc # Covariance
ncra -O -v uprmvprm in.nc foo.nc # Time-mean covariance

The mathmatically inclined will note that the same covariance would be obtained by
replacing the step involving ncap with

ncap -O -s "uprmvprm=(u-uavg)*(v-vavg)" foo.nc foo.nc # Covariance

Whether a degenerate record dimension is a desirable or undesirable feature depends on
the application. Often a degenerate time dimension is useful, e.g., for concatentating, but it
may cause problems with arithmetic. Such is the case in the above example, where the first
step employs ncwa rather than ncra for the time-averaging. Of course the numerical results
are the same with both operators. The difference is that ncwa writes no time dimension to
the output file, while ncra would write a degenerate (size 1) dimension. Appending u and
v to the output file would cause ncks to try to expand the degenerate time axis of uavg and
vavg to the size of the non-degenerate time dimension in the input file. Thus the append
(ncks -A) command would be undefined (and should fail) in this case. Equally important
is the ‘-C’ argument (see Section 3.10 [Coordinate variables], page 29) to ncwa to prevent
any scalar time variable from being written to the output file. Knowing when to use ncwa
-a time rather than the default ncra for time-averaging takes, well, time.

Chapter 4: Reference manual for all operators 55

4.2 ncatted netCDF Attribute Editor

SYNTAX

ncatted [-a att_dsc] [-a ...] [-D dbg] [-h]
[-l path] [-O] [-o output-file] [-p path] [-R] [-r]
input-file [[output-file]]

DESCRIPTION

ncatted edits attributes in a netCDF file. If you are editing attributes then you are
spending too much time in the world of metadata, and ncatted was written to get you
back out as quickly and painlessly as possible. ncatted can append, create, delete, modify,
and overwrite attributes (all explained below). Furthermore, ncatted allows each editing
operation to be applied to every variable in a file. This saves time when changing at-
tribute conventions throughout a file. Note that ncatted interprets character attributes
(i.e., attributes of type NC_CHAR) as strings.

Because repeated use of ncatted can considerably increase the size of the history
global attribute (see Section 3.21 [History attribute], page 43), the ‘-h’ switch is provided
to override automatically appending the command to the history global attribute in the
output-file.

When ncatted is used to change the missing_value attribute, it changes the associated
missing data self-consistently. If the internal floating point representation of a missing value,
e.g., 1.0e36, differs between two machines then netCDF files produced on those machines
will have incompatible missing values. This allows ncatted to change the missing values
in files from different machines to a single value so that the files may then be concatenated
together, e.g., by ncrcat, without losing any information. See Section 3.17 [Missing values],
page 36, for more information.

The key to mastering ncatted is understanding the meaning of the structure describing
the attribute modification, att dsc specified by the required option ‘-a’ or ‘--attribute’.
Each att dsc contains five elements, which makes using ncatted somewhat complicated,
but powerful. The att dsc argument structure contains five arguments in the following
order:

att dsc = att nm, var nm, mode, att type, att val

att nm Attribute name. Example: units

var nm Variable name. Example: pressure

mode Edit mode abbreviation. Example: a. See below for complete listing of valid
values of mode.

att type Attribute type abbreviation. Example: c. See below for complete listing of
valid values of att type.

att val Attribute value. Example: pascal.

56 NCO 2.9.9 User’s Guide

There should be no empty space between these five consecutive arguments. The description
of these arguments follows in their order of appearance.

The value of att nm is the name of the attribute you want to edit. This meaning of this
should be clear to all users of the ncatted operator. If att nm is omitted (i.e., left blank)
and Delete mode is selected, then all attributes associated with the specified variable will
be deleted.

The value of var nm is the name of the variable containing the attribute (named att nm)
that you want to edit. There are two very important and useful exceptions to this rule. The
value of var nm can also be used to direct ncatted to edit global attributes, or to repeat
the editing operation for every variable in a file. A value of var nm of “global” indicates
that att nm refers to a global attribute, rather than a particular variable’s attribute. This
is the method ncatted supports for editing global attributes. If var nm is left blank, on
the other hand, then ncatted attempts to perform the editing operation on every variable
in the file. This option may be convenient to use if you decide to change the conventions
you use for describing the data.

The value of mode is a single character abbreviation (a, c, d, m, or o) standing for one
of five editing modes:

a Append. Append value att val to current var nm attribute att nm value
att val, if any. If var nm does not have an attribute att nm, there is no ef-
fect.

c Create. Create variable var nm attribute att nm with att val if att nm does
not yet exist. If var nm already has an attribute att nm, there is no effect.

d Delete. Delete current var nm attribute att nm. If var nm does not have an
attribute att nm, there is no effect. If att nm is omitted (left blank), then all at-
tributes associated with the specified variable are automatically deleted. When
Delete mode is selected, the att type and att val arguments are superfluous
and may be left blank.

m Modify. Change value of current var nm attribute att nm to value att val. If
var nm does not have an attribute att nm, there is no effect.

o Overwrite. Write attribute att nm with value att val to variable var nm, over-
writing existing attribute att nm, if any. This is the default mode.

The value of att type is a single character abbreviation (f, d, l, i, s, c, or b) standing
for one of the seven primitive netCDF data types:

f Float. Value(s) specified in att val will be stored as netCDF intrinsic type
NC_FLOAT.

d Double. Value(s) specified in att val will be stored as netCDF intrinsic type
NC_DOUBLE.

i Integer. Value(s) specified in att val will be stored as netCDF intrinsic type
NC_INT.

Chapter 4: Reference manual for all operators 57

l Long. Value(s) specified in att val will be stored as netCDF intrinsic type
NC_LONG.

s Short. Value(s) specified in att val will be stored as netCDF intrinsic type
NC_SHORT.

c Char. Value(s) specified in att val will be stored as netCDF intrinsic type
NC_CHAR.

b Byte. Value(s) specified in att val will be stored as netCDF intrinsic type
NC_BYTE.

The specification of att type is optional in Delete mode.

The value of att val is what you want to change attribute att nm to contain. The
specification of att val is optional in Delete mode. Attribute values for all types besides NC_
CHAR must have an attribute length of at least one. Thus att val may be a single value or one-
dimensional array of elements of type att_type. If the att val is not set or is set to empty
space, and the att type is NC_CHAR, e.g., -a units,T,o,c,"" or -a units,T,o,c,, then the
corresponding attribute is set to have zero length. When specifying an array of values, it is
safest to enclose att val in single or double quotes, e.g., -a levels,T,o,s,"1,2,3,4" or -a
levels,T,o,s,’1,2,3,4’. The quotes are strictly unnecessary around att val except when
att val contains characters which would confuse the calling shell, such as spaces, commas,
and wildcard characters.

NCO processing of NC_CHAR attributes is a bit like Perl in that it attempts to do what
you want by default (but this sometimes causes unexpected results if you want unusual
data storage). If the att type is NC_CHAR then the argument is interpreted as a string and it
may contain C-language escape sequences, e.g., \n, which NCO will interpret before writing
anything to disk. NCO translates valid escape sequences and stores the appropriate ASCII
code instead. Since two byte escape sequences, e.g., \n, represent one-byte ASCII codes,
e.g., ASCII 10 (decimal), the stored string attribute is one byte shorter than the input string
length for each embedded escape sequence. The most frequently used C-language escape
sequences are \n (for linefeed) and \t (for horizontal tab). These sequences in particular
allow convenient editing of formatted text attributes. The other valid ASCII codes are \a,
\b, \f, \r, \v, and \\. See Section 4.7 [ncks netCDF Kitchen Sink], page 71, for more
examples of string formatting (with the ncks ‘-s’ option) with special characters.

Analogous to printf, other special characters are also allowed by ncatted if they are
"protected" by a backslash. The characters ", ’, ?, and \ may be input to the shell as \",
\’, \?, and \\. NCO simply strips away the leading backslash from these characters before
editing the attribute. No other characters require protection by a backslash. Backslashes
which precede any other character (e.g., 3, m, $, |, &, @, %, {, and }) will not be filtered and
will be included in the attribute.

Note that the NUL character \0 which terminates C language strings is assumed and
need not be explicitly specified. If \0 is input, it will not be translated (because it would
terminate the string in an additional location). Because of these context-sensitive rules, if
wish to use an attribute of type NC_CHAR to store data, rather than text strings, you should
use ncatted with care.

EXAMPLES

58 NCO 2.9.9 User’s Guide

Append the string "Data version 2.0.\n" to the global attribute history:

ncatted -O -a history,global,a,c,"Data version 2.0\n" in.nc

Note the use of embedded C language printf()-style escape sequences.

Change the value of the long_name attribute for variable T from whatever it currently
is to "temperature":

ncatted -O -a long_name,T,o,c,temperature in.nc

Delete all existing units attributes:

ncatted -O -a units,,d,, in.nc

The value of var nm was left blank in order to select all variables in the file. The values of
att type and att val were left blank because they are superfluous in Delete mode.

Delete all attributes associated with the tpt variable:

ncatted -O -a ,tpt,d,, in.nc

The value of att nm was left blank in order to select all attributes associated with the
variable. To delete all global attributes, simply replace tpt with global in the above.

Modify all existing units attributes to "meter second-1"

ncatted -O -a units,,m,c,"meter second-1" in.nc

Overwrite the quanta attribute of variable energy to an array of four integers.

ncatted -O -a quanta,energy,o,s,"010,101,111,121" in.nc

Demonstrate input of C-language escape sequences (e.g., \n) and other special characters
(e.g., \")

ncatted -h -a special,global,o,c,
’\nDouble quote: \"\nTwo consecutive double quotes: \"\"\n
Single quote: Beyond my shell abilities!\nBackslash: \\\n
Two consecutive backslashes: \\\\\nQuestion mark: \?\n’ in.nc

Note that the entire attribute is protected from the shell by single quotes. These outer
single quotes are necessary for interactive use, but may be omitted in batch scripts.

Chapter 4: Reference manual for all operators 59

4.3 ncbo netCDF Binary Operator

SYNTAX

ncbo [-A] [-C] [-c] [-D dbg]
[-d dim,[min][,[max]]] [-F] [-h]
[-l path] [-O] [-o file_3] [-p path] [-R] [-r]
[-t thr_nbr] [-v var[,...]] [-x] [-y op_typ]
file_1 file_2 [file_3]

DESCRIPTION

ncbo performs binary operations on variables in file 1 and the corresponding variables
(those with the same name) in file 2 and stores the results in file 3. The binary operation
operates on the entire files (modulo any excluded variables). See Section 3.17 [Missing
values], page 36, for treatment of missing values. One of the four standard arithmetic
binary operations currently supported must be selected with the ‘-y op_typ ’ switch (or
long options ‘--op_typ’ or ‘--operation’). The valid binary operations for ncbo, their
definitions, corresponding values of the op typ key, and alternate invocations are:

Addition Definition: file 3 = file 1 + file 2
Alternate invocation: ncadd
op typ key values: ‘add’, ‘+’, ‘addition’
Examples: ‘ncbo --op_typ=add 1.nc 2.nc 3.nc’, ‘ncadd 1.nc 2.nc 3.nc’

Subtraction
Definition: file 3 = file 1 - file 2
Alternate invocations: ncdiff, ncsub, ncsubtract
op typ key values: ‘sbt’, ‘-’, ‘dff’, ‘diff’, ‘sub’, ‘subtract’, ‘subtraction’
Examples: ‘ncbo --op_typ=- 1.nc 2.nc 3.nc’, ‘ncdiff 1.nc 2.nc 3.nc’

Multiplication
Definition: file 3 = file 1 * file 2
Alternate invocations: ncmult, ncmultiply
op typ key values: ‘mlt’, ‘*’, ‘mult’, ‘multiply’, ‘multiplication’
Examples: ‘ncbo --op_typ=mlt 1.nc 2.nc 3.nc’, ‘ncmult 1.nc 2.nc 3.nc’

Division Definition: file 3 = file 1 / file 2
Alternate invocation: ncdivide
op typ key values: ‘dvd’, ‘/’, ‘divide’, ‘division’
Examples: ‘ncbo --op_typ=/ 1.nc 2.nc 3.nc’, ‘ncdivide 1.nc 2.nc 3.nc’

Care should be taken when using the shortest form of key values, i.e., ‘+’, ‘-’, ‘*’, and ‘/’.
Some of these single characters may have special meanings to the shell 1. Place these

1 A naked (i.e., unprotected or unquoted) ‘*’ is a wildcard character. A naked ‘-’ may confuse the com-
mand line parser. A naked ‘+’ and ‘/’ are relatively harmless.

60 NCO 2.9.9 User’s Guide

characters inside quotes to keep them from being interpreted (globbed) by the shell2. For
example, the following commands are equivalent

ncbo --op_typ=* 1.nc 2.nc 3.nc # Dangerous (shell may try to glob)
ncbo --op_typ=’*’ 1.nc 2.nc 3.nc # Safe (’*’ protected from shell)
ncbo --op_typ="*" 1.nc 2.nc 3.nc # Safe (’*’ protected from shell)
ncbo --op_typ=mlt 1.nc 2.nc 3.nc
ncbo --op_typ=mult 1.nc 2.nc 3.nc
ncbo --op_typ=multiply 1.nc 2.nc 3.nc
ncbo --op_typ=multiplication 1.nc 2.nc 3.nc
ncmult 1.nc 2.nc 3.nc # First do ’ln -s ncbo ncmult’
ncmultiply 1.nc 2.nc 3.nc # First do ’ln -s ncbo ncmultiply’

No particular argument or invocation form is preferred. Users are encouraged to use the
forms which are most intuitive to them.

Normally, ncbo will fail unless an operation type is specified with ‘-y’ (equivalent to
‘--op_typ’). You may create exceptions to this rule to suit your particular tastes, in
conformance with your site’s policy on symbolic links to executables (files of a different name
point to the actual executable). For many years, ncdiff was the main binary file operator.
As a result, many users prefer to continue invoking ncdiff rather than memorizing a
new command (‘ncbo -y sbt ’) which behaves identically to the original ncdiff command.
However, from a software maintenance standpoint, maintaining a distinct executable for
each binary operation (e.g., ncadd) is untenable, and a single executable, ncbo, is desirable.
To maintain backward compatibility, therefore, NCO automatically creates a symbolic link
from ncbo to ncdiff. Thus ncdiff is called an alternate invocation of ncbo. ncbo supports
many additional alternate invocations which must be manually activated. Should users or
system adminitrators decide to activate them, the procedure is simple. For example, to
use ‘ncadd’ instead of ‘ncbo --op_typ=add’, simply create a symbolic link from ncbo to
ncadd3. The alternatate invocations supported for each operation type are listed above.
Alternatively, users may always define ‘ncadd’ as an alias to ‘ncbo --op_typ=add’4.

It is important to maintain portability in NCO scripts. Therefore we recommend
that site-specfic invocations (e.g., ‘ncadd’) be used only in interactive sessions from
the command-line. For scripts, we recommend using the full invocation (e.g., ‘ncbo
--op_typ=add’). This ensures portability of scripts between users and sites.

ncbo operates (e.g., adds) variables in file 2 with the corresponding variables (those with
the same name) in file 1 and stores the results in file 3. Variables in file 2 are broadcast
to conform to the corresponding variable in file 1 if necessary, but the reverse is not true.
Broadcasting a variable means creating data in non-existing dimensions from the data in
existing dimensions. For example, a two dimensional variable in file 2 can be subtracted
from a four, three, or two (but not one or zero) dimensional variable (of the same name) in

2 The widely used shell Bash correctly interprets all these special characters even when they are not quoted.
That is, Bash does not prevent NCO from correctly interpreting the intended arithmetic operation when
the following arguments are given (without quotes) to ncbo: ‘--op_typ=+’, ‘--op_typ=-’, ‘--op_typ=*’,
and ‘--op_typ=/’

3 The command to do this is ‘ln -s -f ncbo ncadd’
4 The command to do this is ‘alias ncadd=’ncbo --op_typ=add’’

Chapter 4: Reference manual for all operators 61

file_1. This functionality allows the user to compute anomalies from the mean. Note that
variables in file 1 are not broadcast to conform to the dimensions in file 2. In the future,
we will broadcast variables in file 1, if necessary to conform to their counterparts in file 2.
Thus, presently, the number of dimensions, or rank, of any processed variable in file 1 must
be greater than or equal to the rank of the same variable in file 2. Furthermore, the size of
all dimensions common to both file 1 and file 2 must be equal.

When computing anomalies from the mean it is often the case that file 2 was created by
applying an averaging operator to a file with initially the same dimensions as file 1 (often
file 1 itself). In these cases, creating file 2 with ncra rather than ncwa will cause the ncbo
operation to fail. For concreteness say the record dimension in file_1 is time. If file 2
were created by averaging file 1 over the time dimension with the ncra operator rather
than with the ncwa operator, then file 2 will have a time dimension of size 1 rather than
having no time dimension at all 5. In this case the input files to ncbo, file 1 and file 2,
will have unequally sized time dimensions which causes ncbo to fail. To prevent this from
occuring, use ncwa to remove the time dimension from file 2. See the example below.

ncbo never operates on coordinate variables or variables of type NC_CHAR or NC_BYTE.
This ensures that coordinates like (e.g., latitude and longitude) are physically meaningful
in the output file, file 3. This behavior is hardcoded. ncbo applies special rules to some
NCAR CCSM fields (e.g., ORO). See Section 3.23 [NCAR CCSM Conventions], page 44 for
a complete description. Finally, we note that ncflint (see Section 4.6 [ncflint netCDF
File Interpolator], page 68) is designed for file interpolation. As such, it also performs file
subtraction, addition, multiplication, albeit in a more convoluted way than ncbo.

EXAMPLES

Say files ‘85_0112.nc’ and ‘86_0112.nc’ each contain 12 months of data. Compute the
change in the monthly averages from 1985 to 1986:

ncbo -op_typ=sub 86_0112.nc 85_0112.nc 86m85_0112.nc
ncdiff 86_0112.nc 85_0112.nc 86m85_0112.nc

The following examples demonstrate the broadcasting feature of ncbo. Say we wish to
compute the monthly anomalies of T from the yearly average of T for the year 1985. First we
create the 1985 average from the monthly data, which is stored with the record dimension
time.

ncra 85_0112.nc 85.nc
ncwa -O -a time 85.nc 85.nc

The second command, ncwa, gets rid of the time dimension of size 1 that ncra left in
‘85.nc’. Now none of the variables in ‘85.nc’ has a time dimension. A quicker way to
accomplish this is to use ncwa from the beginning:

ncwa -a time 85_0112.nc 85.nc

We are now ready to use ncbo to compute the anomalies for 1985:

5 This is because ncra collapses the record dimension to a size of 1 (making it a degenerate dimension),
but does not remove it, while ncwa removes all dimensions it averages over. In other words, ncra changes
the size but not the rank of variables, while ncwa changes both the size and the rank of variables.

62 NCO 2.9.9 User’s Guide

ncdiff -v T 85_0112.nc 85.nc t_anm_85_0112.nc

Each of the 12 records in ‘t_anm_85_0112.nc’ now contains the monthly deviation of T
from the annual mean of T for each gridpoint.

Say we wish to compute the monthly gridpoint anomalies from the zonal annual mean.
A zonal mean is a quantity that has been averaged over the longitudinal (or x) direction.
First we use ncwa to average over longitudinal direction lon, creating ‘85_x.nc’, the zonal
mean of ‘85.nc’. Then we use ncbo to subtract the zonal annual means from the monthly
gridpoint data:

ncwa -a lon 85.nc 85_x.nc
ncdiff 85_0112.nc 85_x.nc tx_anm_85_0112.nc

This examples works assuming ‘85_0112.nc’ has dimensions time and lon, and that
‘85_x.nc’ has no time or lon dimension.

As a final example, say we have five years of monthly data (i.e., 60 months) stored in
‘8501_8912.nc’ and we wish to create a file which contains the twelve month seasonal cycle
of the average monthly anomaly from the five-year mean of this data. The following method
is just one permutation of many which will accomplish the same result. First use ncwa to
create the five-year mean:

ncwa -a time 8501_8912.nc 8589.nc

Next use ncbo to create a file containing the difference of each month’s data from the
five-year mean:

ncbo 8501_8912.nc 8589.nc t_anm_8501_8912.nc

Now use ncks to group the five January anomalies together in one file, and use ncra to
create the average anomaly for all five Januarys. These commands are embedded in a shell
loop so they are repeated for all twelve months:

for idx in {01..12}; do # Bash Shell (version 3.0+, beware ordering!)
ncks -F -d time,${idx},,12 t_anm_8501_8912.nc foo.${idx}
ncra foo.${idx} t_anm_8589_${idx}.nc

done
for idx in 01 02 03 04 05 06 07 08 09 10 11 12; do # Bourne Shell

ncks -F -d time,${idx},,12 t_anm_8501_8912.nc foo.${idx}
ncra foo.${idx} t_anm_8589_${idx}.nc

done
foreach idx (01 02 03 04 05 06 07 08 09 10 11 12) # C Shell

ncks -F -d time,${idx},,12 t_anm_8501_8912.nc foo.${idx}
ncra foo.${idx} t_anm_8589_${idx}.nc

end

Note that ncra understands the stride argument so the two commands inside the loop
may be combined into the single command

ncra -F -d time,${idx},,12 t_anm_8501_8912.nc foo.${idx}

Finally, use ncrcat to concatenate the 12 average monthly anomaly files into one twelve-
record file which contains the entire seasonal cycle of the monthly anomalies:

Chapter 4: Reference manual for all operators 63

ncrcat t_anm_8589_??.nc t_anm_8589_0112.nc

64 NCO 2.9.9 User’s Guide

4.4 ncea netCDF Ensemble Averager

SYNTAX

ncea [-A] [-C] [-c] [-D dbg]
[-d dim,[min][,[max]]] [-F] [-h] [-l path]
[-n loop] [-O] [-o output-file] [-p path] [-R] [-r]
[-t thr_nbr] [-v var[,...]] [-x] [-y op_typ]
[input-files] [output-file]

DESCRIPTION

ncea performs gridpoint averages of variables across an arbitrary number (an ensemble)
of input-files, with each file receiving an equal weight in the average. Each variable in the
output-file will be the same size as the same variable in any one of the in the input-files,
and all input-files must be the same size. ncea averages entire files, and weights each
file evenly. This is distinct from ncra, which only averages over the record dimension (e.g.,
time), and weights each record in the record dimension evenly, All dimensions, including the
record dimension, are treated identically and preserved in the output-file. See Section 2.6
[Averaging vs. Concatenating], page 13, for a description of the distinctions between the
various averagers and concatenators. As a multi-file operator, ncea will read the list of
input-files from stdin if they are not specified as positional arguments on the command
line (see Section 2.7 [Large numbers of input files], page 14).

The file is the logical unit of organization for the results of many scientific studies. Often
one wishes to generate a file which is the gridpoint average of many separate files. This may
be to reduce statistical noise by combining the results of a large number of experiments, or
it may simply be a step in a procedure whose goal is to compute anomalies from a mean
state. In any case, when one desires to generate a file whose properties are the mean of
all the input files, then ncea is the operator to use. ncea assumes coordinate variable are
properties common to all of the experiments and so does not average them across files.
Instead, ncea copies the values of the coordinate variables from the first input file to the
output file.

EXAMPLES

Consider a model experiment which generated five realizations of one year of data, say
1985. You can imagine that the experimenter slightly perturbs the initial conditions of the
problem before generating each new solution. Assume each file contains all twelve months
(a seasonal cycle) of data and we want to produce a single file containing the ensemble
average (mean) seasonal cycle. Here the numeric filename suffix denotes the experiment
number (not the month):

ncea 85_01.nc 85_02.nc 85_03.nc 85_04.nc 85_05.nc 85.nc
ncea 85_0[1-5].nc 85.nc
ncea -n 5,2,1 85_01.nc 85.nc

These three commands produce identical answers. See Section 3.5 [Specifying input files],
page 21, for an explanation of the distinctions between these methods. The output file,
‘85.nc’, is the same size as the inputs files. It contains 12 months of data (which might or

Chapter 4: Reference manual for all operators 65

might not be stored in the record dimension, depending on the input files), but each value
in the output file is the average of the five values in the input files.

In the previous example, the user could have obtained the ensemble average values in a
particular spatio-temporal region by adding a hyperslab argument to the command, e.g.,

ncea -d time,0,2 -d lat,-23.5,23.5 85_??.nc 85.nc

In this case the output file would contain only three slices of data in the time dimension.
These three slices are the average of the first three slices from the input files. Additionally,
only data inside the tropics is included.

66 NCO 2.9.9 User’s Guide

4.5 ncecat netCDF Ensemble Concatenator

SYNTAX

ncecat [-A] [-C] [-c] [-D dbg]
[-d dim,[min][,[max]]] [-F] [-h] [-l path]
[-n loop] [-O] [-o output-file] [-p path] [-R] [-r]
[-v var[,...]] [-x] [input-files] [output-file]

DESCRIPTION

ncecat concatenates an arbitrary number of input files into a single output file. A new
record dimension acts as the glue to bind the input files data together. Each variable in
each input file becomes one record in the same variable in the output file. All input-files
must contain all extracted variables (or else there would be "gaps" in the output file). Each
extracted variable must be constant in size and rank across all input-files. The input-files
are stored consecutively as a single record in output file. Thus, the output file size is the
sum of the sizes of the extracted variable in the input files. See Section 2.6 [Averaging vs.
Concatenating], page 13, for a description of the distinctions between the various averagers
and concatenators. As a multi-file operator, ncecat will read the list of input-files from
stdin if they are not specified as positional arguments on the command line (see Section 2.7
[Large numbers of input files], page 14).

Consider five realizations, ‘85a.nc’, ‘85b.nc’, . . . ‘85e.nc’ of 1985 predictions from
the same climate model. Then ncecat 85?.nc 85_ens.nc glues the individual realizations
together into the single file, ‘85_ens.nc’. If an input variable was dimensioned [lat,lon],
it will have dimensions [record,lat,lon] in the output file. A restriction of ncecat is that
the hyperslabs of the processed variables must be the same from file to file. Normally this
means all the input files are the same size, and contain data on different realizations of the
same variables.

EXAMPLES

Consider a model experiment which generated five realizations of one year of data, say
1985. You can imagine that the experimenter slightly perturbs the initial conditions of the
problem before generating each new solution. Assume each file contains all twelve months
(a seasonal cycle) of data and we want to produce a single file containing all the seasonal
cycles. Here the numeric filename suffix denotes the experiment number (not the month):

ncecat 85_01.nc 85_02.nc 85_03.nc 85_04.nc 85_05.nc 85.nc
ncecat 85_0[1-5].nc 85.nc
ncecat -n 5,2,1 85_01.nc 85.nc

These three commands produce identical answers. See Section 3.5 [Specifying input files],
page 21, for an explanation of the distinctions between these methods. The output file,
‘85.nc’, is five times the size as a single input-file. It contains 60 months of data (which
might or might not be stored in the record dimension, depending on the input files).

Consider a file with an existing record dimension named time. and suppose the user
wishes to convert time from a record dimension to a non-record dimension. This may be
useful, for example, when the user has another use for the record variable. The procedure
is to use ncecat followed by ncwa

Chapter 4: Reference manual for all operators 67

ncecat in.nc out.nc # Convert time to non-record dimension
ncwa -a record in.nc out.nc # Remove new degenerate record dimension

The second step removes the degenerate record dimension. See Section 4.8 [ncpdq netCDF
Permute Dimensions Quickly], page 77 for other methods changing variable dimensionality,
including the record dimension.

68 NCO 2.9.9 User’s Guide

4.6 ncflint netCDF File Interpolator

SYNTAX

ncflint [-A] [-C] [-c] [-D dbg]
[-d dim,[min][,[max]]] [-F] [-h] [-i var,val3]
[-l path] [-O] [-o file_3] [-p path] [-R] [-r]
[-v var[,...]] [-w wgt1[,wgt2]] [-x]
file_1 file_2 [file_3]

DESCRIPTION

ncflint creates an output file that is a linear combination of the input files. This linear
combination is a weighted average, a normalized weighted average, or an interpolation of
the input files. Coordinate variables are not acted upon in any case, they are simply copied
from file 1.

There are two conceptually distinct methods of using ncflint. The first method is to
specify the weight each input file contributes to the output file. In this method, the value
val3 of a variable in the output file file 3 is determined from its values val1 and val2 in
the two input files according to val3 = wgt1 × val1 + wgt2 × val2 . Here at least wgt1,
and, optionally, wgt2, are specified on the command line with the ‘-w’ (or ‘--weight’ or
‘--wgt_var’) switch. If only wgt1 is specified then wgt2 is automatically computed as
wgt2 = 1-wgt1. Note that weights larger than 1 are allowed. Thus it is possible to specify
wgt1 = 2 and wgt2 = −3. One can use this functionality to multiply all the values in a
given file by a constant.

The second method of using ncflint is to specify the interpolation option with ‘-i’ (or
with the ‘--ntp’ or ‘--interpolate’ long options). This is really the inverse of the first
method in the following sense. When the user specifies the weights directly, ncflint has no
work to do besides multiplying the input values by their respective weights and adding the
results together to produce the output values. It makes sense to use this when the weights
are known a priori.

Another class of problems has the arrival value (i.e., val3) of a particular variable var
known a priori. In this case, the implied weights can always be inferred by examining the
values of var in the input files. This results in one equation in two unknowns, wgt1 and
wgt2: val3 = wgt1 × val1 + wgt2 × val2 . Unique determination of the weights requires
imposing the additional constraint of normalization on the weights: wgt1 + wgt2 = 1.
Thus, to use the interpolation option, the user specifies var and val3 with the ‘-i’ option.
ncflint then computes wgt1 and wgt2, and uses these weights on all variables to generate
the output file. Although var may have any number of dimensions in the input files, it
must represent a single, scalar value. Thus any dimensions associated with var must be
degenerate, i.e., of size one.

If neither ‘-i’ nor ‘-w’ is specified on the command line, ncflint defaults to weighting
each input file equally in the output file. This is equivalent to specifying ‘-w 0.5’ or ‘-w
0.5,0.5’. Attempting to specify both ‘-i’ and ‘-w’ methods in the same command is an
error.

Chapter 4: Reference manual for all operators 69

ncflint does not interpolate variables of type NC_CHAR and NC_BYTE. This behavior is
hardcoded.

Depending on your intuition, ncflint may treat missing values unexpectedly. Consider
a point where the value in one input file, say val1, equals the missing value mss val 1 and,
at the same point, the corresponding value in the other input file val2 is not misssing (i.e.,
does not equal mss val 2). There are three plausible answers, and this creates ambiguity.

Option one is to set val3 = mss val 1. The rationale is that ncflint is, at heart, an
interpolator and interpolation involving a missing value is intrinsically undefined. ncflint
currently implements this behavior since it is the most conservative and least likely to lead
to misinterpretation.

Option two is to output the weighted valid data point, i.e., val3 = wgt2 × val2 . The
rationale for this behavior is that interpolation is really a weighted average of known points,
so ncflint should weight the valid point.

Option three is to return the unweighted valid point, i.e., val3 = val2. This behavior
would appeal to those who use ncflint to estimate data using the closest available data.
When a point is not bracketed by valid data on both sides, it is better to return the known
datum than no datum at all.

The current implementation uses the first approach, Option one. If you have strong
opinions on this matter, let us know, since we are willing to implement the other approaches
as options if there is enough interest.

EXAMPLES

Although it has other uses, the interpolation feature was designed to interpolate file 3 to
a time between existing files. Consider input files ‘85.nc’ and ‘87.nc’ containing variables
describing the state of a physical system at times time = 85 and time = 87. Assume each
file contains its timestamp in the scalar variable time. Then, to linearly interpolate to a
file ‘86.nc’ which describes the state of the system at time at time = 86, we would use

ncflint -i time,86 85.nc 87.nc 86.nc

Say you have observational data covering January and April 1985 in two files named
‘85_01.nc’ and ‘85_04.nc’, respectively. Then you can estimate the values for February and
March by interpolating the existing data as follows. Combine ‘85_01.nc’ and ‘85_04.nc’
in a 2:1 ratio to make ‘85_02.nc’:

ncflint -w 0.667 85_01.nc 85_04.nc 85_02.nc
ncflint -w 0.667,0.333 85_01.nc 85_04.nc 85_02.nc

Multiply ‘85.nc’ by 3 and by −2 and add them together to make ‘tst.nc’:

ncflint -w 3,-2 85.nc 85.nc tst.nc

This is an example of a null operation, so ‘tst.nc’ should be identical (within machine
precision) to ‘85.nc’.

Add ‘85.nc’ to ‘86.nc’ to obtain ‘85p86.nc’, then subtract ‘86.nc’ from ‘85.nc’ to
obtain ‘85m86.nc’

ncflint -w 1,1 85.nc 86.nc 85p86.nc

70 NCO 2.9.9 User’s Guide

ncflint -w 1,-1 85.nc 86.nc 85m86.nc
ncdiff 85.nc 86.nc 85m86.nc

Thus ncflint can be used to mimic some ncbo operations. However this is not a good
idea in practice because ncflint does not broadcast (see Section 4.3 [ncbo netCDF Binary
Operator], page 59) conforming variables during arithmetic. Thus the final two commands
would produce identical results except that ncflint would fail if any variables needed to
be broadcast.

Rescale the dimensional units of the surface pressure prs_sfc from Pascals to hectopas-
cals (millibars)

ncflint -O -C -v prs_sfc -w 0.01,0.0 in.nc in.nc out.nc
ncatted -O -a units,prs_sfc,o,c,millibar out.nc

Chapter 4: Reference manual for all operators 71

4.7 ncks netCDF Kitchen Sink

SYNTAX

ncks [-A] [-a] [-B] [-b binary-file] [-C] [-c] [-D dbg]
[-d dim,[min][,[max]][,[stride]]]
[-F] [-H] [-h] [-l path] [-M] [-m] [-O] [-o output-file]
[-p path] [-q] [-R] [-r] [-s format] [-u]
[-v var[,...]] [-x] input-file [[output-file]]

DESCRIPTION

ncks combines selected features of ncdump, ncextr, and the nccut and ncpaste specifica-
tions into one versatile utility. ncks extracts a subset of the data from input-file and prints
it as ASCII text to ‘stdout’, writes it in flat binary format to ‘binary-file’, and writes
(or pastes) it in netCDF format to output-file.

ncks will print netCDF data in ASCII format to stdout, like ncdump, but with these
differences: ncks prints data in a tabular format intended to be easy to search for the data
you want, one datum per screen line, with all dimension subscripts and coordinate values
(if any) preceding the datum. Option ‘-s’ (or lon options ‘--sng’, ‘--string’, ‘--fmt’, or
‘--format’) allows the user the format the data using C-style format strings.

Options ‘-a’, ‘-F’ , ‘-H’, ‘-M’, ‘-m’, ‘-q’, ‘-s’, and ‘-u’ (and their long option counterparts)
control the formatted appearance of the data.

ncks extracts (and optionally creates a new netCDF file comprised of) only selected
variables from the input file (similar to the old ncextr specification). Only variables and
coordinates may be specifically included or excluded—all global attributes and any attribute
associated with an extracted variable are copied to the screen and/or output netCDF file.
Options ‘-c’, ‘-C’, ‘-v’, and ‘-x’ (and their long option synonyms) control which variables
are extracted.

ncks extracts hyperslabs from the specified variables (ncks implements the original
nccut specification). Option ‘-d’ controls the hyperslab specification. Input dimensions
that are not associated with any output variable do not appear in the output netCDF. This
feature removes superfluous dimensions from netCDF files.

ncks will append variables and attributes from the input-file to output-file if output-file
is a pre-existing netCDF file whose relevant dimensions conform to dimension sizes of input-
file. The append features of ncks are intended to provide a rudimentary means of adding
data from one netCDF file to another, conforming, netCDF file. If naming conflicts exist
between the two files, data in output-file is usually overwritten by the corresponding data
from input-file. Thus, when appending, the user should backup output-file in case valuable
data are inadvertantly overwritten.

If output-file exists, the user will be queried whether to overwrite, append, or exit the
ncks call completely. Choosing overwrite destroys the existing output-file and create an
entirely new one from the output of the ncks call. Append has differing effects depending
on the uniqueness of the variables and attributes output by ncks: If a variable or attribute
extracted from input-file does not have a name conflict with the members of output-file then
it will be added to output-file without overwriting any of the existing contents of output-

72 NCO 2.9.9 User’s Guide

file. In this case the relevant dimensions must agree (conform) between the two files; new
dimensions are created in output-file as required. When a name conflict occurs, a global
attribute from input-file will overwrite the corresponding global attribute from output-file.
If the name conflict occurs for a non-record variable, then the dimensions and type of the
variable (and of its coordinate dimensions, if any) must agree (conform) in both files. Then
the variable values (and any coordinate dimension values) from input-file will overwrite the
corresponding variable values (and coordinate dimension values, if any) in output-file1.

Since there can only be one record dimension in a file, the record dimension must have
the same name (but not necessarily the same size) in both files if a record dimension variable
is to be appended. If the record dimensions are of differing sizes, the record dimension of
output-file will become the greater of the two record dimension sizes, the record variable
from input-file will overwrite any counterpart in output-file and fill values will be written
to any gaps left in the rest of the record variables (I think). In all cases variable attributes
in output-file are superseded by attributes of the same name from input-file, and left alone
if there is no name conflict.

Some users may wish to avoid interactive ncks queries about whether to overwrite ex-
isting data. For example, batch scripts will fail if ncks does not receive responses to its
queries. Options ‘-O’ and ‘-A’ are available to force overwriting existing files and variables,
respectively.

Options specific to ncks

The following list provides a short summary of the features unique to ncks. Features
common to many operators are described in Chapter 3 [Common features], page 19.

‘-a’ Do not alphabetize extracted fields. By default, the specified output variables
are extracted, printed, and written to disk in alphabetical order. This tends
to make long output lists easier to search for particular variables. Specifying
-a results in the variables being extracted, printed, and written to disk in the
order in which they were saved in the input file. Thus -a retains the original
ordering of the variables. Also ‘--abc’ and ‘--alphabetize’.

‘-B ‘file’’
Activate native machine binary output writing to the default binary file,
‘ncks.bnr’. The -B switch is redundant when the -b ‘file’ option is specified,
and native binary output will be directed to the binary file ‘file’. Also ‘--bnr’
and ‘--binary’. Writing packed variables in binary format is not supported.

‘-b ‘file’’
Activate native machine binary output writing to binary file ‘file’. Also
‘--fl_bnr’ and ‘--binary-file’. Writing packed variables in binary format is
not supported.

‘-d dim,[min][,[max]][,[stride]]’
Add stride argument to hyperslabber. For a complete description of the stride
argument, See Section 3.16 [Stride], page 34.

1 Those familiar with netCDF mechanics might wish to know what is happening here: ncks does not
attempt to redefine the variable in output-file to match its definition in input-file, ncks merely copies
the values of the variable and its coordinate dimensions, if any, from input-file to output-file.

Chapter 4: Reference manual for all operators 73

‘-H’ Print data to screen. Also activated using ‘--print’ or ‘--prn’. The ncks
default behavior is to print data to screen if no netCDF output file is specified.
Use ‘-H’ to print data to screen if a netCDF output is specified. Unless otherwise
specified (with -s), each element of the data hyperslab is printed on a separate
line containing the names, indices, and, values, if any, of all of the variables
dimensions. The dimension and variable indices refer to the location of the
corresponding data element with respect to the variable as stored on disk (i.e.,
not the hyperslab).

% ncks -C -v three_dmn_var in.nc
lat[0]=-90 lev[0]=100 lon[0]=0 three_dmn_var[0]=0
lat[0]=-90 lev[0]=100 lon[1]=90 three_dmn_var[1]=1
lat[0]=-90 lev[0]=100 lon[2]=180 three_dmn_var[2]=2
...
lat[1]=90 lev[2]=1000 lon[1]=90 three_dmn_var[21]=21
lat[1]=90 lev[2]=1000 lon[2]=180 three_dmn_var[22]=22
lat[1]=90 lev[2]=1000 lon[3]=270 three_dmn_var[23]=23

Printing the same variable with the ‘-F’ option shows the same variable indexed
with Fortran conventions

% ncks -F -C -v three_dmn_var in.nc
lon(1)=0 lev(1)=100 lat(1)=-90 three_dmn_var(1)=0
lon(2)=90 lev(1)=100 lat(1)=-90 three_dmn_var(2)=1
lon(3)=180 lev(1)=100 lat(1)=-90 three_dmn_var(3)=2
...

Printing a hyperslab does not affect the variable or dimension indices since
these indices are relative to the full variable (as stored in the input file), and
the input file has not changed. However, if the hypserslab is saved to an output
file and those values are printed, the indices will change:

% ncks -O -H -d lat,90.0 -d lev,1000.0 -v three_dmn_var in.nc out.nc
...
lat[1]=90 lev[2]=1000 lon[0]=0 three_dmn_var[20]=20
lat[1]=90 lev[2]=1000 lon[1]=90 three_dmn_var[21]=21
lat[1]=90 lev[2]=1000 lon[2]=180 three_dmn_var[22]=22
lat[1]=90 lev[2]=1000 lon[3]=270 three_dmn_var[23]=23
% ncks -C -v three_dmn_var out.nc
lat[0]=90 lev[0]=1000 lon[0]=0 three_dmn_var[0]=20
lat[0]=90 lev[0]=1000 lon[1]=90 three_dmn_var[1]=21
lat[0]=90 lev[0]=1000 lon[2]=180 three_dmn_var[2]=22
lat[0]=90 lev[0]=1000 lon[3]=270 three_dmn_var[3]=23

‘-M’ Print to screen the global metadata describing the file. This includes file sum-
mary information and global attributes. Also ‘--Mtd’ and ‘--Metadata’. The
default behavior is to global metadata to screen if no netCDF output file and
no variable extraction list is specified (with ‘-v’). Use ‘-M’ to print global meta-
data to screen if a netCDF output is specified, or if a variable extraction list is
specified (with ‘-v’).

74 NCO 2.9.9 User’s Guide

‘-m’ Print variable metadata to screen (similar to ncdump -h). This displays all
metadata pertaining to each variable, one variable at a time. Also ‘--mtd’
and ‘--metadata’. The ncks default behavior is to print variable metadata to
screen if no netCDF output file is specified. Use ‘-m’ to print variable metadata
to screen if a netCDF output is specified.

‘-q’ Toggle printing of dimension indices and coordinate values when printing arrays.
The name of each variable will appear flush left in the output. This is useful
when trying to locate specific variables when displaying many variables with
different dimensions. Also ‘--quiet’.

‘-s format ’
String format for text output. Accepts C language escape sequences and
printf() formats. Also ‘--string’, ‘--format’, and ‘--fmt’.

‘-u’ Accompany the printing of a variable’s values with its units attribute, if any.
Also ‘--units’.

EXAMPLES

View all data in netCDF ‘in.nc’, printed with Fortran indexing conventions:

ncks -F in.nc

Copy the netCDF file ‘in.nc’ to file ‘out.nc’.

ncks -O in.nc out.nc

Now the file ‘out.nc’ contains all the data from ‘in.nc’. There are, however, two differ-
ences between ‘in.nc’ and ‘out.nc’. First, the history global attribute (see Section 3.21
[History attribute], page 43) will contain the command used to create ‘out.nc’. Second, the
variables in ‘out.nc’ will be defined in alphabetical order. Of course the internal storage
of variable in a netCDF file should be transparent to the user, but there are cases when
alphabetizing a file is useful (see description of -a switch).

Print variable three_dmn_var from file ‘in.nc’ with default notations. Next print
three_dmn_var as an un-annotated text column. Then print three_dmn_var signed with
very high precision. Finally, print three_dmn_var as a comma-separated list.

% ncks -C -v three_dmn_var in.nc
lat[0]=-90 lev[0]=100 lon[0]=0 three_dmn_var[0]=0
lat[0]=-90 lev[0]=100 lon[1]=90 three_dmn_var[1]=1
...
lat[1]=90 lev[2]=1000 lon[3]=270 three_dmn_var[23]=23
% ncks -s "%f\n" -C -v three_dmn_var in.nc
0.000000
1.000000
...
23.000000
% ncks -s "%+16.10f\n" -C -v three_dmn_var in.nc

+0.0000000000
+1.0000000000

...

Chapter 4: Reference manual for all operators 75

+23.0000000000
% ncks -s "%f, " -C -v three_dmn_var in.nc
0.000000, 1.000000, ..., 23.000000,

The second and third options are useful when pasting data into text files like reports or
papers. See Section 4.2 [ncatted netCDF Attribute Editor], page 55, for more details on
string formatting and special characters.

One dimensional arrays of characters stored as netCDF variables are automatically
printed as strings, whether or not they are NUL-terminated, e.g.,

ncks -v fl_nm in.nc

The %c formatting code is useful for printing multidimensional arrays of characters repre-
senting fixed length strings

ncks -s "%c" -v fl_nm_arr in.nc

Using the %s format code on strings which are not NUL-terminated (and thus not technically
strings) is likely to result in a core dump.

Create netCDF ‘out.nc’ containing all variables, and any associated coordinates, except
variable time, from netCDF ‘in.nc’:

ncks -x -v time in.nc out.nc

Extract variables time and pressure from netCDF ‘in.nc’. If ‘out.nc’ does not exist it
will be created. Otherwise the you will be prompted whether to append to or to overwrite
‘out.nc’:

ncks -v time,pressure in.nc out.nc
ncks -C -v time,pressure in.nc out.nc

The first version of the command creates an ‘out.nc’ which contains time, pressure, and
any coordinate variables associated with pressure. The ‘out.nc’ from the second version is
guaranteed to contain only two variables time and pressure.

Create netCDF ‘out.nc’ containing all variables from file ‘in.nc’. Restrict the dimen-
sions of these variables to a hyperslab. Print (with -H) the hyperslabs to the screen for
good measure. The specified hyperslab is: the fifth value in dimension time; the half-open
range lat > 0. in coordinate lat; the half-open range lon < 330. in coordinate lon; the
closed interval 0.3 < band < 0.5 in coordinate band; and cross-section closest to 1000. in
coordinate lev. Note that limits applied to coordinate values are specified with a decimal
point, and limits applied to dimension indices do not have a decimal point See Section 3.12
[Hyperslabs], page 30.

ncks -H -d time,5 -d lat,,0.0 -d lon,330.0, -d band,0.3,0.5
-d lev,1000.0 in.nc out.nc

Assume the domain of the monotonically increasing longitude coordinate lon is 0 <
lon < 360. Here, lon is an example of a wrapped coordinate. ncks will extract a hyperslab
which crosses the Greenwich meridian simply by specifying the westernmost longitude as
min and the easternmost longitude as max, as follows:

ncks -d lon,260.0,45.0 in.nc out.nc

76 NCO 2.9.9 User’s Guide

For more details See Section 3.15 [Wrapped coordinates], page 34.

Chapter 4: Reference manual for all operators 77

4.8 ncpdq netCDF Permute Dimensions Quickly

SYNTAX

ncpdq [-A] [-a [-]dim[,...]] [-C] [-c] [-D dbg]
[-d dim,[min][,[max]]] [-F] [-h] [-l path]
[-M pck_map] [-O] [-o output-file] [-P pck_plc] [-p path]
[-R] [-r] [-t thr_nbr] [-U] [-v var[,...]] [-x]
input-file [output-file]

DESCRIPTION

ncpdq performs one of two distinct functions, packing or dimension permutation, but not
both, when invoked. ncpdq is optimized to perform these actions in a parallel fashion with
a minimum of time and memory. The pdq may stand for “Permute Dimensions Quickly”,
“Pack Data Quietly”, “Pillory Dan Quayle”, or other silly uses.

Packing and Unpacking Functions

The ncpdq packing (and unpacking) algorithms are described in Section 4.1.3 [Intrinsic
functions], page 49, and are also implemented in ncap. ncpdq extends the functionality
of these algorithms by providing high level control of the packing policy so that users can
pack (and unpack) entire files consistently with one command. The user specifies the de-
sired packing policy with the ‘-P’ switch (or its long option equivalents, ‘--pck_plc’ and
‘--pack_policy’) and its pck plc argument. Four packing policies are currently imple-
mented:

Packing (and Re-Packing) Variables [default]
Definition: Pack unpacked variables, re-pack packed variables
Alternate invocation: ncpack
pck plc key values: ‘all_new’, ‘pck_all_new_att’

Packing (and not Re-Packing) Variables
Definition: Pack unpacked variables, copy packed variables
Alternate invocation: none
pck plc key values: ‘all_xst’, ‘pck_all_xst_att’

Re-Packing Variables
Definition: Re-pack packed variables, copy unpacked variables
Alternate invocation: none
pck plc key values: ‘xst_new’, ‘pck_xst_new_att’

Unpacking
Definition: Unpack packed variables, copy unpacked variables
Alternate invocation: ncunpack
pck plc key values: ‘upk’, ‘unpack’, ‘pck_upk’

78 NCO 2.9.9 User’s Guide

Equivalent key values are fully interchangeable. Multiple equivalent options are provided to
satisfy disparate needs and tastes of NCO users working with scripts and from the command
line.

To reduce required memorization of these complex policy switches, ncpdq may also be
invoked via a synonym or with switches that imply a particular policy. ncpack is a synonym
for ncpdq and behaves the same in all respects. Both ncpdq and ncpack assume a default
packing policy request of ‘all_new’. Hence ncpack may be invoked without any ‘-P’ switch,
unlike ncpdq. Similarly, ncunpack is a synonym for ncpdq except that ncpack implicitly
assumes a request to unpack, i.e., ‘-P pck_upk’. Finally, the ncpdq ‘-U’ switch (or its
long option equivalents, ‘--upk’ and ‘--unpack’) requires no argument. It simply requests
unpacking.

Given the menagerie of synonyms, equivalent options, and implied options, a short list
of some equivalent commands is appropriate. The following commands are equivalent for
packing: ncpdq -P all_new, ncpdq --pck_plc=all_new, and ncpack. The following com-
mands are equivalent for unpacking: ncpdq -P upk, ncpdq -U, ncpdq --pck_plc=unpack,
and ncunpack. Equivalent commands for other packing policies, e.g., ‘all_xst’, follow by
analogy. Note that ncpdq synonyms are subject to the same constraints and recommen-
dations discussed in the secion on ncbo synonyms (see Section 4.3 [ncbo netCDF Binary
Operator], page 59). That is, symbolic links must exist from the synonym to ncpdq, or else
the user must define an alias.

The ncpdq packing algorithms must know to which type particular types of input vari-
ables are to be packed. The correspondence between the input variable type and the output,
packed type, is called the packing map. The user specifies the desired packing map with
the ‘-M’ switch (or its long option equivalents, ‘--pck_map’ and ‘--map’) and its pck map
argument. Five packing maps are currently implemented:

Pack Floating Precisions to NC_SHORT [default]
Definition: Pack floating precision types to NC_SHORT
Map: Pack [NC_DOUBLE,NC_FLOAT] to NC_SHORT
Types copied instead of packed: [NC_INT,NC_SHORT,NC_CHAR,NC_BYTE]
pck map key values: ‘flt_sht’, ‘pck_map_flt_sht’

Pack Floating Precisions to NC_BYTE
Definition: Pack floating precision types to NC_BYTE
Map: Pack [NC_DOUBLE,NC_FLOAT] to NC_BYTE
Types copied instead of packed: [NC_INT,NC_SHORT,NC_CHAR,NC_BYTE]
pck map key values: ‘flt_byt’, ‘pck_map_flt_byt’

Pack Higher Precisions to NC_SHORT
Definition: Pack higher precision types to NC_SHORT
Map: Pack [NC_DOUBLE,NC_FLOAT,NC_INT] to NC_SHORT
Types copied instead of packed: [NC_SHORT,NC_CHAR,NC_BYTE]
pck map key values: ‘hgh_sht’, ‘pck_map_hgh_sht’

Chapter 4: Reference manual for all operators 79

Pack Higher Precisions to NC_BYTE
Definition: Pack higher precision types to NC_BYTE
Map: Pack [NC_DOUBLE,NC_FLOAT,NC_INT,NC_SHORT] to NC_BYTE
Types copied instead of packed: [NC_CHAR,NC_BYTE]
pck map key values: ‘hgh_byt’, ‘pck_map_hgh_byt’

Pack to Next Lesser Precision
Definition: Pack each type to type of next lesser size
Map: Pack NC_DOUBLE to NC_INT. Pack [NC_FLOAT,NC_INT] to NC_SHORT. Pack
NC_SHORT to NC_BYTE.
Types copied instead of packed: [NC_CHAR,NC_BYTE]
pck map key values: ‘nxt_lsr’, ‘pck_map_nxt_lsr’

The default ‘all_new’ packing policy with the default ‘flt_sht’ packing map reduces
the typical NC_FLOAT-dominated file size by about 50%. ‘flt_byt’ packing reduces an NC_
DOUBLE-dominated file by about 87%.

The netCDF packing algorithm (see Section 4.1.3 [Intrinsic functions], page 49) is lossy—
once packed, the exact original data cannot be recovered without a full backup. Hence
users should be aware of some packing caveats: First, the interaction of packing and data
equal to the missing value is complex. Test the missing_value behavior by performing
a pack/unpack cycle to ensure data that are missing stay missing and data that are not
misssing do not join the Air National Guard and go missing. This may lead you to elect
a new missing value. Second, ncpdq actually allows packing into NC_CHAR (with, e.g.,
‘flt_chr’). However, the intrinsic conversion of signed char to higher precision types is
tricky so for values equal to zero, i.e., NUL. Hence packing to NC_CHAR is not documented
or advertised. Pack into NC_BYTE (with, e.g., ‘flt_byt’) instead.

Dimension Permutation

ncpdq re-shapes variables in input-file by re-ordering and/or reversing dimensions specified
in the dimension list. The dimension list is a whitespace-free, comma separated list of
dimension names, optionally prefixed by negative signs, that follows the ‘-a’ (or long options
‘--arrange’, ‘--permute’, ‘--re-order’, or ‘--rdr’) switch. To re-order variables by a
subset of their dimensions, specify these dimensions in a comma-separated list following
‘-a’, e.g., ‘-a lon,lat’. To reverse a dimension, prefix its name with a negative sign in the
dimension list, e.g., ‘-a -lat’. Re-ordering and reversal may be performed simultaneously,
e.g., ‘-a lon,-lat,time,-lev’.

Users may specify any permutation of dimensions, including permutations which change
the record dimension identity. The record dimension is re-ordered like any other dimension.
This unique ncpdq capability makes it possible to concatenate files along any dimension.
See Section 2.6.1 [Concatenation], page 13 for a detailed example. The record dimension
is always the most slowly varying dimension in a record variable (see Section 3.11 [Fortran
indexing], page 29). The specified re-ordering fails if it requires creating more than one
record dimension amongst all the output variables1.

1 This limitation, imposed by the netCDF storage layer, may be relaxed in the future with netCDF4.

80 NCO 2.9.9 User’s Guide

Two special cases of dimension re-ordering and reversal deserve special mention. First,
it may be desirable to completely reverse the storage order of a variable. To do this, include
all the variable’s dimensions in the dimension re-order list in their original order, and prefix
each dimension name with the negative sign. Second, it may useful to transpose a variable’s
storage order, e.g., from C to Fortran data storage order (see Section 3.11 [Fortran indexing],
page 29). To do this, include all the variable’s dimensions in the dimension re-order list in
reversed order. Explicit examples of these two techniques appear below.

NB: fxm ncpdq documentation will evolve through Fall 2004. I will upload updates
to documentation linked to by the NCO homepage. ncpdq is a powerful operator, and I
am unfamiliar with the terminology needed to describe what ncpdq does. Sequences, sets,
sheesh! I just know that it does ”The right thing” according to my gut feelings. Now do
you feel more comfortable using it?

Let D(x) represent the dimensionality of the variable x. Dimensionality describes the
order and sizes of dimensions. If x has rank N , then we may write D(x) as the N -element
vector

D(x) = [D1, D2, D3, . . . , Dn−1, Dn, Dn+1, . . . , DN−2, DN−1, DN]

where Dn is the size of the n’th dimension.

The dimension re-order list specified with ‘-a’ is the R-element vector

R = [R1, R2, R3, . . . , Rr−1, Rr, Rr+1, . . . , RR−2, RR−1, RR]

There need be no relation between N and R. Let the S-element vector S be the intersection
(i.e., the ordered set of unique shared dimensions) of D and R Then

S = R ∩D

= [S1, S2, S3, . . . , Ss−1, Ss, Ss+1, . . . , SS−2, SS−1, SS]

S is empty if R /∈ D.

Re-ordering (or re-shaping) a variable means mapping the input state with dimension-
ality D(x) to the output state with dimensionality dmnvctprm(x′). In practice, mapping
occurs in three logically distinct steps. First, we tranlate the user input to a one-to-one
mapping M between input and output dimensions, D 7→ D′. This tentative map is final
unless external constraints (typically netCDF restrictions) impose themselves. Second, we
check and, if necessary, the tentative mapping so that the re-shaped variables will co-exist
in the same file without violating netCDF-imposed storage restrictions. This refined map
specifies the final (output) dimensionality. Third, we translate the output dimensionality
into one-dimensional memory offsets for each datum according to the C language conven-
tion for multi-dimensional array storage. Dimension reversal changes the ordering of data,
but not the dimensionality, and so is part of the third step.

Dimensions R disjoint from D play no role in re-ordering. The first step taken to re-order
a variable is to determine S. R is constant for all variables, whereas D, and hence S, is
variable-specific. S is empty if R /∈ D. This may be the case for some extracted variables.
The user may explicitly specify the one-to-one mapping of input to output dimension order
by supplying (with ‘-a’) a re-order list R such that S = N . In this case D′

n = Sn. The
degenerate case occurs when D = S. This produces the identity mapping D′

n = Dn.

Chapter 4: Reference manual for all operators 81

The mapping of input to output dimension order is more complex when S 6= N . In this
case D′

n = Dn for the N − S dimensions D′
n /∈ S. For the S dimensions D′

n ∈ S, D′
n = Ss.

EXAMPLES

Pack and unpack all variables in file ‘in.nc’ and store the results in ‘out.nc’:

ncpdq in.nc out.nc # Same as ncpack in.nc out.nc
ncpdq -P all_new -M flt_sht in.nc out.nc # Defaults
ncpdq -P all_xst in.nc out.nc
ncpdq -P upk in.nc out.nc # Same as ncunpack in.nc out.nc
ncpdq -U in.nc out.nc # Same as ncunpack in.nc out.nc

The first two commands pack any unpacked variable in the input file. They also unpack
and then re-pack every packed variable. The third command only packs unpacked variables
in the input file. If a variable is already packed, the third command copies it unchanged to
the output file. The fourth and fifth commands unpack any packed variables. If a variable
is not packed, the third command copies it unchanged.

The previous examples all utilized the default packing map. Suppose you wish to archive
all data that are currently unpacked into a form which only preserves 256 distinct values.
Then you could specify the packing map pck map as ‘hgh_byt’ and the packing policy
pck plc as ‘all_xst’:

ncpdq -P all_xst -M hgh_byt in.nc out.nc

Many different packing maps may be used to construct a given file by performing the
packing on subsets of variables (e.g., with ‘-v’) and using the append feature with ‘-A’ (see
Section 2.4 [Appending], page 12).

Re-order file ‘in.nc’ so that the dimension lon always precedes the dimension lat and
store the results in ‘out.nc’:

ncpdq -a lon,lat in.nc out.nc
ncpdq -v three_dmn_var -a lon,lat in.nc out.nc

The first command re-orders every variable in the input file. The second command
extracts and re-orders only the variable three_dmn_var.

Suppose the dimension lat represents latitude and monotonically increases increases
from south to north. Reversing the lat dimension means re-ordering the data so that
latitude values decrease monotonically from north to south. Accomplish this with

% ncpdq -a -lat in.nc out.nc
% ncks -C -v lat in.nc
lat[0]=-90
lat[1]=90
% ncks -C -v lat out.nc
lat[0]=90
lat[1]=-90

This operation reversed the latitude dimension of all variables. Whitespace immediately
preceding the negative sign that specifies dimension reversal may be dangerous. Quotes and

82 NCO 2.9.9 User’s Guide

long options can help protect negative signs that should indicate dimension reversal from
being interpreted by the shell as dashes that indicate new command line switches.

ncpdq -a -lat in.nc out.nc # Dangerous? Whitespace before "-lat"
ncpdq -a "-lat" in.nc out.nc # OK. Quotes protect "-" in "-lat"
ncpdq -a lon,-lat in.nc out.nc # OK. No whitespace before "-"
ncpdq --rdr=-lat in.nc out.nc # Preferred. Uses "=" not whitespace

To create the mathematical transpose of a variable, place all its dimensions in the dimen-
sion re-order list in reversed order. This example creates the transpose of three_dmn_var:

% ncpdq -a lon,lev,lat -v three_dmn_var in.nc out.nc
% ncks -C -v three_dmn_var in.nc
lat[0]=-90 lev[0]=100 lon[0]=0 three_dmn_var[0]=0
lat[0]=-90 lev[0]=100 lon[1]=90 three_dmn_var[1]=1
lat[0]=-90 lev[0]=100 lon[2]=180 three_dmn_var[2]=2
...
lat[1]=90 lev[2]=1000 lon[1]=90 three_dmn_var[21]=21
lat[1]=90 lev[2]=1000 lon[2]=180 three_dmn_var[22]=22
lat[1]=90 lev[2]=1000 lon[3]=270 three_dmn_var[23]=23
% ncks -C -v three_dmn_var out.nc
lon[0]=0 lev[0]=100 lat[0]=-90 three_dmn_var[0]=0
lon[0]=0 lev[0]=100 lat[1]=90 three_dmn_var[1]=12
lon[0]=0 lev[1]=500 lat[0]=-90 three_dmn_var[2]=4
...
lon[3]=270 lev[1]=500 lat[1]=90 three_dmn_var[21]=19
lon[3]=270 lev[2]=1000 lat[0]=-90 three_dmn_var[22]=11
lon[3]=270 lev[2]=1000 lat[1]=90 three_dmn_var[23]=23

To completely reverse the storage order of a variable, include all its dimensions in the
re-order list, each prefixed by a negative sign. This example reverses the storage order of
three_dmn_var:

% ncpdq -a -lat,-lev,-lon -v three_dmn_var in.nc out.nc
% ncks -C -v three_dmn_var in.nc
lat[0]=-90 lev[0]=100 lon[0]=0 three_dmn_var[0]=0
lat[0]=-90 lev[0]=100 lon[1]=90 three_dmn_var[1]=1
lat[0]=-90 lev[0]=100 lon[2]=180 three_dmn_var[2]=2
...
lat[1]=90 lev[2]=1000 lon[1]=90 three_dmn_var[21]=21
lat[1]=90 lev[2]=1000 lon[2]=180 three_dmn_var[22]=22
lat[1]=90 lev[2]=1000 lon[3]=270 three_dmn_var[23]=23
% ncks -C -v three_dmn_var out.nc
lat[0]=90 lev[0]=1000 lon[0]=270 three_dmn_var[0]=23
lat[0]=90 lev[0]=1000 lon[1]=180 three_dmn_var[1]=22
lat[0]=90 lev[0]=1000 lon[2]=90 three_dmn_var[2]=21
...
lat[1]=-90 lev[2]=100 lon[1]=180 three_dmn_var[21]=2
lat[1]=-90 lev[2]=100 lon[2]=90 three_dmn_var[22]=1

Chapter 4: Reference manual for all operators 83

lat[1]=-90 lev[2]=100 lon[3]=0 three_dmn_var[23]=0

84 NCO 2.9.9 User’s Guide

4.9 ncra netCDF Record Averager

SYNTAX

ncra [-A] [-C] [-c] [-D dbg]
[-d dim,[min][,[max]][,[stride]]] [-F] [-h] [-l path]
[-n loop] [-O] [-o output-file] [-p path] [-R] [-r]
[-t thr_nbr] [-v var[,...]] [-x] [-y op_typ]
[input-files] [output-file]

DESCRIPTION

ncra averages record variables across an arbitrary number of input-files. The record
dimension is retained as a degenerate (size 1) dimension in the output variables. See Sec-
tion 2.6 [Averaging vs. Concatenating], page 13, for a description of the distinctions between
the various averagers and concatenators. As a multi-file operator, ncra will read the list
of input-files from stdin if they are not specified as positional arguments on the command
line (see Section 2.7 [Large numbers of input files], page 14).

Input files may vary in size, but each must have a record dimension. The record co-
ordinate, if any, should be monotonic for (or else non-fatal warnings may be generated).
Hyperslabs of the record dimension which include more than one file are handled correctly.
ncra supports the stride argument to the ‘-d’ hyperslab option for the record dimension
only, stride is not supported for non-record dimensions.

ncra weights each record (e.g., time slice) in the input-files equally. ncra does not
attempt to see if, say, the time coordinate is irregularly spaced and thus would require a
weighted average in order to be a true time average.

EXAMPLES

Average files ‘85.nc’, ‘86.nc’, . . . ‘89.nc’ along the record dimension, and store the
results in ‘8589.nc’:

ncra 85.nc 86.nc 87.nc 88.nc 89.nc 8589.nc
ncra 8[56789].nc 8589.nc
ncra -n 5,2,1 85.nc 8589.nc

These three methods produce identical answers. See Section 3.5 [Specifying input files],
page 21, for an explanation of the distinctions between these methods.

Assume the files ‘85.nc’, ‘86.nc’, . . . ‘89.nc’ each contain a record coordinate time of
length 12 defined such that the third record in ‘86.nc’ contains data from March 1986, etc.
NCO knows how to hyperslab the record dimension across files. Thus, to average data from
December, 1985 through February, 1986:

ncra -d time,11,13 85.nc 86.nc 87.nc 8512_8602.nc
ncra -F -d time,12,14 85.nc 86.nc 87.nc 8512_8602.nc

The file ‘87.nc’ is superfluous, but does not cause an error. The ‘-F’ turns on the Fortran
(1-based) indexing convention. The following uses the stride option to average all the March
temperature data from multiple input files into a single output file

ncra -F -d time,3,,12 -v temperature 85.nc 86.nc 87.nc 858687_03.nc

Chapter 4: Reference manual for all operators 85

See Section 3.16 [Stride], page 34, for a description of the stride argument.

Assume the time coordinate is incrementally numbered such that January, 1985 = 1 and
December, 1989 = 60. Assuming ‘??’ only expands to the five desired files, the following
averages June, 1985–June, 1989:

ncra -d time,6.,54. ??.nc 8506_8906.nc

86 NCO 2.9.9 User’s Guide

4.10 ncrcat netCDF Record Concatenator

SYNTAX

ncrcat [-A] [-C] [-c] [-D dbg]
[-d dim,[min][,[max]][,[stride]]] [-F] [-h] [-l path]
[-n loop] [-O] [-o output-file] [-p path] [-R] [-r]
[-v var[,...]] [-x] [input-files] [output-file]

DESCRIPTION

ncrcat concatenates record variables across an arbitrary number of input-files. The
final record dimension is by default the sum of the lengths of the record dimensions in the
input files. See Section 2.6 [Averaging vs. Concatenating], page 13, for a description of
the distinctions between the various averagers and concatenators. As a multi-file operator,
ncrcat will read the list of input-files from stdin if they are not specified as positional
arguments on the command line (see Section 2.7 [Large numbers of input files], page 14).

Input files may vary in size, but each must have a record dimension. The record coordi-
nate, if any, should be monotonic (or else non-fatal warnings may be generated). Hyperslabs
of the record dimension which include more than one file are handled correctly. ncra sup-
ports the stride argument to the ‘-d’ hyperslab option for the record dimension only, stride
is not supported for non-record dimensions.

ncrcat applies special rules to ARM convention time fields (e.g., time_offset). See
Section 3.24 [ARM Conventions], page 45 for a complete description.

EXAMPLES

Concatenate files ‘85.nc’, ‘86.nc’, . . . ‘89.nc’ along the record dimension, and store
the results in ‘8589.nc’:

ncrcat 85.nc 86.nc 87.nc 88.nc 89.nc 8589.nc
ncrcat 8[56789].nc 8589.nc
ncrcat -n 5,2,1 85.nc 8589.nc

These three methods produce identical answers. See Section 3.5 [Specifying input files],
page 21, for an explanation of the distinctions between these methods.

Assume the files ‘85.nc’, ‘86.nc’, . . . ‘89.nc’ each contain a record coordinate time of
length 12 defined such that the third record in ‘86.nc’ contains data from March 1986, etc.
NCO knows how to hyperslab the record dimension across files. Thus, to concatenate data
from December, 1985–February, 1986:

ncrcat -d time,11,13 85.nc 86.nc 87.nc 8512_8602.nc
ncrcat -F -d time,12,14 85.nc 86.nc 87.nc 8512_8602.nc

The file ‘87.nc’ is superfluous, but does not cause an error. When ncra and ncrcat
encounter a file which does contain any records that meet the specified hyperslab criteria,
they disregard the file and proceed to the next file without failing. The ‘-F’ turns on the
Fortran (1-based) indexing convention.

The following uses the stride option to concatenate all the March temperature data from
multiple input files into a single output file

Chapter 4: Reference manual for all operators 87

ncrcat -F -d time,3,,12 -v temperature 85.nc 86.nc 87.nc 858687_03.nc

See Section 3.16 [Stride], page 34, for a description of the stride argument.

Assume the time coordinate is incrementally numbered such that January, 1985 = 1
and December, 1989 = 60. Assuming ?? only expands to the five desired files, the following
concatenates June, 1985–June, 1989:

ncrcat -d time,6.,54. ??.nc 8506_8906.nc

88 NCO 2.9.9 User’s Guide

4.11 ncrename netCDF Renamer

SYNTAX

ncrename [-a old_name,new_name] [-a ...] [-D dbg]
[-d old_name,new_name] [-d ...] [-h] [-l path]
[-O] [-o output-file] [-p path] [-R] [-r]
[-v old_name,new_name] [-v ...]
input-file [[output-file]]

DESCRIPTION

ncrename renames dimensions, variables, and attributes in a netCDF file. Each object
that has a name in the list of old names is renamed using the corresponding name in the
list of new names. All the new names must be unique. Every old name must exist in the
input file, unless the old name is preceded by the character ‘.’. The validity of old name
is not checked prior to the renaming. Thus, if old name is specified without the the ‘.’
prefix and is not present in input-file, ncrename will abort. The new name should never
be prefixed by a ‘.’ (the period will be included as part of the new name). The OPTIONS
and EXAMPLES show how to select specific variables whose attributes are to be renamed.

ncrename is the exception to the normal rules that the user will be interactively prompted
before an existing file is changed, and that a temporary copy of an output file is constructed
during the operation. If only input-file is specified, then ncrename will change the names of
the input-file in place without prompting and without creating a temporary copy of input-
file. This is because the renaming operation is considered reversible if the user makes a
mistake. The new name can easily be changed back to old name by using ncrename one
more time.

Note that renaming a dimension to the name of a dependent variable can be used to invert
the relationship between an independent coordinate variable and a dependent variable.
In this case, the named dependent variable must be one-dimensional and should have no
missing values. Such a variable will become a coordinate variable.

According to the netCDF User’s Guide, renaming properties in netCDF files does not in-
cur the penalty of recopying the entire file when the new name is shorter than the old name.

OPTIONS

‘-a old_name,new_name ’
Attribute renaming. The old and new names of the attribute are specified
with ‘-a’ (or ‘--attribute’) by the associated old name and new name val-
ues. Global attributes are treated no differently than variable attributes. This
option may be specified more than once. As mentioned above, all occur-
rences of the attribute of a given name will be renamed unless the ‘.’ form
is used, with one exception. To change the attribute name for a particular
variable, specify the old name in the format old var name@old att name. The
‘@’ symbol serves to delimit the variable name from the attribute name. If
the attribute is uniquely named (no other variables contain the attribute) then
the old var name@old att name syntax is redundant. The var name@att name
syntax is accepted, but not required, for the new name.

Chapter 4: Reference manual for all operators 89

‘-d old_name,new_name ’
Dimension renaming. The old and new names of the dimension are speci-
fied with ‘-d’ (or ‘--dmn’, ‘--dimension’) by the associated old name and
new name values. This option may be specified more than once.

‘-v old_name,new_name ’
Variable renaming. The old and new names of the variable are specified with
‘-v’ (or ‘--variable’) by the associated old name and new name values. This
option may be specified more than once.

EXAMPLES

Rename the variable p to pressure and t to temperature in netCDF ‘in.nc’. In this
case p must exist in the input file (or ncrename will abort), but the presence of t is optional:

ncrename -v p,pressure -v .t,temperature in.nc

ncrename does not automatically attach dimensions to variables of the same name. If
you want to rename a coordinate variable so that it remains a coordinate variable, you must
separately rename both the dimension and the variable:

ncrename -d lon,longitude -v lon,longitude in.nc

Create netCDF ‘out.nc’ identical to ‘in.nc’ except the attribute _FillValue is changed
to missing_value which possess it), the attribute units is renamed to CGS_units (but only
in those variables which possess it) and the global attribute Zaire is renamed to Congo:

ncrename -a _FillValue,missing_value -a .units,CGS_units \
-a tpt@hieght,height -a prs_sfc@.hieght,height in.nc out.nc

The presence and absence of the ‘.’ and ‘@’ features cause this command to execute
successfully only if a number of conditions are met. All variables must have a _FillValue
attribute and _FillValue must also be a global attribute. The units attribute, on the
other hand, will be renamed to CGS_units wherever it is found but need not be present in
the file at all (either as a global or a variable attribute). The variable tpt must contain the
hieght attribute. The variable prs_sfc need not exist, and need not contain the hieght
attribute.

90 NCO 2.9.9 User’s Guide

4.12 ncwa netCDF Weighted Averager

SYNTAX

ncwa [-A] [-a dim[,...]] [-C] [-c] [-D dbg]
[-d dim,[min][,[max]]] [-F] [-h] [-I] [-l path]
[-M mask_val] [-m mask_var] [-N] [-n] [-O]
[-o output-file] [-p path] [-R] [-r] [-T condition]
[-t thr_nbr] [-v var[,...]] [-W] [-w weight] [-x] [-y op_typ]
input-file [output-file]

DESCRIPTION

ncwa averages variables in a single file over arbitrary dimensions, with options to spec-
ify weights, masks, and normalization. See Section 2.6 [Averaging vs. Concatenating],
page 13, for a description of the distinctions between the various averagers and concate-
nators. The default behavior of ncwa is to arithmetically average every numerical variable
over all dimensions and produce a scalar result. To average variables over only a subset
of their dimensions, specify these dimensions in a comma-separated list following ‘-a’, e.g.,
‘-a time,lat,lon’. As with all arithmetic operators, the operation may be restricted to an
arbitrary hypserslab by employing the ‘-d’ option (see Section 3.12 [Hyperslabs], page 30).
ncwa also handles values matching the variable’s missing_value attribute correctly. More-
over, ncwa understands how to manipulate user-specified weights, masks, and normalization
options. With these options, ncwa can compute sophisticated averages (and integrals) from
the command line.

mask var and weight, if specified, are broadcast to conform to the variables being aver-
aged. The rank of variables is reduced by the number of dimensions which they are averaged
over. Thus arrays which are one dimensional in the input-file and are averaged by ncwa
appear in the output-file as scalars. This allows the user to infer which dimensions may
have been averaged. Note that that it is impossible for ncwa to make make a weight or
mask var of rank W conform to a var of rank V if W > V. This situation often arises when
coordinate variables (which, by definition, are one dimensional) are weighted and averaged.
ncwa assumes you know this is impossible and so ncwa does not attempt to broadcast weight
or mask var to conform to var in this case, nor does ncwa print a warning message telling
you this, because it is so common. Specifying dbg > 2 does cause ncwa to emit warnings in
these situations, however.

Non-coordinate variables are always masked and weighted if specified. Coordinate vari-
ables, however, may be treated specially. By default, an averaged coordinate variable, e.g.,
latitude, appears in output-file averaged the same way as any other variable containing
an averaged dimension. In other words, by default ncwa weights and masks coordinate
variables like all other variables. This design decision was intended to be helpful but for
some applications it may be preferable not to weight or mask coordinate variables just like
all other variables. Consider the following arguments to ncwa: -a latitude -w lat_wgt -d
latitude,0.,90. where lat_wgt is a weight in the latitude dimension. Since, by default
ncwa weights coordinate variables, the value of latitude in the output-file depends on the
weights in lat wgt and is not likely to be 45.0, the midpoint latitude of the hyperslab. Op-
tion ‘-I’ overrides this default behavior and causes ncwa not to weight or mask coordinate

Chapter 4: Reference manual for all operators 91

variables1. In the above case, this causes the value of latitude in the output-file to be 45.0,
an appealing result. Thus, ‘-I’ specifies simple arithmetic averages for the coordinate vari-
ables. In the case of latitude, ‘-I’ specifies that you prefer to archive the central latitude
of the hyperslab over which variables were averaged rather than the area weighted centroid
of the hyperslab2. The mathematical definition of operations involving rank reduction is
given above (see Section 3.18 [Operation Types], page 37).

4.12.1 Mask condition

Each xi also has an associated masking weight mi whose value is 0 or 1 (false or true). The
value of mi is always 1 unless a mask var is specified (with ‘-m’). As noted above, mask var
is broadcast, if possible, to conform to the variable being averaged. In this case, the value
of mi depends on the mask condition also known as the truth condition. As expected,
mi = 1 when the mask condition is true and mi = 0 otherwise.

The mask condition has the syntax mask var condition mask val. Here mask var is the
name of the masking variable (specified with ‘-m’, ‘--mask-variable’, ‘--mask_variable’,
‘--msk_nm’, or ‘--msk_var’). The truth condition argument (specified with ‘-T’,
‘--truth_condition’, ‘--msk_cmp_typ’, or ‘--op_rlt’ may be any one of the six arithmetic
comparatives: eq, ne, gt, lt, ge, le. These are the Fortran-style character abbreviations
for the logical operations =, 6=, >, <, ≥, ≤. The mask condition defaults to eq (equality).
The mask val argument to ‘-M’ (or ‘--mask-value’, or ‘--msk_val’) is the right hand side
of the mask condition. Thus for the i’th element of the hyperslab to be averaged, the mask
condition is maski condition mask val.

Each xi is also associated with an additional weight wi whose value may be user-specified.
The value of wi is identically 1 unless the user specifies a weighting variable weight (with
‘-w’, ‘--weight’, or ‘--wgt var’). In this case, the value of wi is determined by the weight
variable in the input-file. As noted above, weight is broadcast, if possible, to conform to
the variable being averaged.

M is the number of input elements xi which actually contribute to output element xj.
M is also known as the tally and is defined as

M =
i=N∑
i=1

µimi

M is identical to the denominator of the generic averaging expression except for the omission
of the weight wi. Thus M = N whenever no input points are missing values or are masked.
Whether an element contributes to the output, and thus increments M by one, has more
to do with the above two criteria (missing value and masking) than with the numeric
value of the element per se. For example, xi = 0.0 does contribute to xj (assuming the
missing_value attribute is not 0.0 and location i is not masked). The value xi = 0.0
will not change the numerator of the generic averaging expression, but it will change the
denominator (unless its weight wi = 0.0 as well).

1 The default behavior of (‘-I’) changed on 1998/12/01—before this date the default was not to weight
or mask coordinate variables.

2 If lat_wgt contains Gaussian weights then the value of latitude in the output-file will be the area-
weighted centroid of the hyperslab. For the example given, this is about 30 degrees.

92 NCO 2.9.9 User’s Guide

4.12.2 Normalization

ncwa has one switch which controls the normalization of the averages appearing in the
output-file. Short option ‘-N’ (or long options ‘--nmr’ or ‘--numerator’) prevents ncwa
from dividing the weighted sum of the variable (the numerator in the averaging expression)
by the weighted sum of the weights (the denominator in the averaging expression). Thus ‘-N’
tells ncwa to return just the numerator of the arithmetic expression defining the operation
(see Section 3.18 [Operation Types], page 37).

EXAMPLES

Given file ‘85_0112.nc’:

netcdf 85_0112 {
dimensions:

lat = 64 ;
lev = 18 ;
lon = 128 ;
time = UNLIMITED ; // (12 currently)

variables:
float lat(lat) ;
float lev(lev) ;
float lon(lon) ;
float time(time) ;
float scalar_var ;
float three_dmn_var(lat, lev, lon) ;
float two_dmn_var(lat, lev) ;
float mask(lat, lon) ;
float gw(lat) ;

}

Average all variables in ‘in.nc’ over all dimensions and store results in ‘out.nc’:

ncwa in.nc out.nc

Every variable in ‘in.nc’ is reduced to a scalar in ‘out.nc’ because, by default, averaging
is performed over all dimensions.

Store the zonal (longitudinal) mean of ‘in.nc’ in ‘out.nc’:

ncwa -a lon in.nc out.nc

Here the tally is simply the size of lon, or 128.

Compute the meridional (latitudinal) mean, with values weighted by the corresponding
element of gw3:

ncwa -w gw -a lat in.nc out.nc

Here the tally is simply the size of lat, or 64. The sum of the Gaussian weights is 2.0.

Compute the area mean over the tropical Pacific:

3 gw stands for Gaussian weight in the NCAR climate model.

Chapter 4: Reference manual for all operators 93

ncwa -w gw -a lat,lon -d lat,-20.,20. -d lon,120.,270.
in.nc out.nc

Here the tally is 64× 128 = 8192.

Compute the area mean over the globe, but include only points for which ORO < 0.54:

ncwa -m ORO -M 0.5 -T lt -w gw -a lat,lon in.nc out.nc

Assuming 70% of the gridpoints are maritime, then here the tally is 0.70× 8192 ≈ 5734.

Compute the global annual mean over the maritime tropical Pacific:

ncwa -m ORO -M 0.5 -T lt -w gw -a lat,lon,time
-d lat,-20.0,20.0 -d lon,120.0,270.0 in.nc out.nc

Determine the total area of the maritime tropical Pacific, assuming the variable area
contains the area of each gridcell

ncwa -N -v area -m ORO -M 0.5 -T lt -a lat,lon
-d lat,-20.0,20.0 -d lon,120.0,270.0 in.nc out.nc

Weighting area (e.g., by gw) is not appropriate because area is already area-weighted
by definition. Thus the ‘-N’ switch, or, equivalently, the ‘-y ttl’ switch, correctly integrate
the cell areas into a total regional area.

Mask a file to contain missing value everywhere except where thr min <= msk var <=
thr max:

Set masking variable and its scalar thresholds
export msk_var=’three_dmn_var_dbl’ # Masking variable
export thr_max=’20’ # Maximum allowed value
export thr_min=’10’ # Minimum allowed value
ncecat -O in.nc out.nc # Wrap out.nc in degenerate "record" dimension
ncwa -O -a record -m ${msk_var} -T le -M ${thr_max} out.nc out.nc
ncecat -O out.nc out.nc # Wrap out.nc in degenerate "record" dimension
ncwa -O -a record -m ${msk_var} -T ge -M ${thr_min} out.nc out.nc

After the first use of ncwa, ‘out.nc’ contains missing value where ${msk_var} >= ${thr_
max}. The process is then repeated on the remaining data to filter out points where ${msk_
var} <= ${thr_min}. The resulting ‘out.nc’ contains valid data only where thr min <=
msk var <= thr max.

4 ORO stands for Orography in the NCAR climate model. ORO < 0.5 selects the gridpoints which are
covered by ocean.

94 NCO 2.9.9 User’s Guide

Chapter 5: Contributing 95

5 Contributing

We welcome contributions from anyone. The NCO
project homepage at https://sf.net/projects/nco contains more information on how
to contribute.

Financial contributions to NCO development may be made through PayPal. NCO
has been shared for almost 10 years yet no one has ever contributed any money to the
developers1. So you could be the first!

5.1 Contributors

The primary contributors to NCO development are:

Charlie Zender
Concept, design and implementation of NCO from 1995-2000. Since then mainly
autotools, bug-squashing, documentation, packing, NCO library redesign, ncap
features, ncbo, project coordination, and releases.

Henry Butowsky
Non-linear operations and min(), max(), total() support in ncra and ncwa.
Type conversion for arithmetic. Migration to netCDF3 API. ncap parser, lexer,
and I/O. Multislabbing algorithm. Variable wildcarding. Various hacks.

Rorik Peterson
Autotool build support. Long command-line options. UDUnits support. De-
bianization. Numerous bug-fixes.

Brian Mays
Packaging for Debian GNU/Linux, nroff man pages.

George Shapovalov
Packaging for Gentoo GNU/Linux.

Bill Kocik Memory management.

Len Makin
NEC SX architecture support.

Jim Edwards
AIX architecture support.

Juliana Rew
Compatibility with large PIDs.

Martin Dix, Keith Lindsay, Mike Page
Excellent bug reports.

1 Happy users have sent me a few gifts, though. This includes a box of imported chocolate. Mmm.
Appreciation and gifts are definitely better than money. Naturally, I’m too lazy to split and send gifts
to the other developers. However, unlike some NCO developers, I have a high-paying "real job". My
intention is to split monetary donations among the active developers and to send them their shares via
PayPal.

https://sf.net/projects/nco
https://www.paypal.com/xclick/business=zender%40uci.edu&item_name=NCO+development&item_number=nco_dnt_dvl&no_note=1&tax=0¤cy_code=USD

96 NCO 2.9.9 User’s Guide

5.2 Proposals for Institutional Funding

NSF has funded a project to improve Distributed Data Reduction & Analysis (DDRA) by
evolving NCO into a suite of Scientific Data Operators called SDO. The two main components
of this project are NCO parallelism (OpenMP, MPI) and Server-Side DDRA (SSDDRA)
implemented through extensions to OPeNDAP and netCDF4. This project will dramatically
reduce bandwidth usage for NCO DDRA.

With this first NCO proposal funded, the content of the next NCO proposal is clear. We
are interested in obtaining NASA support for HDF-specific enhancements to NCO. We plan
to submit a proposal to the next suitable NASA NRA or NSF opportunity.

We are considering a lot of interesting ideas for still more proposals. Please contact
us if you wish to be involved with any future NCO-related proposals. Comments on the
proposals and letters of support are also very welcome.

http://nco.sf.net#prp_sei

Chapter 5: General Index 97

General Index

"
" (double quote) . 57

#
#include . 49

$
$ (wildcard character) . 27

%
% (modulus) . 51

’
’ (end quote) . 57

*
* . 59
* (filename expansion) . 27
* (multiplication) . 51
* (wildcard character) . 28

+
+ . 59
+ (addition) . 51
+ (wildcard character) . 28

-
- . 59
- (subtraction) . 51
--abc . 72
--alphabetize . 72
--apn . 12, 43
--append . 12, 43
--binary . 72
--bnr . 72
--coords . 29
--crd . 29
--dbg_lvl debug-level 9, 17, 20
--debug-level debug-level 9, 17
--dimension dim,[min],[max],stride 35
--dimension dim,[min][,[max]] . . . 30, 31, 32, 34
--dmn dim,[min],[max],stride 35
--dmn dim,[min][,[max]] 30, 31, 32, 34
--exclude . 27
--file_list . 44
--fl_bnr . 72

--fl_lst_in . 44
--fl_out fl_out . 23
--fl_spt . 48
--fmt . 74
--fnc_tbl . 53
--format . 74
--fortran . 29
--history . 43
--hst . 43
--lcl output-path . 24
--local output-path . 24
--map pck_map . 78
--mask-value mask_val . 91
--mask-variable mask_var 90
--mask_value mask_val . 91
--mask_variable mask_var 90
--metadata . 73
--Metadata . 73
--msk_cmp_typ condition 91
--msk_nm mask_var . 90
--msk_val mask_val . 91
--msk_var mask_var . 90
--mtd . 73
--Mtd . 73
--nintap loop . 21
--no-coords . 29
--no-crd . 29
--omp_num_threads thr_nbr 19
--op_rlt condition . 91
--op_typ op_typ . 37, 59
--operation op_typ . 37, 59
--output fl_out . 23
--overwrite . 12, 43
--ovr . 12, 43
--pack_policy pck_plc . 77
--path input-path . 21, 24
--pck_map pck_map . 78
--pck_plc pck_plc . 77
--print . 72
--prn . 72
--prn_fnc_tbl . 53
--pth input-path . 21, 24
--quiet . 74
--retain . 26
--revision . 9, 46
--rtn . 26
--script . 48
--script-file . 48
--spt . 48
--string . 74
--thr_nbr thr_nbr . 19
--threads thr_nbr . 19
--truth_condition condition 91
--units . 74
--unpack . 78

98 NCO 2.9.9 User’s Guide

--upk . 78

--variable var . 27

--version . 9, 46

--vrs . 9, 46

--weight weight . 90

--weight wgt1[,wgt2] . 68

--wgt_var weight . 90

--wgt_var wgt1[,wgt2] . 68

--xcl . 27

-a . 72, 74

-A . 12, 43

‘-A’ . 81

-b . 72

-B . 72

-c . 29

-C . 29, 54

-D . 9

-D debug-level . 9, 17, 20

-d dim,[min],[max],stride 35

-d dim,[min][,[max]] 30, 31, 32, 34, 90

-f . 53

-F . 29

-h . 43, 55

-H . 44, 72

-I . 90

-l output-path . 24

-m . 73

-M . 73

-m mask_var . 90

-M pck_map . 78

-N . 38, 92

-n loop . 14, 16, 21

-O . 12, 43

-o fl_out . 15, 23

-p input-path . 21, 24

-P pck_plc . 77

-q . 74

-r . 9, 46

-R . 26

-s . 74

-t thr_nbr . 19

-u . 74

-U . 78

‘-v’ . 81

-v var . 27

-w weight . 90

-w wgt1[,wgt2] . 68

-x . 27

-y op_typ . 37, 59

.

. (wildcard character) . 27

‘.rhosts’ . 24

/
/ . 59
/ (division) . 51
/*...*/ (comment) . 49
// (comment) . 49

;
; (end of statement) . 49

<
‘<arpa/nameser.h>’ . 7
‘<resolv.h>’ . 7

?
? (filename expansion) . 27
? (question mark) . 57
? (wildcard character) . 28

@
@ (attribute). 49

[
[] (array delimiters) . 49

^
^ (power) . 51
^ (wildcard character) . 27

_FillValue . 89

\
\ (backslash) . 57
\" (protected double quote) 57
\’ (protected end quote) . 57
\? (protected question mark) 57
\\ (ASCII \, backslash) . 57
\\ (protected backslash) . 57
\a (ASCII BEL, bell) . 57
\b (ASCII BS, backspace) . 57
\f (ASCII FF, formfeed). 57
\n (ASCII LF, linefeed) . 57
\n (linefeed) . 74
\r (ASCII CR, carriage return) 57
\t (ASCII HT, horizontal tab) 57
\t (horizontal tab) . 74
\v (ASCII VT, vertical tab) 57

Chapter 5: General Index 99

|
| (wildcard character) . 28

0
0 (NUL) . 57

A
abs . 51
absolute value . 51
acos . 51
acosh . 51
add . 59
add offset . 18
add_offset . 50, 77
adding data . 59, 68
addition . 51, 59, 68
alias . 60, 78
alphabetization . 72
alphabetize output . 74
alternate invocations . 59
anomalies . 61
ANSI . 6
ANSI C . 53
appending data . 54, 71
appending to files . 12, 43
appending variables . 12, 81
arccosine function . 51
arcsine function . 51
arctangent function . 51
arithmetic operators . 36, 90
arithmetic processor . 48
ARM conventions . 45
ARM conventions . 86
array indexing . 49
array storage . 49
array syntax . 49
arrival value . 68
ASCII . 57
asin. 51
asinh . 51
assignment statement . 49
asynchronous file access . 24
atan . 51
atanh . 51
attribute names . 55, 88
attribute syntax . 49
attribute, units . 32
attributes . 55
attributes, appending . 56
attributes, creating . 56
attributes, deleting . 56
attributes, editing . 56
attributes, global 43, 44, 45, 56, 71, 72, 88, 89
attributes, modifying . 56
attributes, overwriting . 56
autoconf . 9

automagic . 6, 14
automatic type conversion 41, 52
average . 37
averaging data . 36, 64, 84, 90
avg . 37
avgsqr . 37

B
base_time . 45
bash . 28
Bash shell . 59
Bash Shell . 62
benchmarks . 20
Bill Kocik . 95
binary format . 72
binary operations . 18, 59
Bourne Shell . 35, 62
Brian Mays . 95
broadcasting variables 60, 70, 90
BSD . 20
buffering . 18
bugs, reporting . 8
byte(x) . 51

C
C index convention . 29
C language 6, 36, 41, 42, 49, 57, 74
C Shell . 35, 62
c++ . 5
C++ . 6
C format . 18
C89 . 6
C99 . 6
cc . 5
CC . 5
CCM Processor . 21, 84, 86
CCSM. 96
CCSM conventions . 44, 61
ceil . 51
ceiling function . 51
CF convention . 33
char(x) . 51
characters, special . 57
Charlie Zender . 1, 95
chocolate . 95
client-server . 25
Climate and Forecast Metadata Convention 33
climate model 11, 13, 22, 66, 92, 93
Comeau . 5
command line options . 20
command line switches 11, 19, 23, 47
comments . 49
como . 5
Compaq . 5
compatability . 5
compilers . 23

100 NCO 2.9.9 User’s Guide

complementary error function 51
concatenation . 12, 66, 79, 86
‘config.guess’ . 9
‘configure.eg’ . 9
constraint expressions . 25
contributing . 95
contributors . 95
coordinate limits . 30
coordinate variable . 32, 61, 90
coordinate variables . 89
core dump . 8
core dump . 16, 75
cos . 51
cosh . 51
cosine function . 51
covariance . 54
Cray . 5, 16
csh . 28
cxx . 5
Cygwin . 7

D
data access protocol. 25
data safety . 11, 88
data, missing. 36, 55
date . 44
datesec . 44
dbg lvl . 9, 17, 19
DDRA . 96
debug-level . 9, 17
debugging . 9, 17, 19
DEC . 5
degenerate dimension 40, 53, 54, 61, 66, 68, 84
demotion . 41, 51
derived fields . 48
Digital . 5
dimension limits . 30
dimension names . 88
disjoint files . 12
Distributed Data Reduction & Analysis 96
Distributed Oceanographic Data System 25
divide . 59
dividing data . 59
division . 51
documentation . 5
DODS . 25, 27
DODS_ROOT . 25
double precision . 53
double(x) . 51
dynamic linking . 7

E
eddy covariance . 54
editing attributes . 55
egrep . 27
ensemble . 13, 64

ensemble average . 64
ensemble concatenation . 66
erf . 51
erfc . 51
error function . 51
error tolerance . 11
execution time 7, 11, 18, 36, 88
exp . 51
exponentiation . 51
exponentiation function . 51
extended regular expressions 15, 27

F
f90 . 7
features, requesting . 8
file deletion . 26
file removal . 26
file retention . 26
files, multiple . 22
files, numerous input . 14
flags . 53
float . 53
float(x) . 51
floor . 42
floor . 51
floor function . 51
‘flt_byt’ . 78
‘flt_sht’ . 78
force append . 43
force overwrite . 43
foreword . 1
Fortran . 41, 84, 86
Fortran index convention . 29
FORTRAN format . 18
ftp . 7, 24
FTP . 26
funding . 96

G
g++ . 7
g77 . 7
gamma . 51
gamma function . 51
Gaussian weights . 92
gcc . 5
gcc . 7
GCM . 11
George Shapovalov . 95
gethostname . 7
getopt . 20
‘getopt.h’ . 20
getopt_long . 20
getuid . 7
global attributes 15, 43, 44, 45, 56, 58, 71, 72,

88, 89
globbing 15, 21, 28, 60, 84, 86

Chapter 5: General Index 101

GNU . 20, 27
gnu-win32. 7
GNU/Linux . 16
‘GNUmakefile’ . 7
God . 33
gw . 44, 92

H
HDF . 7, 96
help . 8
Henry Butowsky . 95
‘hgh_byt’ . 78
‘hgh_sht’ . 78
Hierarchical Data Format . 7
history . 16, 43, 45, 55, 74
HP . 5
HTML . 5
HTTP protocol . 25
hybrid coordinate system . 48
hyperbolic arccosine function 51
hyperbolic arcsine function 51
hyperbolic arctangent function 51
hyperbolic cosine function . 51
hyperbolic sine function . 51
hyperbolic tangent . 51
hyperslab . 30, 84, 86, 90

I
I/O . 26, 29, 31, 95
I18N . 19
IBM . 5
icc . 5
IDL . 11
ilimit . 16
including files . 49
index conventions . 29
inexact conversion . 52
Info . 5
input files . 15, 21, 23
input-path . 21, 24
installation . 5, 9
int(x) . 51
Intel . 5
Internationalization . 19
interpolation . 68
introduction . 5
IPCC . 96
ISO . 6

J
Jim Edwards . 95
Juliana Rew . 95

K
Keith Lindsay . 95
kitchen sink . 71

L
L10N . 19
large datasets . 16, 19
Large File Support . 16, 20
LD_LIBRARY_PATH . 7
left hand casting . 18, 48
Len Makin . 95
lexer . 48
LFS . 16, 20
LHS . 48
libnco . 6
libraries . 7
linkers . 23
Linux . 53
ln . 51
ln -s . 60, 78
log . 51
log10 . 51
logarithm, base 10 . 51
logarithm, natural . 51
long double . 53
long options . 20, 81
longitude . 34

M
Macintosh . 5
‘Makefile’ . 6, 7, 8, 25
malloc() . 18
manual type conversion . 41
Martin Dix . 95
mask condition . 91, 93
masked average . 53, 90
Mass Store System . 24
mathematical functions . 51
max . 37
maximum . 37
mean . 37
memory available . 17
memory leaks . 18
memory requirements . 17, 27
merging files . 12, 71
metadata . 73
metadata, global . 73
Microsoft . 5, 6
Mike Folk . 7
Mike Page. 95
min . 37
minimum . 37
missing values . 36, 38, 55, 69
missing_value 36, 50, 55, 69, 79, 89
MKS units . 32, 33
modulus . 51

102 NCO 2.9.9 User’s Guide

monotonic coordinates . 18
msrcp . 24
msrcp . 26
msread . 24
MSS . 24
multi-file operators 17, 22, 23, 64, 66, 84, 86
multiplication . 51, 59
multiply . 59
multiplying data . 59, 68
multislab . 31

N
naked characters . 59
NASA . 96
NASA EOSDIS . 14
National Virtual Ocean Data System 25
NC_BYTE . 30, 61, 78
NC_CHAR . 30, 61, 78
NC_DOUBLE . 53, 78
NC_FLOAT . 78
NC_INT . 78
NC_SHORT . 78
ncadd . 59
ncap . 18, 43
ncap . 48
ncap . 77
NCAR . 11
NCAR CCSM conventions 44, 61
NCAR MSS . 24
ncatted . 36, 43
ncatted . 55
ncbo . 36
ncbo . 59
ncdiff . 59
ncdivide . 59
ncdump . 73
ncea . 14, 36
ncea . 64
ncecat . 13
ncecat . 53, 66
ncextr . 71
ncflint . 14, 36
ncflint . 68
ncks . 54, 71
NCL . 11
ncmult . 59
ncmultiply . 59
NCO availability . 5
NCO homepage . 5
NCO User’s Guide . 5
‘nco.config.log.${GNU_TRP}.foo’ 9
‘nco.configure.${GNU_TRP}.foo’ 9
‘nco.make.${GNU_TRP}.foo’ 9
nco_input_file_list . 15, 44
nco_input_file_number 15, 44
nco_openmp_thread_number 19
ncpack . 77

ncpdq . 13, 19
ncpdq . 77
ncra . 14, 36
ncra . 54, 84
ncrcat . 13, 19
ncrcat . 86
ncrename . 88
NCSA . 8
ncsub . 59
ncsubtract . 59
ncunpack . 77
ncwa . 14, 19, 36
ncwa . 53, 54, 90
nearbyint . 51
nearest integer function (exact) 51
nearest integer function (inexact) 51
NEC . 5
nesting . 49
netCDF . 5
netCDF 2.x . 7
netCDF 3.x . 7
NETCDF2_ONLY . 8
NINTAP . 21, 84, 86
NO_NETCDF_2 . 7
normalization . 92
NRA . 96
nrnet . 24
NSF . 96
NT (Microsoft operating system) 6
NUL . 57
NUL . 79
NUL-termination . 57
null operation . 69
numerator . 38, 92
NVODS . 25
‘nxt_lsr’ . 78

O
oceanography . 25
OMP_NUM_THREADS . 19
on-line documentation . 5
open source . 1, 25
Open-source Project for a Network Data Access

Protocol . 25
OPeNDAP. 25
OpenMP . 17, 19
operation types . 37
operator speed 7, 11, 18, 36, 88
operators . 3
OptIPuter . 96
ORO. 44, 93
OS . 5
output file . 15, 23
output-path . 24
overwriting files . 12, 43

Chapter 5: General Index 103

P
pack(x) . 50
packing . 26, 50, 77
packing map . 78
packing policy . 77
parallelism . 19, 96
parser. 48
pasting variables . 12
pattern matching . 15, 27
PayPal . 95
pck map . 78
pck plc . 77
peak memory usage . 17
performance . 7, 11, 18, 36, 88
Perl . 11, 16, 57
permute dimensions . 77
philosophy . 11
pipes . 15
portability . 5
positional arguments . 23
POSIX . 20, 27
pow . 51
power . 51
power function . 51
precision . 53
preprocessor tokens . 7
printf . 6
printf() . 57, 74
printing files contents . 71
printing variables . 71
Processor . 84, 86
Processor, CCM . 21
promotion . 41, 51, 52
proposals. 96

Q
quadruple precision . 53
quiet . 74
quotes . 28, 60, 81

R
RAM . 17
rank . 61, 90
rcp . 7, 24
RCS . 46
re-dimension . 77
re-order dimensions . 77
record average . 84
record concatenation . 86
record dimension 29, 64, 66, 79, 84, 86
record variable . 29, 79
regex . 27
regressions archive . 9
regular expressions . 15, 21, 27
remote files . 7, 24
renaming attributes . 88

renaming dimensions . 88
renaming variables . 88
reporting bugs . 8
reshape variables . 77
restrict . 6
reverse dimensions . 77
rint . 51
rms . 37
rmssdn . 37
root-mean-square . 37
Rorik Peterson . 95
round . 51
rounding functions . 51
running average . 84

S
safeguards . 11, 88
scale_factor . 50, 77
scale format . 18
Scientific Data Operators . 96
scp . 7, 24
script file . 48
SDO . 96
SEIII . 96
semi-colon . 49
server. 16, 25, 26, 27
Server-Side Distributed Data Reduction &

Analysis . 96
server-side processing . 25, 96
SGI . 5
shared memory machines . 17
shared memory parallelism 19
shell . 15, 28, 33, 60
short(x) . 51
signedness . 18
sin . 51
sine function . 51
single precision . 53
sinh . 51
SMP . 19
sort alphabetically . 72, 74
source code . 5
special characters . 57
speed . 7, 11, 16, 18, 36, 88
sqravg . 37
sqrt . 37
sqrt . 51
square root function . 51
SSDDRA . 96
SSH . 7, 26
standard deviation . 37
standard input 15, 64, 66, 84, 86
statement . 49
static linking . 7
stdin . 15, 44, 64, 66, 84, 86
stride . 33, 35, 72, 84, 86
strings . 57

104 NCO 2.9.9 User’s Guide

stub . 24
subtract . 59
subtracting data . 59
subtraction . 51, 59
summary . 3
Sun . 5
swap space . 16, 17
switches . 20
symbolic links . 13, 16, 60, 78
synchronous file access . 24
syntax . 49

T
tan . 51
tanh . 51
temporary output files . 11, 88
TEXinfo . 5
thr nbr . 19
threads . 17, 19
time . 33, 44, 45
time-averaging . 54
time_offset . 45
timestamp . 43
total . 37
transpose . 29, 80
trunc . 51
truncation function . 51
truth condition . 91, 93
ttl . 37
type conversion . 41, 51

U
UDUnits . 5, 32, 44
ulimit . 16
unary operations. 18

UNICOS . 16
Unidata . 5, 8, 32
union of two files . 12
units . 32, 33, 58, 70
UNIX . 5, 7, 15, 20, 21
unpack(x) . 50
unpacking . 26, 50, 77
URL . 24
USE_FORTRAN_ARITHMETIC 6, 7
User’s Guide . 5

V
variable names . 88
variance . 37
version . 46

W
weighted average . 90
whitespace . 33
wildcards . 21, 27
WIN32 . 7
Windows . 5, 6
wrapped coordinates 30, 34, 75
wrapped filenames . 22
WWW documentation . 5

X
xargs . 15, 23
xlc . 5
xlC . 5
XP (Microsoft operating system) 6

Y
Yorick . 11, 18

i

Table of Contents

Foreword . 1

Summary . 3

1 Introduction . 5
1.1 Availability . 5
1.2 Operating systems compatible with NCO . 5

1.2.1 Compiling NCO for Microsoft Windows OS 6
1.3 Libraries . 7
1.4 netCDF 2.x vs. 3.x . 7
1.5 Help and Bug reports . 8

2 Operator Strategies . 11
2.1 NCO operator philosophy . 11
2.2 Climate model paradigm . 11
2.3 Temporary output files . 11
2.4 Appending variables to a file . 12
2.5 Addition Subtraction Division Multiplication and Interpolation

. 12
2.6 Averagers vs. Concatenators . 13

2.6.1 Concatenators ncrcat and ncecat . 13
2.6.2 Averagers ncea, ncra, and ncwa . 14
2.6.3 Interpolator ncflint . 14

2.7 Working with large numbers of input files . 14
2.8 Working with large datasets . 16
2.9 Approximate NCO memory requirements . 17

2.9.1 Memory Usage of Single and Multi-file Operators 17
2.9.2 Memory Usage of ncap . 18

2.10 Performance limitations of the operators . 18

3 Features common to most operators 19
3.1 Internationalization . 19
3.2 OpenMP threading . 19
3.3 Large File Support . 20
3.4 Command line options . 20
3.5 Specifying input files . 21
3.6 Specifying output files . 23
3.7 Accessing files stored remotely . 23

3.7.1 DODS/OPeNDAP . 25
3.8 Retention of remotely retrieved files . 26
3.9 Including/Excluding specific variables . 27
3.10 Including/Excluding coordinate variables . 29

ii NCO 2.9.9 User’s Guide

3.11 C & Fortran index conventions . 29
3.12 Hyperslabs . 30
3.13 Multislabs . 31
3.14 UDUnits Support . 32
3.15 Wrapped coordinates . 34
3.16 Stride . 34
3.17 Missing values . 36
3.18 Operation Types . 37
3.19 Type conversion . 41

3.19.1 Automatic type conversion . 41
3.19.2 Manual type conversion . 43

3.20 Suppressing interactive prompts . 43
3.21 History attribute . 43
3.22 Input file list attributes . 44
3.23 NCAR CCSM Conventions . 44
3.24 ARM Conventions . 45
3.25 Operator version . 45

4 Reference manual for all operators 47
4.1 ncap netCDF Arithmetic Processor . 48

4.1.1 Left hand casting . 48
4.1.2 Syntax of ncap statements . 49
4.1.3 Intrinsic functions . 49
Packing and Unpacking Algorithms . 50
Type Conversion Functions . 51
4.1.6 Intrinsic mathematical functions . 51

4.2 ncatted netCDF Attribute Editor . 55
4.3 ncbo netCDF Binary Operator . 59
4.4 ncea netCDF Ensemble Averager . 64
4.5 ncecat netCDF Ensemble Concatenator . 66
4.6 ncflint netCDF File Interpolator . 68
4.7 ncks netCDF Kitchen Sink . 71

Options specific to ncks . 72
4.8 ncpdq netCDF Permute Dimensions Quickly 77

Packing and Unpacking Functions . 77
Dimension Permutation . 79

4.9 ncra netCDF Record Averager . 84
4.10 ncrcat netCDF Record Concatenator . 86
4.11 ncrename netCDF Renamer . 88
4.12 ncwa netCDF Weighted Averager . 90

4.12.1 Mask condition . 91
4.12.2 Normalization . 92

5 Contributing . 95
5.1 Contributors . 95
5.2 Proposals for Institutional Funding . 96

General Index . 97

	Foreword
	Summary
	Introduction
	Availability
	Operating systems compatible with NCO
	Compiling NCO for Microsoft Windows OS

	Libraries
	netCDF 2.x vs. 3.x
	Help and Bug reports

	Operator Strategies
	NCO operator philosophy
	Climate model paradigm
	Temporary output files
	Appending variables to a file
	Addition Subtraction Division Multiplication and Interpolation
	Averagers vs. Concatenators
	Concatenators ncrcat and ncecat
	Averagers ncea, ncra, and ncwa
	Interpolator ncflint

	Working with large numbers of input files
	Working with large datasets
	Approximate NCO memory requirements
	Memory Usage of Single and Multi-file Operators
	Memory Usage of ncap

	Performance limitations of the operators

	Features common to most operators
	Internationalization
	OpenMP threading
	Large File Support
	Command line options
	Specifying input files
	Specifying output files
	Accessing files stored remotely
	DODS/OPeNDAP

	Retention of remotely retrieved files
	Including/Excluding specific variables
	Including/Excluding coordinate variables
	C & Fortran index conventions
	Hyperslabs
	Multislabs
	UDUnits Support
	Wrapped coordinates
	Stride
	Missing values
	Operation Types
	Type conversion
	Automatic type conversion
	Manual type conversion

	Suppressing interactive prompts
	History attribute
	Input file list attributes
	NCAR CCSM Conventions
	ARM Conventions
	Operator version

	Reference manual for all operators
	ncap netCDF Arithmetic Processor
	Left hand casting
	Syntax of ncap statements
	Intrinsic functions
	Packing and Unpacking Algorithms
	Type Conversion Functions
	Intrinsic mathematical functions

	ncatted netCDF Attribute Editor
	ncbo netCDF Binary Operator
	ncea netCDF Ensemble Averager
	ncecat netCDF Ensemble Concatenator
	ncflint netCDF File Interpolator
	ncks netCDF Kitchen Sink
	Options specific to ncks

	ncpdq netCDF Permute Dimensions Quickly
	Packing and Unpacking Functions
	Dimension Permutation

	ncra netCDF Record Averager
	ncrcat netCDF Record Concatenator
	ncrename netCDF Renamer
	ncwa netCDF Weighted Averager
	Mask condition
	Normalization

	Contributing
	Contributors
	Proposals for Institutional Funding

	General Index

