
1. MySQL Connector/J
MySQL provides connectivity for client applications developed in the Java programming language via a
JDBC driver, which is called MySQL Connector/J.

MySQL Connector/J is a JDBC-3.0 Type 4 driver, which means that is pure Java, implements version
3.0 of the JDBC specification, and communicates directly with the MySQL server using the MySQL
protocol.

Although JDBC is useful by itself, we would hope that if you are not familiar with JDBC that after read-
ing the first few sections of this manual, that you would avoid using naked JDBC for all but the most
trivial problems and consider using one of the popular persistence frameworks such as Hibernate
[http://www.hibernate.org/], Spring's JDBC templates [http://www.springframework.org/] or Ibatis SQL
Maps [http://ibatis.apache.org/] to do the majority of repetitive work and heavier lifting that is some-
times required with JDBC.

This section is not designed to be a complete JDBC tutorial. If you need more information about using
JDBC you might be interested in the following online tutorials that are more in-depth than the informa-
tion presented here:

• JDBC Basics [http://java.sun.com/docs/books/tutorial/jdbc/basics/index.html] — A tutorial from
Sun covering beginner topics in JDBC

• JDBC Short Course
[http://java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/index.html] — A more
in-depth tutorial from Sun and JGuru

1.1. Connector/J Versions
There are currently three version of MySQL Connector/J available:

• Connector/J 3.0 provides core functionality and was designed with connectivity to MySQL 3.x or
MySQL 4.1 servers, although it will provide basic compatibility with later versions of MySQL. Con-
nector/J 3.0 does not support server-side prepared statements, and does not support any of the fea-
tures in versions of MySQL later than 4.1.

• Connector/J 3.1 was designed for connectivity to MySQL 4.1 and MySQL 5.0 servers and provides
support for all the functionality in MySQL 5.0 except distributed transaction (XA) support.

• Connector/J 5.0 provides support for all the functionality offered by Connector/J 3.1 and includes
distributed transaction (XA) support.

The current recommended version for Connector/J is 5.0. This guide covers all three connector versions,
with specific notes given where a setting applies to a specific option.

1.1.1. Java Versions Supported

MySQL Connector/J supports Java-2 JVMs, including:

• JDK 1.2.x (only for Connector/J 3.1.x or earlier)

• JDK 1.3.x

1

http://www.hibernate.org/
http://www.springframework.org/
http://ibatis.apache.org/
http://ibatis.apache.org/
http://java.sun.com/docs/books/tutorial/jdbc/basics/index.html
http://java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/index.html

• JDK 1.4.x

• JDK 1.5.x

If you are building Connector/J from source using the source distribution (see Section 1.2.4, “Installing
from the Development Source Tree”) then you must use JDK 1.4.x or newer to compiler the Connector
package.

MySQL Connector/J does not support JDK-1.1.x or JDK-1.0.x

Because of the implementation of java.sql.Savepoint, Connector/J 3.1.0 and newer will not run
on JDKs older than 1.4 unless the class verifier is turned off (by setting the -Xverify:none option to
the Java runtime). This is because the class verifier will try to load the class definition for
java.sql.Savepoint even though it is not accessed by the driver unless you actually use savepoint
functionality.

Caching functionality provided by Connector/J 3.1.0 or newer is also not available on JVMs older than
1.4.x, as it relies on java.util.LinkedHashMap which was first available in JDK-1.4.0.

1.2. Installing Connector/J
You can install the Connector/J package using two methods, using either the binary or source distribu-
tion. The binary distribution provides the easiest methods for installation; the source distribution enables
you to customize your installation further. With with either solution, you must

1.2.1. Installing Connector/J from a Binary Distribution

The easiest method of installation is to use the binary distribution of the Connector/J package. The bin-
ary distribution is available either as a Tar/Gzip or Zip file which you must extract to a suitable location
and then optionally make the information about the package available by changing your CLASSPATH
(see Section 1.2.2, “Installing the Driver and Configuring the CLASSPATH”).

MySQL Connector/J is distributed as a .zip or .tar.gz archive containing the sources, the class files, and
the JAR archive named mysql-connector-java-[version]-bin.jar, and starting with Con-
nector/J 3.1.8 a debug build of the driver in a file named mysql-connector-java-[version]-
bin-g.jar.

Starting with Connector/J 3.1.9, the .class files that constitute the JAR files are only included as part
of the driver JAR file.

You should not use the debug build of the driver unless instructed to do so when reporting a problem ors
bug to MySQL AB, as it is not designed to be run in production environments, and will have adverse
performance impact when used. The debug binary also depends on the Aspect/J runtime library, which
is located in the src/lib/aspectjrt.jar file that comes with the Connector/J distribution.

You will need to use the appropriate graphical or command-line utility to un-archive the distribution (for
example, WinZip for the .zip archive, and tar for the .tar.gz archive). Because there are potentially
long filenames in the distribution, we use the GNU tar archive format. You will need to use GNU tar (or
an application that understands the GNU tar archive format) to unpack the .tar.gz variant of the distribu-
tion.

1.2.2. Installing the Driver and Configuring the CLASSPATH

Once you have extracted the distribution archive, you can install the driver by placing mysql-
connector-java-[version]-bin.jar in your classpath, either by adding the full path to it to
your CLASSPATH environment variable, or by directly specifying it with the command line switch -cp

MySQL Connector/J

2

when starting your JVM.

If you are going to use the driver with the JDBC DriverManager, you would use
com.mysql.jdbc.Driver as the class that implements java.sql.Driver.

You can set the CLASSPATH environment variableunder UNIX, Linux or Mac OS X either locally for a
user within their .profile, .login or other login file. You can also set it globally by editing the
global /etc/profile file.

For example, under a C shell (csh, tcsh) you would add the Connector/J driver to your CLASSPATH us-
ing the following:

shell> setenv CLASSPATH /path/to/mysql-connector-java-[version]-bin.jar:$CLASSPATH

Or with a Bourne-compatible shell (sh, ksh, bash):

export set CLASSPATH=/path/to/mysql-connector-java-[version]-bin.jar:$CLASSPATH

Within Windows 2000, Windows XP and Windows Server 2003, you must set the environment variable
through the System control panel.

If you want to use MySQL Connector/J with an application server such as Tomcat or JBoss, you will
have to read your vendor's documentation for more information on how to configure third-party class
libraries, as most application servers ignore the CLASSPATH environment variable. For configuration
examples for some J2EE application servers, see Section 1.5.2, “Using Connector/J with J2EE and Other
Java Frameworks”. However, the authoritative source for JDBC connection pool configuration informa-
tion for your particular application server is the documentation for that application server.

If you are developing servlets or JSPs, and your application server is J2EE-compliant, you can put the
driver's .jar file in the WEB-INF/lib subdirectory of your webapp, as this is a standard location for third
party class libraries in J2EE web applications.

You can also use the MysqlDataSource or MysqlConnectionPoolDataSource classes in the
com.mysql.jdbc.jdbc2.optional package, if your J2EE application server supports or re-
quires them. Starting with Connector/J 5.0.0, the javax.sql.XADataSource interface is imple-
mented via the com.mysql.jdbc.jdbc2.optional.MysqlXADataSource class, which sup-
ports XA distributed transactions when used in combination with MySQL server version 5.0.

The various MysqlDataSource classes support the following parameters (through standard set mutators):

• user

• password

• serverName (see the previous section about fail-over hosts)

• databaseName

• port

1.2.3. Upgrading from an Older Version

MySQL AB tries to keep the upgrade process as easy as possible, however as is the case with any soft-
ware, sometimes changes need to be made in new versions to support new features, improve existing
functionality, or comply with new standards.

This section has information about what users who are upgrading from one version of Connector/J to an-

MySQL Connector/J

3

other (or to a new version of the MySQL server, with respect to JDBC functionality) should be aware of.

1.2.3.1. Upgrading from MySQL Connector/J 3.0 to 3.1

Connector/J 3.1 is designed to be backward-compatible with Connector/J 3.0 as much as possible. Major
changes are isolated to new functionality exposed in MySQL-4.1 and newer, which includes Unicode
character sets, server-side prepared statements, SQLState codes returned in error messages by the server
and various performance enhancements that can be enabled or disabled via configuration properties.

• Unicode Character Sets — See the next section, as well as ???, for information on this new feature
of MySQL. If you have something misconfigured, it will usually show up as an error with a message
similar to Illegal mix of collations.

• Server-side Prepared Statements — Connector/J 3.1 will automatically detect and use server-side
prepared statements when they are available (MySQL server version 4.1.0 and newer).

Starting with version 3.1.7, the driver scans SQL you are preparing via all variants of Connec-
tion.prepareStatement() to determine if it is a supported type of statement to prepare on
the server side, and if it is not supported by the server, it instead prepares it as a client-side emulated
prepared statement. You can disable this feature by passing emulateUnsupportedPstmts=false in
your JDBC URL.

If your application encounters issues with server-side prepared statements, you can revert to the
older client-side emulated prepared statement code that is still presently used for MySQL servers
older than 4.1.0 with the connection property useServerPrepStmts=false

• Datetimes with all-zero components (0000-00-00 ...) — These values can not be represented
reliably in Java. Connector/J 3.0.x always converted them to NULL when being read from a Result-
Set.

Connector/J 3.1 throws an exception by default when these values are encountered as this is the most
correct behavior according to the JDBC and SQL standards. This behavior can be modified using the
zeroDateTimeBehavior configuration property. The allowable values are:

• exception (the default), which throws an SQLException with an SQLState of S1009.

• convertToNull, which returns NULL instead of the date.

• round, which rounds the date to the nearest closest value which is 0001-01-01.

Starting with Connector/J 3.1.7, ResultSet.getString() can be decoupled from this behavior
via noDatetimeStringSync=true (the default value is false) so that you can get retrieve the un-
altered all-zero value as a String. It should be noted that this also precludes using any time zone con-
versions, therefore the driver will not allow you to enable noDatetimeStringSync and useTimezone
at the same time.

• New SQLState Codes — Connector/J 3.1 uses SQL:1999 SQLState codes returned by the MySQL
server (if supported), which are different from the legacy X/Open state codes that Connector/J 3.0
uses. If connected to a MySQL server older than MySQL-4.1.0 (the oldest version to return SQL-
States as part of the error code), the driver will use a built-in mapping. You can revert to the old
mapping by using the configuration property useSqlStateCodes=false.

• ResultSet.getString() — Calling ResultSet.getString() on a BLOB column will
now return the address of the byte[] array that represents it, instead of a String representation of the
BLOB. BLOBs have no character set, so they can't be converted to java.lang.Strings without data
loss or corruption.

To store strings in MySQL with LOB behavior, use one of the TEXT types, which the driver will

MySQL Connector/J

4

treat as a java.sql.Clob.

• Debug builds — Starting with Connector/J 3.1.8 a debug build of the driver in a file named
mysql-connector-java-[version]-bin-g.jar is shipped alongside the normal binary
jar file that is named mysql-connector-java-[version]-bin.jar.

Starting with Connector/J 3.1.9, we don't ship the .class files unbundled, they are only available in
the JAR archives that ship with the driver.

You should not use the debug build of the driver unless instructed to do so when reporting a problem
or bug to MySQL AB, as it is not designed to be run in production environments, and will have ad-
verse performance impact when used. The debug binary also depends on the Aspect/J runtime lib-
rary, which is located in the src/lib/aspectjrt.jar file that comes with the Connector/J dis-
tribution.

1.2.3.2. JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer

• Using the UTF-8 Character Encoding - Prior to MySQL server version 4.1, the UTF-8 character en-
coding was not supported by the server, however the JDBC driver could use it, allowing storage of
multiple character sets in latin1 tables on the server.

Starting with MySQL-4.1, this functionality is deprecated. If you have applications that rely on this
functionality, and can not upgrade them to use the official Unicode character support in MySQL
server version 4.1 or newer, you should add the following property to your connection URL:

useOldUTF8Behavior=true

• Server-side Prepared Statements - Connector/J 3.1 will automatically detect and use server-side pre-
pared statements when they are available (MySQL server version 4.1.0 and newer). If your applica-
tion encounters issues with server-side prepared statements, you can revert to the older client-side
emulated prepared statement code that is still presently used for MySQL servers older than 4.1.0
with the following connection property:

useServerPrepStmts=false

1.2.4. Installing from the Development Source Tree

Caution. You should read this section only if you are interested in helping us test our new code. If you
just want to get MySQL Connector/J up and running on your system, you should use a standard release
distribution.

To install MySQL Connector/J from the development source tree, make sure that you have the following
prerequisites:

• Subversion, to check out the sources from our repository (available from
http://subversion.tigris.org/).

• Apache Ant version 1.6 or newer (available from http://ant.apache.org/).

• JDK-1.4.2 or later. Although MySQL Connector/J can be installed on older JDKs, to compile it from
source you must have at least JDK-1.4.2.

The Subversion source code repository for MySQL Connector/J is located at ht-

MySQL Connector/J

5

http://subversion.tigris.org/
http://ant.apache.org/

tp://svn.mysql.com/svnpublic/connector-j. In general, you should not check out the entire repository be-
cause it contains every branch and tag for MySQL Connector/J and is quite large.

To check out and compile a specific branch of MySQL Connector/J, follow these steps:

1. At the time of this writing, there are three active branches of Connector/J: branch_3_0,
branch_3_1 and branch_5_0. Check out the latest code from the branch that you want with
the following command (replacing [major] and [minor] with appropriate version numbers):

shell> svn co »
http://svn.mysql.com/svnpublic/connector-j/branches/branch_[major]_[minor]/connector-j

This creates a connector-j subdirectory in the current directory that contains the latest sources
for the requested branch.

2. Change location to the connector-j directory to make it your current working directory:

shell> cd connector-j

3. Issue the following command to compile the driver and create a .jar file suitable for installation:

shell> ant dist

This creates a build directory in the current directory, where all build output will go. A directory
is created in the build directory that includes the version number of the sources you are building
from. This directory contains the sources, compiled .class files, and a .jar file suitable for de-
ployment. For other possible targets, including ones that will create a fully packaged distribution,
issue the following command:

shell> ant --projecthelp

4. A newly created .jar file containing the JDBC driver will be placed in the directory build/
mysql-connector-java-[version].

Install the newly created JDBC driver as you would a binary .jar file that you download from
MySQL by following the instructions in Section 1.2.2, “Installing the Driver and Configuring the
CLASSPATH”.

1.3. Connector/J Examples
Examples of using Connector/J are located throughout this document, this section provides a summary
and links to these examples.

• Example 1, “Obtaining a connection from the DriverManager”

• Example 2, “Using java.sql.Statement to execute a SELECT query”

• Example 3, “Stored Procedures”

• Example 4, “Using Connection.prepareCall()”

• Example 5, “Registering output parameters”

• Example 6, “Setting CallableStatement input parameters”

MySQL Connector/J

6

http://svn.mysql.com/svnpublic/connector-j

• Example 7, “Retrieving results and output parameter values”

• Example 8, “Retrieving AUTO_INCREMENT column values using State-
ment.getGeneratedKeys()”

• Example 9, “Retrieving AUTO_INCREMENT column values using SELECT
LAST_INSERT_ID()”

• Example 10, “Retrieving AUTO_INCREMENT column values in Updatable ResultSets”

• Example 11, “Using a connection pool with a J2EE application server”

• Example 12, “Example of transaction with retry logic”

1.4. Connector/J (JDBC) Reference
This section of the manual contains reference material for MySQL Connector/J, some of which is auto-
matically generated during the Connector/J build process.

1.4.1. Driver/Datasource Class Names, URL Syntax and Configuration
Properties for Connector/J

The name of the class that implements java.sql.Driver in MySQL Connector/J is
com.mysql.jdbc.Driver. The org.gjt.mm.mysql.Driver class name is also usable to re-
main backward-compatible with MM.MySQL. You should use this class name when registering the
driver, or when otherwise configuring software to use MySQL Connector/J.

The JDBC URL format for MySQL Connector/J is as follows, with items in square brackets ([,]) being
optional:

jdbc:mysql://[host][,failoverhost...][:port]/[database] »
[?propertyName1][=propertyValue1][&propertyName2][=propertyValue2]...

If the hostname is not specified, it defaults to 127.0.0.1. If the port is not specified, it defaults to 3306,
the default port number for MySQL servers.

jdbc:mysql://[host:port],[host:port].../[database] »
[?propertyName1][=propertyValue1][&propertyName2][=propertyValue2]...

If the database is not specified, the connection will be made with no default database. In this case, you
will need to either call the setCatalog() method on the Connection instance or fully-specify table
names using the database name (i.e. SELECT dbname.tablename.colname FROM db-
name.tablename...) in your SQL. Not specifying the database to use upon connection is generally
only useful when building tools that work with multiple databases, such as GUI database managers.

MySQL Connector/J has fail-over support. This allows the driver to fail-over to any number of slave
hosts and still perform read-only queries. Fail-over only happens when the connection is in an auto-
Commit(true) state, because fail-over can not happen reliably when a transaction is in progress.
Most application servers and connection pools set autoCommit to true at the end of every transac-
tion/connection use.

The fail-over functionality has the following behavior:

• If the URL property autoReconnect is false: Failover only happens at connection initialization, and
failback occurs when the driver determines that the first host has become available again.

MySQL Connector/J

7

• If the URL property autoReconnect is true: Failover happens when the driver determines that the
connection has failed (before every query), and falls back to the first host when it determines that the
host has become available again (after queriesBeforeRetryMaster queries have been is-
sued).

In either case, whenever you are connected to a "failed-over" server, the connection will be set to read-
only state, so queries that would modify data will have exceptions thrown (the query will never be pro-
cessed by the MySQL server).

Configuration properties define how Connector/J will make a connection to a MySQL server. Unless
otherwise noted, properties can be set for a DataSource object or for a Connection object.

Configuration Properties can be set in one of the following ways:

• Using the set*() methods on MySQL implementations of java.sql.DataSource (which is the preferred
method when using implementations of java.sql.DataSource):

• com.mysql.jdbc.jdbc2.optional.MysqlDataSource

• com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource

• As a key/value pair in the java.util.Properties instance passed to DriverMan-
ager.getConnection() or Driver.connect()

• As a JDBC URL parameter in the URL given to
java.sql.DriverManager.getConnection(), java.sql.Driver.connect() or
the MySQL implementations of the javax.sql.DataSource setURL() method.

Note. If the mechanism you use to configure a JDBC URL is XML-based, you will need to use the
XML character literal & to separate configuration parameters, as the ampersand is a reserved
character for XML.

The properties are listed in the following tables.

Connection/Authentication.

Property Name Definition Default
Value

Since
Version

user The user to connect as all

password The password to use when connecting all

socketFactory The name of the class that the driver should use for
creating socket connections to the server. This
class must implement the interface
'com.mysql.jdbc.SocketFactory' and have public
no-args constructor.

com.mys
ql.jdbc.S
tandard-
Socket-
Factory

3.0.3

connectTimeout Timeout for socket connect (in milliseconds), with
0 being no timeout. Only works on JDK-1.4 or
newer. Defaults to '0'.

0 3.0.1

socketTimeout Timeout on network socket operations (0, the de-
fault means no timeout).

0 3.0.1

useConfigs Load the comma-delimited list of configuration
properties before parsing the URL or applying
user-specified properties. These configurations are

3.1.5

MySQL Connector/J

8

explained in the 'Configurations' of the documenta-
tion.

interactiveClient Set the CLIENT_INTERACTIVE flag, which tells
MySQL to timeout connections based on INTER-
ACTIVE_TIMEOUT instead of
WAIT_TIMEOUT

false 3.1.0

propertiesTransform An implementation of
com.mysql.jdbc.ConnectionPropertiesTransform
that the driver will use to modify URL properties
passed to the driver before attempting a connection

3.1.4

useCompression Use zlib compression when communicating with
the server (true/false)? Defaults to 'false'.

false 3.0.17

High Availability and Clustering.

Property Name Definition Default
Value

Since
Version

autoReconnect Should the driver try to re-establish stale and/or
dead connections? If enabled the driver will throw
an exception for a queries issued on a stale or dead
connection, which belong to the current transac-
tion, but will attempt reconnect before the next
query issued on the connection in a new transac-
tion. The use of this feature is not recommended,
because it has side effects related to session state
and data consistency when applications
don'thandle SQLExceptions properly, and is only
designed to be used when you are unable to con-
figure your application to handle SQLExceptions
resulting from dead andstale connections properly.
Alternatively, investigate setting the MySQL serv-
er variable "wait_timeout"to some high value
rather than the default of 8 hours.

false 1.1

autoReconnectForPools Use a reconnection strategy appropriate for con-
nection pools (defaults to 'false')

false 3.1.3

failOverReadOnly When failing over in autoReconnect mode, should
the connection be set to 'read-only'?

true 3.0.12

reconnectAtTxEnd If autoReconnect is set to true, should the driver at-
tempt reconnectionsat the end of every transac-
tion?

false 3.0.10

roundRobinLoadBalance When autoReconnect is enabled, and failover-
Readonly is false, should we pick hosts to connect
to on a round-robin basis?

false 3.1.2

queriesBeforeRetryMaster Number of queries to issue before falling back to
master when failed over (when using multi-host
failover). Whichever condition is met first, 'quer-
iesBeforeRetryMaster' or 'secondsBeforeRetryMas-
ter' will cause an attempt to be made to reconnect
to the master. Defaults to 50.

50 3.0.2

secondsBeforeRetryMaster How long should the driver wait, when failed over,
before attempting to reconnect to the master serv-
er? Whichever condition is met first, 'queriesBe-

30 3.0.2

MySQL Connector/J

9

foreRetryMaster' or 'secondsBeforeRetryMaster'
will cause an attempt to be made to reconnect to
the master. Time in seconds, defaults to 30

enableDeprecatedAutorecon-
nect

Auto-reconnect functionality is deprecated starting
with version 3.2, and will be removed in version
3.3. Set this property to 'true' to disable the check
for the feature being configured.

false 3.2.1

resourceId A globally unique name that identifies the resource
that this datasource or connection is connected to,
used for XAResource.isSameRM() when the driver
can't determine this value based on hostnames used
in the URL

5.0.1

Security.

Property Name Definition Default
Value

Since
Version

allowMultiQueries Allow the use of ';' to delimit multiple queries dur-
ing one statement (true/false, defaults to 'false'

false 3.1.1

useSSL Use SSL when communicating with the server
(true/false), defaults to 'false'

false 3.0.2

requireSSL Require SSL connection if useSSL=true? (defaults
to 'false').

false 3.1.0

allowUrlInLocalInfile Should the driver allow URLs in 'LOAD DATA
LOCAL INFILE' statements?

false 3.1.4

paranoid Take measures to prevent exposure sensitive in-
formation in error messages and clear data struc-
tures holding sensitive data when possible?
(defaults to 'false')

false 3.0.1

Performance Extensions.

Property Name Definition Default
Value

Since
Version

metadataCacheSize The number of queries to cacheResultSetMetadata
for if cacheResultSetMetaData is set to 'true'
(default 50)

50 3.1.1

prepStmtCacheSize If prepared statement caching is enabled, how
many prepared statements should be cached?

25 3.0.10

prepStmtCacheSqlLimit If prepared statement caching is enabled, what's
the largest SQL the driver will cache the parsing
for?

256 3.0.10

useCursorFetch If connected to MySQL > 5.0.2, and setFetchSize()
> 0 on a statement, should that statement use curs-
or-based fetching to retrieve rows?

false 5.0.0

blobSendChunkSize Chunk to use when sending BLOB/CLOBs via
ServerPreparedStatements

1048576 3.1.9

cacheCallableStmts Should the driver cache the parsing stage of
CallableStatements

false 3.1.2

cachePrepStmts Should the driver cache the parsing stage of Pre- false 3.0.10

MySQL Connector/J

10

paredStatements of client-side prepared state-
ments, the "check" for suitability of server-side
prepared and server-side prepared statements
themselves?

cacheResultSetMetadata Should the driver cache ResultSetMetaData for
Statements and PreparedStatements? (Req. JDK-
1.4+, true/false, default 'false')

false 3.1.1

cacheServerConfiguration Should the driver cache the results of 'SHOW
VARIABLES' and 'SHOW COLLATION' on a
per-URL basis?

false 3.1.5

defaultFetchSize The driver will call setFetchSize(n) with this value
on all newly-created Statements

0 3.1.9

dontTrackOpenResources The JDBC specification requires the driver to auto-
matically track and close resources, however if
your application doesn't do a good job of explicitly
calling close() on statements or result sets, this can
cause memory leakage. Setting this property to
true relaxes this constraint, and can be more
memory efficient for some applications.

false 3.1.7

dynamicCalendars Should the driver retrieve the default calendar
when required, or cache it per connection/session?

false 3.1.5

elideSetAutoCommits If using MySQL-4.1 or newer, should the driver
only issue 'set autocommit=n' queries when the
server's state doesn't match the requested state by
Connection.setAutoCommit(boolean)?

false 3.1.3

holdResultsOpenOverState-
mentClose

Should the driver close result sets on State-
ment.close() as required by the JDBC specifica-
tion?

false 3.1.7

locatorFetchBufferSize If 'emulateLocators' is configured to 'true', what
size buffer should be used when fetching BLOB
data for getBinaryInputStream?

1048576 3.2.1

rewriteBatchedStatements Should the driver use multiqueries (irregardless of
the setting of "allowMultiQueries") as well as re-
writing of prepared statements for INSERT into
multi-value inserts when executeBatch() is called?
Notice that this has the potential for SQL injection
if using plain java.sql.Statements and your code
doesn't sanitize input correctly. Notice that for pre-
pared statements, server-side prepared statements
can not currently take advantage of this rewrite op-
tion, and that if you don't specify stream lengths
when using PreparedStatement.set*Stream(),the
driver won't be able to determine the optimium
number of parameters per batch and you might re-
ceive an error from the driver that the resultant
packet is too large. Statement.getGeneratedKeys()
for these rewritten statements only works when the
entire batch includes INSERT statements.

false 3.1.13

useFastIntParsing Use internal String->Integer conversion routines to
avoid excessive object creation?

true 3.1.4

useJvmCharsetConverters Always use the character encoding routines built
into the JVM, rather than using lookup tables for
single-byte character sets? (The default of "true"

true 5.0.1

MySQL Connector/J

11

for this is appropriate for newer JVMs

useLocalSessionState Should the driver refer to the internal values of
autocommit and transaction isolation that are set
by Connection.setAutoCommit() and Connec-
tion.setTransactionIsolation(), rather than querying
the database?

false 3.1.7

useReadAheadInput Use newer, optimized non-blocking, buffered input
stream when reading from the server?

true 3.1.5

Debuging/Profiling.

Property Name Definition Default
Value

Since
Version

logger The name of a class that implements
'com.mysql.jdbc.log.Log' that will be used to log
messages to.(default is
'com.mysql.jdbc.log.StandardLogger', which logs
to STDERR)

com.mys
ql.jdbc.l
og.Stand
ardLog-
ger

3.1.1

profileSQL Trace queries and their execution/fetch times to the
configured logger (true/false) defaults to 'false'

false 3.1.0

reportMetricsIntervalMillis If 'gatherPerfMetrics' is enabled, how often should
they be logged (in ms)?

30000 3.1.2

maxQuerySizeToLog Controls the maximum length/size of a query that
will get logged when profiling or tracing

2048 3.1.3

packetDebugBufferSize The maximum number of packets to retain when
'enablePacketDebug' is true

20 3.1.3

slowQueryThresholdMillis If 'logSlowQueries' is enabled, how long should a
query (in ms) before it is logged as 'slow'?

2000 3.1.2

useUsageAdvisor Should the driver issue 'usage' warnings advising
proper and efficient usage of JDBC and MySQL
Connector/J to the log (true/false, defaults to
'false')?

false 3.1.1

autoGenerateTestcaseScript Should the driver dump the SQL it is executing, in-
cluding server-side prepared statements to
STDERR?

false 3.1.9

dumpMetadataOnColum-
nNotFound

Should the driver dump the field-level metadata of
a result set into the exception message when Res-
ultSet.findColumn() fails?

false 3.1.13

dumpQueriesOnException Should the driver dump the contents of the query
sent to the server in the message for SQLExcep-
tions?

false 3.1.3

enablePacketDebug When enabled, a ring-buffer of 'packetDebugBuf-
ferSize' packets will be kept, and dumped when
exceptions are thrown in key areas in the driver's
code

false 3.1.3

explainSlowQueries If 'logSlowQueries' is enabled, should the driver
automatically issue an 'EXPLAIN' on the server
and send the results to the configured log at a
WARN level?

false 3.1.2

logSlowQueries Should queries that take longer than 'slowQueryTh- false 3.1.2

MySQL Connector/J

12

resholdMillis' be logged?

traceProtocol Should trace-level network protocol be logged? false 3.1.2

Miscellaneous.

Property Name Definition Default
Value

Since
Version

useUnicode Should the driver use Unicode character encodings
when handling strings? Should only be used when
the driver can't determine the character set map-
ping, or you are trying to 'force' the driver to use a
character set that MySQL either doesn't natively
support (such as UTF-8), true/false, defaults to
'true'

true 1.1g

characterEncoding If 'useUnicode' is set to true, what character encod-
ing should the driver use when dealing with
strings? (defaults is to 'autodetect')

1.1g

characterSetResults Character set to tell the server to return results as. 3.0.13

connectionCollation If set, tells the server to use this collation via 'set
collation_connection'

3.0.13

sessionVariables A comma-separated list of name/value pairs to be
sent as SET SESSION ... to the server when the
driver connects.

3.1.8

allowNanAndInf Should the driver allow NaN or +/- INF values in
PreparedStatement.setDouble()?

false 3.1.5

autoClosePStmtStreams Should the driver automatically call .close() on
streams/readers passed as arguments via set*()
methods?

false 3.1.12

autoDeserialize Should the driver automatically detect and de-
serialize objects stored in BLOB fields?

false 3.1.5

capitalizeTypeNames Capitalize type names in DatabaseMetaData?
(usually only useful when using WebObjects, true/
false, defaults to 'false')

false 2.0.7

clobCharacterEncoding The character encoding to use for sending and re-
trieving TEXT, MEDIUMTEXT and LONGTEXT
values instead of the configured connection char-
acterEncoding

5.0.0

clobberStreamingResults This will cause a 'streaming' ResultSet to be auto-
matically closed, and any outstanding data still
streaming from the server to be discarded if anoth-
er query is executed before all the data has been
read from the server.

false 3.0.9

continueBatchOnError Should the driver continue processing batch com-
mands if one statement fails. The JDBC spec al-
lows either way (defaults to 'true').

true 3.0.3

createDatabaseIfNotExist Creates the database given in the URL if it doesn't
yet exist. Assumes the configured user has permis-
sions to create databases.

false 3.1.9

emptyStringsConvertToZero Should the driver allow conversions from empty
string fields to numeric values of '0'?

true 3.1.8

MySQL Connector/J

13

emulateLocators N/A false 3.1.0

emulateUnsupportedPstmts Should the driver detect prepared statements that
are not supported by the server, and replace them
with client-side emulated versions?

true 3.1.7

ignoreNonTxTables Ignore non-transactional table warning for roll-
back? (defaults to 'false').

false 3.0.9

jdbcCompliantTruncation Should the driver throw java.sql.DataTruncation
exceptions when data is truncated as is required by
the JDBC specification when connected to a server
that supports warnings(MySQL 4.1.0 and newer)?

true 3.1.2

maxRows The maximum number of rows to return (0, the de-
fault means return all rows).

-1 all ver-
sions

noAccessToProcedureBodies When determining procedure parameter types for
CallableStatements, and the connected user can't
access procedure bodies through "SHOW CRE-
ATE PROCEDURE" or select on mysql.proc
should the driver instead create basic metadata (all
parameters reported as INOUT VARCHARs) in-
stead of throwing an exception?

false 5.0.3

noDatetimeStringSync Don't ensure that Result-
Set.getDatetimeType().toString().equals(ResultSet.
getString())

false 3.1.7

noTimezoneConversionFor-
TimeType

Don't convert TIME values using the server
timezone if 'useTimezone'='true'

false 5.0.0

nullCatalogMeansCurrent When DatabaseMetadataMethods ask for a 'cata-
log' parameter, does the value null mean use the
current catalog? (this is not JDBC-compliant, but
follows legacy behavior from earlier versions of
the driver)

true 3.1.8

nullNamePatternMatchesAll Should DatabaseMetaData methods that accept
*pattern parameters treat null the same as '%' (this
is not JDBC-compliant, however older versions of
the driver accepted this departure from the spe-
cification)

true 3.1.8

overrideSupportsIntegrityEn-
hancementFacility

Should the driver return "true" for Database-
MetaData.supportsIntegrityEnhancementFacility()
even if the database doesn't support it to work-
around applications that require this method to re-
turn "true" to signal support of foreign keys, even
though the SQL specification states that this facil-
ity contains much more than just foreign key sup-
port (one such application being OpenOffice)?

false 3.1.12

pedantic Follow the JDBC spec to the letter. false 3.0.0

pinGlobalTxToPhysicalCon-
nection

When using XAConnections, should the driver en-
sure that operations on a given XID are always
routed to the same physical connection? This al-
lows the XAConnection to support "XA START ...
JOIN" after "XA END" has been called

false 5.0.1

processEscapeCodesForPrep-
Stmts

Should the driver process escape codes in queries
that are prepared?

true 3.1.12

relaxAutoCommit If the version of MySQL the driver connects to
does not support transactions, still allow calls to

false 2.0.13

MySQL Connector/J

14

commit(), rollback() and setAutoCommit()
(true/false, defaults to 'false')?

retainStatementAfterResult-
SetClose

Should the driver retain the Statement reference in
a ResultSet after ResultSet.close() has been called.
This is not JDBC-compliant after JDBC-4.0.

false 3.1.11

rollbackOnPooledClose Should the driver issue a rollback() when the logic-
al connection in a pool is closed?

true 3.0.15

runningCTS13 Enables workarounds for bugs in Sun's JDBC
compliance testsuite version 1.3

false 3.1.7

serverTimezone Override detection/mapping of timezone. Used
when timezone from server doesn't map to Java
timezone

3.0.2

strictFloatingPoint Used only in older versions of compliance test false 3.0.0

strictUpdates Should the driver do strict checking (all primary
keys selected) of updatable result sets (true, false,
defaults to 'true')?

true 3.0.4

tinyInt1isBit Should the driver treat the datatype TINYINT(1)
as the BIT type (because the server silently con-
verts BIT -> TINYINT(1) when creating tables)?

true 3.0.16

transformedBitIsBoolean If the driver converts TINYINT(1) to a different
type, should it use BOOLEAN instead of BIT for
future compatibility with MySQL-5.0, as MySQL-
5.0 has a BIT type?

false 3.1.9

ultraDevHack Create PreparedStatements for prepareCall() when
required, because UltraDev is broken and issues a
prepareCall() for _all_ statements? (true/false, de-
faults to 'false')

false 2.0.3

useGmtMillisForDatetimes Convert between session timezone and GMT be-
fore creating Date and Timestamp instances (value
of "false" is legacy behavior, "true" leads to more
JDBC-compliant behavior.

false 3.1.12

useHostsInPrivileges Add '@hostname' to users in Database-
MetaData.getColumn/TablePrivileges()
(true/false), defaults to 'true'.

true 3.0.2

useInformationSchema When connected to MySQL-5.0.7 or newer, should
the driver use the INFORMATION_SCHEMA to
derive information used by DatabaseMetaData?

false 5.0.0

useJDBCCompliant-
TimezoneShift

Should the driver use JDBC-compliant rules when
converting TIME/TIMESTAMP/DATETIME val-
ues' timezone information for those JDBC argu-
ments which take a java.util.Calendar argument?
(Notice that this option is exclusive of the "use-
Timezone=true" configuration option.)

false 5.0.0

useOldAliasMetadataBehavi-
or

Should the driver use the legacy behavior for "AS"
clauses on columns and tables, and only return ali-
ases (if any) for ResultSet-
MetaData.getColumnName() or ResultSet-
MetaData.getTableName() rather than the original
column/table name?

true 5.0.4

useOldUTF8Behavior Use the UTF-8 behavior the driver did when com-
municating with 4.0 and older servers

false 3.1.6

MySQL Connector/J

15

useOnlyServerErrorMessages Don't prepend 'standard' SQLState error messages
to error messages returned by the server.

true 3.0.15

useServerPrepStmts Use server-side prepared statements if the server
supports them? (defaults to 'true').

true 3.1.0

useSqlStateCodes Use SQL Standard state codes instead of 'legacy'
X/Open/SQL state codes (true/false), default is
'true'

true 3.1.3

useStreamLengthsInPrepSt-
mts

Honor stream length parameter in PreparedState-
ment/ResultSet.setXXXStream() method calls
(true/false, defaults to 'true')?

true 3.0.2

useTimezone Convert time/date types between client and server
timezones (true/false, defaults to 'false')?

false 3.0.2

useUnbufferedInput Don't use BufferedInputStream for reading data
from the server

true 3.0.11

yearIsDateType Should the JDBC driver treat the MySQL type
"YEAR" as a java.sql.Date, or as a SHORT?

true 3.1.9

zeroDateTimeBehavior What should happen when the driver encounters
DATETIME values that are composed entirely of
zeroes (used by MySQL to represent invalid
dates)? Valid values are 'exception', 'round' and
'convertToNull'.

excep-
tion

3.1.4

Connector/J also supports access to MySQL via named pipes on Windows NT/2000/XP using the
NamedPipeSocketFactory as a plugin-socket factory via the socketFactory property. If you don't use a
namedPipePath property, the default of '\\.\pipe\MySQL' will be used. If you use the Named-
PipeSocketFactory, the hostname and port number values in the JDBC url will be ignored. You
can enable this feature using:

socketFactory=com.mysql.jdbc.NamedPipeSocketFactory

Named pipes only work when connecting to a MySQL server on the same physical machine as the one
the JDBC driver is being used on. In simple performance tests, it appears that named pipe access is
between 30%-50% faster than the standard TCP/IP access.

You can create your own socket factories by following the example code in
com.mysql.jdbc.NamedPipeSocketFactory, or
com.mysql.jdbc.StandardSocketFactory.

1.4.2. JDBC API Implementation Notes

MySQL Connector/J passes all of the tests in the publicly-available version of Sun's JDBC compliance
test suite. However, in many places the JDBC specification is vague about how certain functionality
should be implemented, or the specification allows leeway in implementation.

This section gives details on a interface-by-interface level about how certain implementation decisions
may affect how you use MySQL Connector/J.

• Blob

The Blob implementation does not allow in-place modification (they are copies, as reported by the
DatabaseMetaData.locatorsUpdateCopies() method). Because of this, you should use
the corresponding PreparedStatement.setBlob() or ResultSet.updateBlob() (in

MySQL Connector/J

16

the case of updatable result sets) methods to save changes back to the database.

Starting with Connector/J version 3.1.0, you can emulate Blobs with locators by adding the property
'emulateLocators=true' to your JDBC URL. You must then use a column alias with the value of the
column set to the actual name of the Blob column in the SELECT that you write to retrieve the Blob.
The SELECT must also reference only one table, the table must have a primary key, and the SE-
LECT must cover all columns that make up the primary key. The driver will then delay loading the
actual Blob data until you retrieve the Blob and call retrieval methods (getInputStream(),
getBytes(), and so forth) on it.

• CallableStatement

Starting with Connector/J 3.1.1, stored procedures are supported when connecting to MySQL ver-
sion 5.0 or newer via the CallableStatement interface. Currently, the getParameter-
MetaData() method of CallableStatement is not supported.

• Clob

The Clob implementation does not allow in-place modification (they are copies, as reported by the
DatabaseMetaData.locatorsUpdateCopies() method). Because of this, you should use
the PreparedStatement.setClob() method to save changes back to the database. The JD-
BC API does not have a ResultSet.updateClob() method.

• Connection

Unlike older versions of MM.MySQL the isClosed() method does not ping the server to determ-
ine if it is alive. In accordance with the JDBC specification, it only returns true if closed() has
been called on the connection. If you need to determine if the connection is still valid, you should is-
sue a simple query, such as SELECT 1. The driver will throw an exception if the connection is no
longer valid.

• DatabaseMetaData

Foreign Key information (getImportedKeys()/getExportedKeys() and getCross-
Reference()) is only available from InnoDB tables. However, the driver uses SHOW CREATE
TABLE to retrieve this information, so when other storage engines support foreign keys, the driver
will transparently support them as well.

• PreparedStatement

PreparedStatements are implemented by the driver, as MySQL does not have a prepared statement
feature. Because of this, the driver does not implement getParameterMetaData() or get-
MetaData() as it would require the driver to have a complete SQL parser in the client.

Starting with version 3.1.0 MySQL Connector/J, server-side prepared statements and binary-en-
coded result sets are used when the server supports them.

Take care when using a server-side prepared statement with large parameters that are set via set-
BinaryStream(), setAsciiStream(), setUnicodeStream(), setBlob(), or
setClob(). If you want to re-execute the statement with any large parameter changed to a non-
large parameter, it is necessary to call clearParameters() and set all parameters again. The
reason for this is as follows:

• The driver streams the large data out-of-band to the prepared statement on the server side when
the parameter is set (before execution of the prepared statement).

• Once that has been done, the stream used to read the data on the client side is closed (as per the
JDBC spec), and can't be read from again.

MySQL Connector/J

17

• If a parameter changes from large to non-large, the driver must reset the server-side state of the
prepared statement to allow the parameter that is being changed to take the place of the prior
large value. This removes all of the large data that has already been sent to the server, thus re-
quiring the data to be re-sent, via the setBinaryStream(), setAsciiStream(), setU-
nicodeStream(), setBlob() or setClob() methods.

Consequently, if you want to change the type of a parameter to a non-large one, you must call
clearParameters() and set all parameters of the prepared statement again before it can be re-
executed.

• ResultSet

By default, ResultSets are completely retrieved and stored in memory. In most cases this is the most
efficient way to operate, and due to the design of the MySQL network protocol is easier to imple-
ment. If you are working with ResultSets that have a large number of rows or large values, and can
not allocate heap space in your JVM for the memory required, you can tell the driver to stream the
results back one row at a time.

To enable this functionality, you need to create a Statement instance in the following manner:

stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
java.sql.ResultSet.CONCUR_READ_ONLY);

stmt.setFetchSize(Integer.MIN_VALUE);

The combination of a forward-only, read-only result set, with a fetch size of In-
teger.MIN_VALUE serves as a signal to the driver to stream result sets row-by-row. After this any
result sets created with the statement will be retrieved row-by-row.

There are some caveats with this approach. You will have to read all of the rows in the result set (or
close it) before you can issue any other queries on the connection, or an exception will be thrown.

The earliest the locks these statements hold can be released (whether they be MyISAM table-level
locks or row-level locks in some other storage engine such as InnoDB) is when the statement com-
pletes.

If the statement is within scope of a transaction, then locks are released when the transaction com-
pletes (which implies that the statement needs to complete first). As with most other databases, state-
ments are not complete until all the results pending on the statement are read or the active result set
for the statement is closed.

Therefore, if using streaming results, you should process them as quickly as possible if you want to
maintain concurrent access to the tables referenced by the statement producing the result set.

• ResultSetMetaData

The isAutoIncrement() method only works when using MySQL servers 4.0 and newer.

• Statement

When using versions of the JDBC driver earlier than 3.2.1, and connected to server versions earlier
than 5.0.3, the "setFetchSize()" method has no effect, other than to toggle result set streaming as de-
scribed above.

MySQL does not support SQL cursors, and the JDBC driver doesn't emulate them, so "setCursor-
Name()" has no effect.

1.4.3. Java, JDBC and MySQL Types

MySQL Connector/J

18

MySQL Connector/J is flexible in the way it handles conversions between MySQL data types and Java
data types.

In general, any MySQL data type can be converted to a java.lang.String, and any numerical type can be
converted to any of the Java numerical types, although round-off, overflow, or loss of precision may oc-
cur.

Starting with Connector/J 3.1.0, the JDBC driver will issue warnings or throw DataTruncation excep-
tions as is required by the JDBC specification unless the connection was configured not to do so by us-
ing the property jdbcCompliantTruncation and setting it to false.

The conversions that are always guaranteed to work are listed in the following table:

Connection Properties - Miscellaneous.

These MySQL Data Types Can always be converted to these Java types

CHAR, VARCHAR, BLOB, TEXT, ENUM,
and SET

java.lang.String,
java.io.InputStream,
java.io.Reader, java.sql.Blob,
java.sql.Clob

FLOAT, REAL, DOUBLE PRECISION, NU-
MERIC, DECIMAL, TINYINT, SMALLINT,
MEDIUMINT, INTEGER, BIGINT

java.lang.String, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Double,
java.math.BigDecimal

DATE, TIME, DATETIME, TIMESTAMP java.lang.String, java.sql.Date,
java.sql.Timestamp

Note: round-off, overflow or loss of precision may occur if you choose a Java numeric data type that has
less precision or capacity than the MySQL data type you are converting to/from.

The ResultSet.getObject() method uses the type conversions between MySQL and Java types,
following the JDBC specification where appropriate. The value returned by ResultSet-
MetaData.GetColumnClassName() is also shown below. For more information on the
java.sql.Types classes see Java 2 Platform Types
[http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Types.html].

MySQL Types to Java Types for ResultSet.getObject().

MySQL Type Name Return value of GetColumnClassName

BIT(1) (new in MySQL-5.0) BIT

BIT(> 1) (new in MySQL-5.0) BIT

TINYINT TINYINT

BOOL, BOOLEAN TINYINT

SMALLINT[(M)] [UNSIGNED] SMALLINT [UNSIGNED]

MEDIUMINT[(M)] [UNSIGNED] MEDIUMINT [UNSIGNED]

INT,INTEGER[(M)] [UNSIGNED] INTEGER [UNSIGNED]

BIGINT[(M)] [UNSIGNED] BIGINT [UNSIGNED]

FLOAT[(M,D)] FLOAT

DOUBLE[(M,B)] DOUBLE

DECIMAL[(M[,D])] DECIMAL

DATE DATE

MySQL Connector/J

19

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Types.html

DATETIME DATETIME

TIMESTAMP[(M)] TIMESTAMP

TIME TIME

YEAR[(2|4)] YEAR

CHAR(M) CHAR

VARCHAR(M) [BINARY] VARCHAR

BINARY(M) BINARY

VARBINARY(M) VARBINARY

TINYBLOB TINYBLOB

TINYTEXT VARCHAR

BLOB BLOB

TEXT VARCHAR

MEDIUMBLOB MEDIUMBLOB

MEDIUMTEXT VARCHAR

LONGBLOB LONGBLOB

LONGTEXT VARCHAR

ENUM('value1','value2',...) CHAR

SET('value1','value2',...) CHAR

1.4.4. Using Character Sets and Unicode

All strings sent from the JDBC driver to the server are converted automatically from native Java Uni-
code form to the client character encoding, including all queries sent via Statement.execute(),
Statement.executeUpdate(), Statement.executeQuery() as well as all Prepared-
Statement and CallableStatement parameters with the exclusion of parameters set using set-
Bytes(), setBinaryStream(), setAsciiStream(), setUnicodeStream() and set-
Blob() .

Prior to MySQL Server 4.1, Connector/J supported a single character encoding per connection, which
could either be automatically detected from the server configuration, or could be configured by the user
through the useUnicode and "characterEncoding" properties.

Starting with MySQL Server 4.1, Connector/J supports a single character encoding between client and
server, and any number of character encodings for data returned by the server to the client in Result-
Sets.

The character encoding between client and server is automatically detected upon connection. The encod-
ing used by the driver is specified on the server via the character_set system variable for server
versions older than 4.1.0 and character_set_server for server versions 4.1.0 and newer. For
more information, see ???.

To override the automatically-detected encoding on the client side, use the characterEncoding
property in the URL used to connect to the server.

When specifying character encodings on the client side, Java-style names should be used. The following
table lists Java-style names for MySQL character sets:

MySQL to Java Encoding Name Translations.

MySQL Character Set Name Java-Style Character Encoding Name

MySQL Connector/J

20

ascii US-ASCII

big5 Big5

gbk GBK

sjis SJIS (or Cp932 or MS932 for MySQL Server <
4.1.11)

cp932 Cp932 or MS932 (MySQL Server > 4.1.11)

gb2312 EUC_CN

ujis EUC_JP

euckr EUC_KR

latin1 ISO8859_1

latin2 ISO8859_2

greek ISO8859_7

hebrew ISO8859_8

cp866 Cp866

tis620 TIS620

cp1250 Cp1250

cp1251 Cp1251

cp1257 Cp1257

macroman MacRoman

macce MacCentralEurope

utf8 UTF-8

ucs2 UnicodeBig

Warning. Do not issue the query 'set names' with Connector/J, as the driver will not detect that the
character set has changed, and will continue to use the character set detected during the initial connec-
tion setup.

To allow multiple character sets to be sent from the client, the UTF-8 encoding should be used, either by
configuring utf8 as the default server character set, or by configuring the JDBC driver to use UTF-8
through the characterEncoding property.

1.4.5. Connecting Securely Using SSL

SSL in MySQL Connector/J encrypts all data (other than the initial handshake) between the JDBC
driver and the server. The performance penalty for enabling SSL is an increase in query processing time
between 35% and 50%, depending on the size of the query, and the amount of data it returns.

For SSL Support to work, you must have the following:

• A JDK that includes JSSE (Java Secure Sockets Extension), like JDK-1.4.1 or newer. SSL does not
currently work with a JDK that you can add JSSE to, like JDK-1.2.x or JDK-1.3.x due to the follow-
ing JSSE bug: http://developer.java.sun.com/developer/bugParade/bugs/4273544.html

• A MySQL server that supports SSL and has been compiled and configured to do so, which is
MySQL-4.0.4 or later, see ???, for more information.

• A client certificate (covered later in this section)

MySQL Connector/J

21

http://developer.java.sun.com/developer/bugParade/bugs/4273544.html

You will first need to import the MySQL server CA Certificate into a Java truststore. A sample MySQL
server CA Certificate is located in the SSL subdirectory of the MySQL source distribution. This is what
SSL will use to determine if you are communicating with a secure MySQL server.

To use Java's keytool to create a truststore in the current directory , and import the server's CA certi-
ficate (cacert.pem), you can do the following (assuming that keytool is in your path. The
keytool should be located in the bin subdirectory of your JDK or JRE):

shell> keytool -import -alias mysqlServerCACert -file cacert.pem -keystore truststore

Keytool will respond with the following information:

Enter keystore password: *********
Owner: EMAILADDRESS=walrus@example.com, CN=Walrus, O=MySQL AB, L=Orenburg, ST=Some
-State, C=RU
Issuer: EMAILADDRESS=walrus@example.com, CN=Walrus, O=MySQL AB, L=Orenburg, ST=Som
e-State, C=RU
Serial number: 0
Valid from: Fri Aug 02 16:55:53 CDT 2002 until: Sat Aug 02 16:55:53 CDT 2003
Certificate fingerprints:

MD5: 61:91:A0:F2:03:07:61:7A:81:38:66:DA:19:C4:8D:AB
SHA1: 25:77:41:05:D5:AD:99:8C:14:8C:CA:68:9C:2F:B8:89:C3:34:4D:6C

Trust this certificate? [no]: yes
Certificate was added to keystore

You will then need to generate a client certificate, so that the MySQL server knows that it is talking to a
secure client:

shell> keytool -genkey -keyalg rsa -alias mysqlClientCertificate -keystore keystore

Keytool will prompt you for the following information, and create a keystore named keystore in the
current directory.

You should respond with information that is appropriate for your situation:

Enter keystore password: *********
What is your first and last name?

[Unknown]: Matthews
What is the name of your organizational unit?

[Unknown]: Software Development
What is the name of your organization?

[Unknown]: MySQL AB
What is the name of your City or Locality?

[Unknown]: Flossmoor
What is the name of your State or Province?

[Unknown]: IL
What is the two-letter country code for this unit?

[Unknown]: US
Is <CN=Matthews, OU=Software Development, O=MySQL AB,
L=Flossmoor, ST=IL, C=US> correct?
[no]: y

Enter key password for <mysqlClientCertificate>
(RETURN if same as keystore password):

Finally, to get JSSE to use the keystore and truststore that you have generated, you need to set the fol-
lowing system properties when you start your JVM, replacing path_to_keystore_file with the full path to
the keystore file you created, path_to_truststore_file with the path to the truststore file you created, and
using the appropriate password values for each property.

-Djavax.net.ssl.keyStore=path_to_keystore_file
-Djavax.net.ssl.keyStorePassword=*********
-Djavax.net.ssl.trustStore=path_to_truststore_file
-Djavax.net.ssl.trustStorePassword=*********

MySQL Connector/J

22

You will also need to set useSSL to true in your connection parameters for MySQL Connector/J,
either by adding useSSL=true to your URL, or by setting the property useSSL to true in the
java.util.Properties instance you pass to DriverManager.getConnection().

You can test that SSL is working by turning on JSSE debugging (as detailed below), and look for the
following key events:

...
*** ClientHello, v3.1
RandomCookie: GMT: 1018531834 bytes = { 199, 148, 180, 215, 74, 12, 54, 244, 0, 168, 55, 103, 215, 64, 16, 138, 225, 190, 132, 153, 2, 217, 219, 239, 202, 19, 121, 78 }
Session ID: {}
Cipher Suites: { 0, 5, 0, 4, 0, 9, 0, 10, 0, 18, 0, 19, 0, 3, 0, 17 }
Compression Methods: { 0 }

[write] MD5 and SHA1 hashes: len = 59
0000: 01 00 00 37 03 01 3D B6 90 FA C7 94 B4 D7 4A 0C ...7..=.......J.
0010: 36 F4 00 A8 37 67 D7 40 10 8A E1 BE 84 99 02 D9 6...7g.@........
0020: DB EF CA 13 79 4E 00 00 10 00 05 00 04 00 09 00yN..........
0030: 0A 00 12 00 13 00 03 00 11 01 00
main, WRITE: SSL v3.1 Handshake, length = 59
main, READ: SSL v3.1 Handshake, length = 74
*** ServerHello, v3.1
RandomCookie: GMT: 1018577560 bytes = { 116, 50, 4, 103, 25, 100, 58, 202, 79, 185, 178, 100, 215, 66, 254, 21, 83, 187, 190, 42, 170, 3, 132, 110, 82, 148, 160, 92 }
Session ID: {163, 227, 84, 53, 81, 127, 252, 254, 178, 179, 68, 63, 182, 158, 30, 11, 150, 79, 170, 76, 255, 92, 15, 226, 24, 17, 177, 219, 158, 177, 187, 143}
Cipher Suite: { 0, 5 }
Compression Method: 0

%% Created: [Session-1, SSL_RSA_WITH_RC4_128_SHA]
** SSL_RSA_WITH_RC4_128_SHA
[read] MD5 and SHA1 hashes: len = 74
0000: 02 00 00 46 03 01 3D B6 43 98 74 32 04 67 19 64 ...F..=.C.t2.g.d
0010: 3A CA 4F B9 B2 64 D7 42 FE 15 53 BB BE 2A AA 03 :.O..d.B..S..*..
0020: 84 6E 52 94 A0 5C 20 A3 E3 54 35 51 7F FC FE B2 .nR..\ ..T5Q....
0030: B3 44 3F B6 9E 1E 0B 96 4F AA 4C FF 5C 0F E2 18 .D?.....O.L.\...
0040: 11 B1 DB 9E B1 BB 8F 00 05 00
main, READ: SSL v3.1 Handshake, length = 1712
...

JSSE provides debugging (to STDOUT) when you set the following system property: -
Djavax.net.debug=all This will tell you what keystores and truststores are being used, as well as
what is going on during the SSL handshake and certificate exchange. It will be helpful when trying to
determine what is not working when trying to get an SSL connection to happen.

1.4.6. Using Master/Slave Replication with ReplicationConnection

Starting with Connector/J 3.1.7, we've made available a variant of the driver that will automatically send
queries to a read/write master, or a failover or round-robin loadbalanced set of slaves based on the state
of Connection.getReadOnly() .

An application signals that it wants a transaction to be read-only by calling Connec-
tion.setReadOnly(true), this replication-aware connection will use one of the slave connec-
tions, which are load-balanced per-vm using a round-robin scheme (a given connection is sticky to a
slave unless that slave is removed from service). If you have a write transaction, or if you have a read
that is time-sensitive (remember, replication in MySQL is asynchronous), set the connection to be not
read-only, by calling Connection.setReadOnly(false) and the driver will ensure that further
calls are sent to the master MySQL server. The driver takes care of propagating the current state of auto-
commit, isolation level, and catalog between all of the connections that it uses to accomplish this load
balancing functionality.

To enable this functionality, use the " com.mysql.jdbc.ReplicationDriver " class when con-
figuring your application server's connection pool or when creating an instance of a JDBC driver for
your standalone application. Because it accepts the same URL format as the standard MySQL JDBC
driver, ReplicationDriver does not currently work with java.sql.DriverManager -based
connection creation unless it is the only MySQL JDBC driver registered with the DriverManager .

MySQL Connector/J

23

Here is a short, simple example of how ReplicationDriver might be used in a standalone application.

import java.sql.Connection;
import java.sql.ResultSet;
import java.util.Properties;

import com.mysql.jdbc.ReplicationDriver;

public class ReplicationDriverDemo {

public static void main(String[] args) throws Exception {
ReplicationDriver driver = new ReplicationDriver();

Properties props = new Properties();

// We want this for failover on the slaves
props.put("autoReconnect", "true");

// We want to load balance between the slaves
props.put("roundRobinLoadBalance", "true");

props.put("user", "foo");
props.put("password", "bar");

//
// Looks like a normal MySQL JDBC url, with a comma-separated list
// of hosts, the first being the 'master', the rest being any number
// of slaves that the driver will load balance against
//

Connection conn =
driver.connect("jdbc:mysql://master,slave1,slave2,slave3/test",

props);

//
// Perform read/write work on the master
// by setting the read-only flag to "false"
//

conn.setReadOnly(false);
conn.setAutoCommit(false);
conn.createStatement().executeUpdate("UPDATE some_table");
conn.commit();

//
// Now, do a query from a slave, the driver automatically picks one
// from the list
//

conn.setReadOnly(true);

ResultSet rs = conn.createStatement().executeQuery("SELECT a,b,c FROM some_other_table");

.......
}

}

1.5. Connector/J Notes and Tips

1.5.1. Basic JDBC Concepts

This section provides some general JDBC background.

1.5.1.1. Connecting to MySQL Using the DriverManager Interface

When you are using JDBC outside of an application server, the DriverManager class manages the
establishment of Connections.

The DriverManager needs to be told which JDBC drivers it should try to make Connections with.
The easiest way to do this is to use Class.forName() on the class that implements the
java.sql.Driver interface. With MySQL Connector/J, the name of this class is

MySQL Connector/J

24

com.mysql.jdbc.Driver. With this method, you could use an external configuration file to supply
the driver class name and driver parameters to use when connecting to a database.

The following section of Java code shows how you might register MySQL Connector/J from the
main() method of your application:

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

// Notice, do not import com.mysql.jdbc.*
// or you will have problems!

public class LoadDriver {
public static void main(String[] args) {

try {
// The newInstance() call is a work around for some
// broken Java implementations

Class.forName("com.mysql.jdbc.Driver").newInstance();
} catch (Exception ex) {

// handle the error
}

}

After the driver has been registered with the DriverManager, you can obtain a Connection in-
stance that is connected to a particular database by calling DriverManager.getConnection():

Example 1. Obtaining a connection from the DriverManager

This example shows how you can obtain a Connection instance from the DriverManager. There
are a few different signatures for the getConnection() method. You should see the API document-
ation that comes with your JDK for more specific information on how to use them.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

... try {
Connection conn = DriverManager.getConnection("jdbc:mysql://localhost/test?user=monty&password=greatsqldb");

// Do something with the Connection

....
} catch (SQLException ex) {

// handle any errors
System.out.println("SQLException: " + ex.getMessage());
System.out.println("SQLState: " + ex.getSQLState());
System.out.println("VendorError: " + ex.getErrorCode());

}

Once a Connection is established, it can be used to create Statement and PreparedState-
ment objects, as well as retrieve metadata about the database. This is explained in the following sec-
tions.

1.5.1.2. Using Statements to Execute SQL

Statement objects allow you to execute basic SQL queries and retrieve the results through the Res-
ultSet class which is described later.

To create a Statement instance, you call the createStatement() method on the Connection
object you have retrieved via one of the DriverManager.getConnection() or Data-
Source.getConnection() methods described earlier.

Once you have a Statement instance, you can execute a SELECT query by calling the ex-

MySQL Connector/J

25

ecuteQuery(String) method with the SQL you want to use.

To update data in the database, use the executeUpdate(String SQL) method. This method re-
turns the number of rows affected by the update statement.

If you don't know ahead of time whether the SQL statement will be a SELECT or an UPDATE/INSERT,
then you can use the execute(String SQL) method. This method will return true if the SQL query
was a SELECT, or false if it was an UPDATE, INSERT, or DELETE statement. If the statement was a
SELECT query, you can retrieve the results by calling the getResultSet() method. If the statement
was an UPDATE, INSERT, or DELETE statement, you can retrieve the affected rows count by calling
getUpdateCount() on the Statement instance.

Example 2. Using java.sql.Statement to execute a SELECT query

// assume that conn is an already created JDBC connection
Statement stmt = null;
ResultSet rs = null;

try {
stmt = conn.createStatement();
rs = stmt.executeQuery("SELECT foo FROM bar");

// or alternatively, if you don't know ahead of time that
// the query will be a SELECT...

if (stmt.execute("SELECT foo FROM bar")) {
rs = stmt.getResultSet();

}

// Now do something with the ResultSet
} finally {

// it is a good idea to release
// resources in a finally{} block
// in reverse-order of their creation
// if they are no-longer needed

if (rs != null) {
try {

rs.close();
} catch (SQLException sqlEx) { // ignore }

rs = null;
}

if (stmt != null) {
try {

stmt.close();
} catch (SQLException sqlEx) { // ignore }

stmt = null;
}

}

1.5.1.3. Using CallableStatements to Execute Stored Procedures

Starting with MySQL server version 5.0 when used with Connector/J 3.1.1 or newer, the
java.sql.CallableStatement interface is fully implemented with the exception of the get-
ParameterMetaData() method.

See ???, for more information on MySQL stored procedures.

Connector/J exposes stored procedure functionality through JDBC's CallableStatement interface.

Note. Current versions of MySQL server do not return enough information for the JDBC driver to
provide result set metadata for callable statements. This means that when using CallableState-
ment, ResultSetMetaData may return NULL.

MySQL Connector/J

26

The following example shows a stored procedure that returns the value of inOutParam incremented
by 1, and the string passed in via inputParam as a ResultSet:

Example 3. Stored Procedures

CREATE PROCEDURE demoSp(IN inputParam VARCHAR(255), INOUT inOutParam INT)
BEGIN

DECLARE z INT;
SET z = inOutParam + 1;
SET inOutParam = z;

SELECT inputParam;

SELECT CONCAT('zyxw', inputParam);
END

To use the demoSp procedure with Connector/J, follow these steps:

1. Prepare the callable statement by using Connection.prepareCall() .

Notice that you have to use JDBC escape syntax, and that the parentheses surrounding the paramet-
er placeholders are not optional:

Example 4. Using Connection.prepareCall()

import java.sql.CallableStatement;

...

//
// Prepare a call to the stored procedure 'demoSp'
// with two parameters
//
// Notice the use of JDBC-escape syntax ({call ...})
//

CallableStatement cStmt = conn.prepareCall("{call demoSp(?, ?)}");

cStmt.setString(1, "abcdefg");

Note. Connection.prepareCall() is an expensive method, due to the metadata retrieval
that the driver performs to support output parameters. For performance reasons, you should try to
minimize unnecessary calls to Connection.prepareCall() by reusing CallableState-
ment instances in your code.

2. Register the output parameters (if any exist)

To retrieve the values of output parameters (parameters specified as OUT or INOUT when you cre-
ated the stored procedure), JDBC requires that they be specified before statement execution using
the various registerOutputParameter() methods in the CallableStatement inter-
face:

Example 5. Registering output parameters

import java.sql.Types;
...
//
// Connector/J supports both named and indexed

MySQL Connector/J

27

// output parameters. You can register output
// parameters using either method, as well
// as retrieve output parameters using either
// method, regardless of what method was
// used to register them.
//
// The following examples show how to use
// the various methods of registering
// output parameters (you should of course
// use only one registration per parameter).
//

//
// Registers the second parameter as output, and
// uses the type 'INTEGER' for values returned from
// getObject()
//

cStmt.registerOutParameter(2, Types.INTEGER);

//
// Registers the named parameter 'inOutParam', and
// uses the type 'INTEGER' for values returned from
// getObject()
//

cStmt.registerOutParameter("inOutParam", Types.INTEGER);
...

3. Set the input parameters (if any exist)

Input and in/out parameters are set as for PreparedStatement objects. However,
CallableStatement also supports setting parameters by name:

Example 6. Setting CallableStatement input parameters

...

//
// Set a parameter by index
//

cStmt.setString(1, "abcdefg");

//
// Alternatively, set a parameter using
// the parameter name
//

cStmt.setString("inputParameter", "abcdefg");

//
// Set the 'in/out' parameter using an index
//

cStmt.setInt(2, 1);

//
// Alternatively, set the 'in/out' parameter
// by name
//

cStmt.setInt("inOutParam", 1);

...

4. Execute the CallableStatement, and retrieve any result sets or output parameters.

Although CallableStatement supports calling any of the Statement execute methods

MySQL Connector/J

28

executeUpdate(), executeQuery() or execute()), the most flexible method to call is
execute(), as you do not need to know ahead of time if the stored procedure returns result sets:

Example 7. Retrieving results and output parameter values

...

boolean hadResults = cStmt.execute();

//
// Process all returned result sets
//

while (hadResults) {
ResultSet rs = cStmt.getResultSet();

// process result set
...

hadResults = rs.getMoreResults();
}

//
// Retrieve output parameters
//
// Connector/J supports both index-based and
// name-based retrieval
//

int outputValue = cStmt.getInt(2); // index-based

outputValue = cStmt.getInt("inOutParam"); // name-based

...

1.5.1.4. Retrieving AUTO_INCREMENT Column Values

Before version 3.0 of the JDBC API, there was no standard way of retrieving key values from databases
that supported auto increment or identity columns. With older JDBC drivers for MySQL, you could al-
ways use a MySQL-specific method on the Statement interface, or issue the query SELECT
LAST_INSERT_ID() after issuing an INSERT to a table that had an AUTO_INCREMENT key. Using
the MySQL-specific method call isn't portable, and issuing a SELECT to get the AUTO_INCREMENT
key's value requires another round-trip to the database, which isn't as efficient as possible. The following
code snippets demonstrate the three different ways to retrieve AUTO_INCREMENT values. First, we
demonstrate the use of the new JDBC-3.0 method getGeneratedKeys() which is now the preferred
method to use if you need to retrieve AUTO_INCREMENT keys and have access to JDBC-3.0. The
second example shows how you can retrieve the same value using a standard SELECT
LAST_INSERT_ID() query. The final example shows how updatable result sets can retrieve the
AUTO_INCREMENT value when using the insertRow() method.

Example 8. Retrieving AUTO_INCREMENT column values using
Statement.getGeneratedKeys()

Statement stmt = null;
ResultSet rs = null;

try {

//
// Create a Statement instance that we can use for
// 'normal' result sets assuming you have a
// Connection 'conn' to a MySQL database already
// available

stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,

MySQL Connector/J

29

java.sql.ResultSet.CONCUR_UPDATABLE);

//
// Issue the DDL queries for the table for this example
//

stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
stmt.executeUpdate(

"CREATE TABLE autoIncTutorial ("
+ "priKey INT NOT NULL AUTO_INCREMENT, "
+ "dataField VARCHAR(64), PRIMARY KEY (priKey))");

//
// Insert one row that will generate an AUTO INCREMENT
// key in the 'priKey' field
//

stmt.executeUpdate(
"INSERT INTO autoIncTutorial (dataField) "
+ "values ('Can I Get the Auto Increment Field?')",
Statement.RETURN_GENERATED_KEYS);

//
// Example of using Statement.getGeneratedKeys()
// to retrieve the value of an auto-increment
// value
//

int autoIncKeyFromApi = -1;

rs = stmt.getGeneratedKeys();

if (rs.next()) {
autoIncKeyFromApi = rs.getInt(1);

} else {

// throw an exception from here
}

rs.close();

rs = null;

System.out.println("Key returned from getGeneratedKeys():"
+ autoIncKeyFromApi);

} finally {

if (rs != null) {
try {

rs.close();
} catch (SQLException ex) {

// ignore
}

}

if (stmt != null) {
try {

stmt.close();
} catch (SQLException ex) {

// ignore
}

}
}

Example 9. Retrieving AUTO_INCREMENT column values using SELECT
LAST_INSERT_ID()

Statement stmt = null;
ResultSet rs = null;

try {

//
// Create a Statement instance that we can use for
// 'normal' result sets.

MySQL Connector/J

30

stmt = conn.createStatement();

//
// Issue the DDL queries for the table for this example
//

stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
stmt.executeUpdate(

"CREATE TABLE autoIncTutorial ("
+ "priKey INT NOT NULL AUTO_INCREMENT, "
+ "dataField VARCHAR(64), PRIMARY KEY (priKey))");

//
// Insert one row that will generate an AUTO INCREMENT
// key in the 'priKey' field
//

stmt.executeUpdate(
"INSERT INTO autoIncTutorial (dataField) "
+ "values ('Can I Get the Auto Increment Field?')");

//
// Use the MySQL LAST_INSERT_ID()
// function to do the same thing as getGeneratedKeys()
//

int autoIncKeyFromFunc = -1;
rs = stmt.executeQuery("SELECT LAST_INSERT_ID()");

if (rs.next()) {
autoIncKeyFromFunc = rs.getInt(1);

} else {
// throw an exception from here

}

rs.close();

System.out.println("Key returned from " + "'SELECT LAST_INSERT_ID()': "
+ autoIncKeyFromFunc);

} finally {

if (rs != null) {
try {

rs.close();
} catch (SQLException ex) {

// ignore
}

}

if (stmt != null) {
try {

stmt.close();
} catch (SQLException ex) {

// ignore
}

}
}

Example 10. Retrieving AUTO_INCREMENT column values in Updatable ResultSets

Statement stmt = null;
ResultSet rs = null;

try {

//
// Create a Statement instance that we can use for
// 'normal' result sets as well as an 'updatable'
// one, assuming you have a Connection 'conn' to
// a MySQL database already available
//

stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,

MySQL Connector/J

31

java.sql.ResultSet.CONCUR_UPDATABLE);

//
// Issue the DDL queries for the table for this example
//

stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
stmt.executeUpdate(

"CREATE TABLE autoIncTutorial ("
+ "priKey INT NOT NULL AUTO_INCREMENT, "
+ "dataField VARCHAR(64), PRIMARY KEY (priKey))");

//
// Example of retrieving an AUTO INCREMENT key
// from an updatable result set
//

rs = stmt.executeQuery("SELECT priKey, dataField "
+ "FROM autoIncTutorial");

rs.moveToInsertRow();

rs.updateString("dataField", "AUTO INCREMENT here?");
rs.insertRow();

//
// the driver adds rows at the end
//

rs.last();

//
// We should now be on the row we just inserted
//

int autoIncKeyFromRS = rs.getInt("priKey");

rs.close();

rs = null;

System.out.println("Key returned for inserted row: "
+ autoIncKeyFromRS);

} finally {

if (rs != null) {
try {

rs.close();
} catch (SQLException ex) {

// ignore
}

}

if (stmt != null) {
try {

stmt.close();
} catch (SQLException ex) {

// ignore
}

}
}

When you run the preceding example code, you should get the following output: Key returned from
getGeneratedKeys(): 1 Key returned from SELECT LAST_INSERT_ID(): 1 Key returned for
inserted row: 2 You should be aware, that at times, it can be tricky to use the SELECT
LAST_INSERT_ID() query, as that function's value is scoped to a connection. So, if some other query
happens on the same connection, the value will be overwritten. On the other hand, the getGener-
atedKeys() method is scoped by the Statement instance, so it can be used even if other queries
happen on the same connection, but not on the same Statement instance.

1.5.2. Using Connector/J with J2EE and Other Java Frameworks

MySQL Connector/J

32

This section describes how to use Connector/J in several contexts.

1.5.2.1. General J2EE Concepts

This section provides general background on J2EE concepts that pertain to use of Connector/J.

1.5.2.1.1. Understanding Connection Pooling

Connection pooling is a technique of creating and managing a pool of connections that are ready for use
by any thread that needs them.

This technique of pooling connections is based on the fact that most applications only need a thread to
have access to a JDBC connection when they are actively processing a transaction, which usually take
only milliseconds to complete. When not processing a transaction, the connection would otherwise sit
idle. Instead, connection pooling allows the idle connection to be used by some other thread to do useful
work.

In practice, when a thread needs to do work against a MySQL or other database with JDBC, it requests a
connection from the pool. When the thread is finished using the connection, it returns it to the pool, so
that it may be used by any other threads that want to use it.

When the connection is loaned out from the pool, it is used exclusively by the thread that requested it.
From a programming point of view, it is the same as if your thread called DriverMan-
ager.getConnection() every time it needed a JDBC connection, however with connection pool-
ing, your thread may end up using either a new, or already-existing connection.

Connection pooling can greatly increase the performance of your Java application, while reducing over-
all resource usage. The main benefits to connection pooling are:

• Reduced connection creation time

Although this is not usually an issue with the quick connection setup that MySQL offers compared
to other databases, creating new JDBC connections still incurs networking and JDBC driver over-
head that will be avoided if connections are recycled.

• Simplified programming model

When using connection pooling, each individual thread can act as though it has created its own JD-
BC connection, allowing you to use straight-forward JDBC programming techniques.

• Controlled resource usage

If you don't use connection pooling, and instead create a new connection every time a thread needs
one, your application's resource usage can be quite wasteful and lead to unpredictable behavior un-
der load.

Remember that each connection to MySQL has overhead (memory, CPU, context switches, and so
forth) on both the client and server side. Every connection limits how many resources there are available
to your application as well as the MySQL server. Many of these resources will be used whether or not
the connection is actually doing any useful work!

Connection pools can be tuned to maximize performance, while keeping resource utilization below the
point where your application will start to fail rather than just run slower.

Luckily, Sun has standardized the concept of connection pooling in JDBC through the JDBC-2.0 Op-
tional interfaces, and all major application servers have implementations of these APIs that work fine
with MySQL Connector/J.

MySQL Connector/J

33

Generally, you configure a connection pool in your application server configuration files, and access it
via the Java Naming and Directory Interface (JNDI). The following code shows how you might use a
connection pool from an application deployed in a J2EE application server:

Example 11. Using a connection pool with a J2EE application server

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;

import javax.naming.InitialContext;
import javax.sql.DataSource;

public class MyServletJspOrEjb {

public void doSomething() throws Exception {
/*
* Create a JNDI Initial context to be able to
* lookup the DataSource
*
* In production-level code, this should be cached as
* an instance or static variable, as it can
* be quite expensive to create a JNDI context.
*
* Note: This code only works when you are using servlets
* or EJBs in a J2EE application server. If you are
* using connection pooling in standalone Java code, you
* will have to create/configure datasources using whatever
* mechanisms your particular connection pooling library
* provides.
*/

InitialContext ctx = new InitialContext();

/*
* Lookup the DataSource, which will be backed by a pool
* that the application server provides. DataSource instances
* are also a good candidate for caching as an instance
* variable, as JNDI lookups can be expensive as well.
*/

DataSource ds = (DataSource)ctx.lookup("java:comp/env/jdbc/MySQLDB");

/*
* The following code is what would actually be in your
* Servlet, JSP or EJB 'service' method...where you need
* to work with a JDBC connection.
*/

Connection conn = null;
Statement stmt = null;

try {
conn = ds.getConnection();

/*
* Now, use normal JDBC programming to work with
* MySQL, making sure to close each resource when you're
* finished with it, which allows the connection pool
* resources to be recovered as quickly as possible
*/

stmt = conn.createStatement();
stmt.execute("SOME SQL QUERY");

stmt.close();
stmt = null;

conn.close();
conn = null;

} finally {
/*
* close any jdbc instances here that weren't
* explicitly closed during normal code path, so
* that we don't 'leak' resources...
*/

MySQL Connector/J

34

if (stmt != null) {
try {

stmt.close();
} catch (sqlexception sqlex) {

// ignore -- as we can't do anything about it here
}

stmt = null;
}

if (conn != null) {
try {

conn.close();
} catch (sqlexception sqlex) {

// ignore -- as we can't do anything about it here
}

conn = null;
}

}
}

}

As shown in the example above, after obtaining the JNDI InitialContext, and looking up the DataSource,
the rest of the code should look familiar to anyone who has done JDBC programming in the past.

The most important thing to remember when using connection pooling is to make sure that no matter
what happens in your code (exceptions, flow-of-control, and so forth), connections, and anything created
by them (such as statements or result sets) are closed, so that they may be re-used, otherwise they will be
stranded, which in the best case means that the MySQL server resources they represent (such as buffers,
locks, or sockets) may be tied up for some time, or worst case, may be tied up forever.

What's the Best Size for my Connection Pool?

As with all other configuration rules-of-thumb, the answer is: it depends. Although the optimal size de-
pends on anticipated load and average database transaction time, the optimum connection pool size is
smaller than you might expect. If you take Sun's Java Petstore blueprint application for example, a con-
nection pool of 15-20 connections can serve a relatively moderate load (600 concurrent users) using
MySQL and Tomcat with response times that are acceptable.

To correctly size a connection pool for your application, you should create load test scripts with tools
such as Apache JMeter or The Grinder, and load test your application.

An easy way to determine a starting point is to configure your connection pool's maximum number of
connections to be unbounded, run a load test, and measure the largest amount of concurrently used con-
nections. You can then work backward from there to determine what values of minimum and maximum
pooled connections give the best performance for your particular application.

1.5.2.2. Using Connector/J with Tomcat

The following instructions are based on the instructions for Tomcat-5.x, available at ht-
tp://jakarta.apache.org/tomcat/tomcat-5.0-doc/jndi-datasource-examples-howto.html which is current at
the time this document was written.

First, install the .jar file that comes with Connector/J in $CATALINA_HOME/common/lib so that it is
available to all applications installed in the container.

Next, Configure the JNDI DataSource by adding a declaration resource to
$CATALINA_HOME/conf/server.xml in the context that defines your web application:

<Context>

...

MySQL Connector/J

35

http://jakarta.apache.org/tomcat/tomcat-5.0-doc/jndi-datasource-examples-howto.html
http://jakarta.apache.org/tomcat/tomcat-5.0-doc/jndi-datasource-examples-howto.html

<Resource name="jdbc/MySQLDB"
auth="Container"
type="javax.sql.DataSource"/>

<!-- The name you used above, must match _exactly_ here!

The connection pool will be bound into JNDI with the name
"java:/comp/env/jdbc/MySQLDB"

-->

<ResourceParams name="jdbc/MySQLDB">
<parameter>

<name>factory</name>
<value>org.apache.commons.dbcp.BasicDataSourceFactory</value>

</parameter>

<!-- Don't set this any higher than max_connections on your
MySQL server, usually this should be a 10 or a few 10's
of connections, not hundreds or thousands -->

<parameter>
<name>maxActive</name>
<value>10</value>

</parameter>

<!-- You don't want to many idle connections hanging around
if you can avoid it, only enough to soak up a spike in
the load -->

<parameter>
<name>maxIdle</name>
<value>5</value>

</parameter>

<!-- Don't use autoReconnect=true, it's going away eventually
and it's a crutch for older connection pools that couldn't
test connections. You need to decide whether your application is
supposed to deal with SQLExceptions (hint, it should), and
how much of a performance penalty you're willing to pay
to ensure 'freshness' of the connection -->

<parameter>
<name>validationQuery</name>
<value>SELECT 1</value>

</parameter>

<!-- The most conservative approach is to test connections
before they're given to your application. For most applications
this is okay, the query used above is very small and takes
no real server resources to process, other than the time used
to traverse the network.

If you have a high-load application you'll need to rely on
something else. -->

<parameter>
<name>testOnBorrow</name>
<value>true</value>

</parameter>

<!-- Otherwise, or in addition to testOnBorrow, you can test
while connections are sitting idle -->

<parameter>
<name>testWhileIdle</name>
<value>true</value>

</parameter>

<!-- You have to set this value, otherwise even though
you've asked connections to be tested while idle,
the idle evicter thread will never run -->

<parameter>
<name>timeBetweenEvictionRunsMillis</name>
<value>10000</value>

</parameter>

<!-- Don't allow connections to hang out idle too long,
never longer than what wait_timeout is set to on the
server...A few minutes or even fraction of a minute

MySQL Connector/J

36

is sometimes okay here, it depends on your application
and how much spikey load it will see -->

<parameter>
<name>minEvictableIdleTimeMillis</name>
<value>60000</value>

</parameter>

<!-- Username and password used when connecting to MySQL -->

<parameter>
<name>username</name>
<value>someuser</value>

</parameter>

<parameter>
<name>password</name>
<value>somepass</value>

</parameter>

<!-- Class name for the Connector/J driver -->

<parameter>
<name>driverClassName</name>
<value>com.mysql.jdbc.Driver</value>

</parameter>

<!-- The JDBC connection url for connecting to MySQL, notice
that if you want to pass any other MySQL-specific parameters
you should pass them here in the URL, setting them using the
parameter tags above will have no effect, you will also
need to use & to separate parameter values as the
ampersand is a reserved character in XML -->

<parameter>
<name>url</name>
<value>jdbc:mysql://localhost:3306/test</value>

</parameter>

</ResourceParams>
</Context>

In general, you should follow the installation instructions that come with your version of Tomcat, as the
way you configure datasources in Tomcat changes from time-to-time, and unfortunately if you use the
wrong syntax in your XML file, you will most likely end up with an exception similar to the following:

Error: java.sql.SQLException: Cannot load JDBC driver class 'null ' SQL
state: null

1.5.2.3. Using Connector/J with JBoss

These instructions cover JBoss-4.x. To make the JDBC driver classes available to the application server,
copy the .jar file that comes with Connector/J to the lib directory for your server configuration (which
is usually called default). Then, in the same configuration directory, in the subdirectory named de-
ploy, create a datasource configuration file that ends with "-ds.xml", which tells JBoss to deploy this file
as a JDBC Datasource. The file should have the following contents:

<datasources>
<local-tx-datasource>

<!-- This connection pool will be bound into JNDI with the name
"java:/MySQLDB" -->

<jndi-name>MySQLDB</jndi-name>
<connection-url>jdbc:mysql://localhost:3306/dbname</connection-url>
<driver-class>com.mysql.jdbc.Driver</driver-class>
<user-name>user</user-name>
<password>pass</password>

<min-pool-size>5</min-pool-size>

<!-- Don't set this any higher than max_connections on your
MySQL server, usually this should be a 10 or a few 10's
of connections, not hundreds or thousands -->

MySQL Connector/J

37

<max-pool-size>20</max-pool-size>

<!-- Don't allow connections to hang out idle too long,
never longer than what wait_timeout is set to on the
server...A few minutes is usually okay here,
it depends on your application
and how much spikey load it will see -->

<idle-timeout-minutes>5</idle-timeout-minutes>

<!-- If you're using Connector/J 3.1.8 or newer, you can use
our implementation of these to increase the robustness
of the connection pool. -->

<exception-sorter-class-name>com.mysql.jdbc.integration.jboss.ExtendedMysqlExceptionSorter</exception-sorter-class-name>
<valid-connection-checker-class-name>com.mysql.jdbc.integration.jboss.MysqlValidConnectionChecker</valid-connection-checker-class-name>

</local-tx-datasource>
</datasources>

1.5.3. Common Problems and Solutions

There are a few issues that seem to be commonly encountered often by users of MySQL Connector/J.
This section deals with their symptoms, and their resolutions.

Questions

• 1.5.3.1: When I try to connect to the database with MySQL Connector/J, I get the following excep-
tion:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0

What's going on? I can connect just fine with the MySQL command-line client.

• 1.5.3.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

• 1.5.3.3: I'm trying to use MySQL Connector/J in an applet or application and I get an exception sim-
ilar to:

SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?

(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0

• 1.5.3.4: I have a servlet/application that works fine for a day, and then stops working overnight

• 1.5.3.5: I'm trying to use JDBC-2.0 updatable result sets, and I get an exception saying my result set
is not updatable.

Questions and Answers

1.5.3.1: When I try to connect to the database with MySQL Connector/J, I get the following excep-
tion:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0

What's going on? I can connect just fine with the MySQL command-line client.

MySQL Connector/J

38

MySQL Connector/J must use TCP/IP sockets to connect to MySQL, as Java does not support Unix Do-
main Sockets. Therefore, when MySQL Connector/J connects to MySQL, the security manager in
MySQL server will use its grant tables to determine whether the connection should be allowed.

You must add the necessary security credentials to the MySQL server for this to happen, using the
GRANT statement to your MySQL Server. See ???, for more information.

Note. Testing your connectivity with the mysql command-line client will not work unless you add the
--host flag, and use something other than localhost for the host. The mysql command-line client
will use Unix domain sockets if you use the special hostname localhost. If you are testing con-
nectivity to localhost, use 127.0.0.1 as the hostname instead.

Warning. Changing privileges and permissions improperly in MySQL can potentially cause your serv-
er installation to not have optimal security properties.

1.5.3.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

There are three possible causes for this error:

• The Connector/J driver is not in your CLASSPATH, see Section 1.2, “Installing Connector/J”.

• The format of your connection URL is incorrect, or you are referencing the wrong JDBC driver.

• When using DriverManager, the jdbc.drivers system property has not been populated with the
location of the Connector/J driver.

1.5.3.3: I'm trying to use MySQL Connector/J in an applet or application and I get an exception
similar to:

SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?

(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0

Either you're running an Applet, your MySQL server has been installed with the "--skip-networking" op-
tion set, or your MySQL server has a firewall sitting in front of it.

Applets can only make network connections back to the machine that runs the web server that served the
.class files for the applet. This means that MySQL must run on the same machine (or you must have
some sort of port re-direction) for this to work. This also means that you will not be able to test applets
from your local file system, you must always deploy them to a web server.

MySQL Connector/J can only communicate with MySQL using TCP/IP, as Java does not support Unix
domain sockets. TCP/IP communication with MySQL might be affected if MySQL was started with the
"--skip-networking" flag, or if it is firewalled.

If MySQL has been started with the "--skip-networking" option set (the Debian Linux package of
MySQL server does this for example), you need to comment it out in the file /etc/mysql/my.cnf or /
etc/my.cnf. Of course your my.cnf file might also exist in the data directory of your MySQL server, or
anywhere else (depending on how MySQL was compiled for your system). Binaries created by MySQL
AB always look in /etc/my.cnf and [datadir]/my.cnf. If your MySQL server has been firewalled, you
will need to have the firewall configured to allow TCP/IP connections from the host where your Java
code is running to the MySQL server on the port that MySQL is listening to (by default, 3306).

1.5.3.4: I have a servlet/application that works fine for a day, and then stops working overnight

MySQL Connector/J

39

MySQL closes connections after 8 hours of inactivity. You either need to use a connection pool that
handles stale connections or use the "autoReconnect" parameter (see Section 1.4.1, “Driver/Datasource
Class Names, URL Syntax and Configuration Properties for Connector/J”).

Also, you should be catching SQLExceptions in your application and dealing with them, rather than
propagating them all the way until your application exits, this is just good programming practice.
MySQL Connector/J will set the SQLState (see java.sql.SQLException.getSQLState() in
your APIDOCS) to "08S01" when it encounters network-connectivity issues during the processing of a
query. Your application code should then attempt to re-connect to MySQL at this point.

The following (simplistic) example shows what code that can handle these exceptions might look like:

Example 12. Example of transaction with retry logic

public void doBusinessOp() throws SQLException {
Connection conn = null;
Statement stmt = null;
ResultSet rs = null;

//
// How many times do you want to retry the transaction
// (or at least _getting_ a connection)?
//
int retryCount = 5;

boolean transactionCompleted = false;

do {
try {

conn = getConnection(); // assume getting this from a
// javax.sql.DataSource, or the
// java.sql.DriverManager

conn.setAutoCommit(false);

//
// Okay, at this point, the 'retry-ability' of the
// transaction really depends on your application logic,
// whether or not you're using autocommit (in this case
// not), and whether you're using transacational storage
// engines
//
// For this example, we'll assume that it's _not_ safe
// to retry the entire transaction, so we set retry count
// to 0 at this point
//
// If you were using exclusively transaction-safe tables,
// or your application could recover from a connection going
// bad in the middle of an operation, then you would not
// touch 'retryCount' here, and just let the loop repeat
// until retryCount == 0.
//
retryCount = 0;

stmt = conn.createStatement();

String query = "SELECT foo FROM bar ORDER BY baz";

rs = stmt.executeQuery(query);

while (rs.next()) {
}

rs.close();
rs = null;

stmt.close();
stmt = null;

conn.commit();
conn.close();
conn = null;

MySQL Connector/J

40

transactionCompleted = true;
} catch (SQLException sqlEx) {

//
// The two SQL states that are 'retry-able' are 08S01
// for a communications error, and 40001 for deadlock.
//
// Only retry if the error was due to a stale connection,
// communications problem or deadlock
//

String sqlState = sqlEx.getSQLState();

if ("08S01".equals(sqlState) || "40001".equals(sqlState)) {
retryCount--;

} else {
retryCount = 0;

}
} finally {

if (rs != null) {
try {

rs.close();
} catch (SQLException sqlEx) {

// You'd probably want to log this . . .
}

}

if (stmt != null) {
try {

stmt.close();
} catch (SQLException sqlEx) {

// You'd probably want to log this as well . . .
}

}

if (conn != null) {
try {

//
// If we got here, and conn is not null, the
// transaction should be rolled back, as not
// all work has been done

try {
conn.rollback();

} finally {
conn.close();

}
} catch (SQLException sqlEx) {

//
// If we got an exception here, something
// pretty serious is going on, so we better
// pass it up the stack, rather than just
// logging it. . .

throw sqlEx;
}

}
}

} while (!transactionCompleted && (retryCount > 0));
}

Note. Use of the autoReconnect option is not recommended because there is no safe method of re-
connecting to the MySQL server without risking some corruption of the connection state or database
state information. Instead, you should use a connection pool which will enable your application to con-
nect to the MySQL server using an available connection from the pool. The autoReconnect facility
is deprecated, and may be removed in a future release.

1.5.3.5: I'm trying to use JDBC-2.0 updatable result sets, and I get an exception saying my result
set is not updatable.

Because MySQL does not have row identifiers, MySQL Connector/J can only update result sets that
have come from queries on tables that have at least one primary key, the query must select every
primary key and the query can only span one table (that is, no joins). This is outlined in the JDBC spe-

MySQL Connector/J

41

cification.

Note that this issue only occurs when using updatable result sets, and is caused because Connector/J is
unable to guarantee that it can identify the correct rows within the result set to be updated without hav-
ing a unique reference to each row. There is no requirement to have a unique field on a table if you are
using UPDATE or DELETE statements on a table where you can individually specify the criteria to be
matched using a WHERE clause.

1.6. Connector/J Support

1.6.1. Connector/J Community Support

MySQL AB provides assistance to the user community by means of its mailing lists. For Connector/J re-
lated issues, you can get help from experienced users by using the MySQL and Java mailing list.
Archives and subscription information is available online at http://lists.mysql.com/java.

For information about subscribing to MySQL mailing lists or to browse list archives, visit ht-
tp://lists.mysql.com/. See MySQL Mailing Lists
[http://dev.mysql.com/doc/refman/5.1/en/mailing-lists.html].

Community support from experienced users is also available through the JDBC Forum
[http://forums.mysql.com/list.php?39]. You may also find help from other users in the other MySQL
Forums, located at http://forums.mysql.com. See MySQL Community Support at the MySQL Forums
[http://dev.mysql.com/doc/refman/5.1/en/forums.html].

1.6.2. How to Report Connector/J Bugs or Problems

The normal place to report bugs is http://bugs.mysql.com/, which is the address for our bugs database.
This database is public, and can be browsed and searched by anyone. If you log in to the system, you
will also be able to enter new reports.

If you have found a sensitive security bug in MySQL, you can send email to security_at_mysql.com
[mailto:security_at_mysql.com].

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for
yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix
the bug in the next release.

This section will help you write your report correctly so that you don't waste your time doing things that
may not help us much or at all.

If you have a repeatable bug report, please report it to the bugs database at http://bugs.mysql.com/. Any
bug that we are able to repeat has a high chance of being fixed in the next MySQL release.

To report other problems, you can use one of the MySQL mailing lists.

Remember that it is possible for us to respond to a message containing too much information, but not to
one containing too little. People often omit facts because they think they know the cause of a problem
and assume that some details don't matter.

A good principle is this: If you are in doubt about stating something, state it. It is faster and less trouble-
some to write a couple more lines in your report than to wait longer for the answer if we must ask you to
provide information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of Connector/J or
MySQL used, and (b) not fully describing the platform on which Connector/J is installed (including the
JVM version, and the platform type and version number that MySQL itself is installed on).

MySQL Connector/J

42

http://lists.mysql.com/java
http://lists.mysql.com/
http://lists.mysql.com/
http://dev.mysql.com/doc/refman/5.1/en/mailing-lists.html
http://forums.mysql.com/list.php?39
http://forums.mysql.com
http://dev.mysql.com/doc/refman/5.1/en/forums.html
http://bugs.mysql.com/
mailto:security_at_mysql.com
http://bugs.mysql.com/

This is highly relevant information, and in 99 cases out of 100, the bug report is useless without it. Very
often we get questions like, “Why doesn't this work for me?” Then we find that the feature requested
wasn't implemented in that MySQL version, or that a bug described in a report has already been fixed in
newer MySQL versions.

Sometimes the error is platform-dependent; in such cases, it is next to impossible for us to fix anything
without knowing the operating system and the version number of the platform.

If at all possible, you should create a repeatable, stanalone testcase that doesn't involve any third-party
classes.

To streamline this process, we ship a base class for testcases with Connector/J, named
'com.mysql.jdbc.util.BaseBugReport'. To create a testcase for Connector/J using this class,
create your own class that inherits from com.mysql.jdbc.util.BaseBugReport and override
the methods setUp(), tearDown() and runTest().

In the setUp() method, create code that creates your tables, and populates them with any data needed
to demonstrate the bug.

In the runTest() method, create code that demonstrates the bug using the tables and data you created
in the setUp method.

In the tearDown() method, drop any tables you created in the setUp() method.

In any of the above three methods, you should use one of the variants of the getConnection()
method to create a JDBC connection to MySQL:

• getConnection() - Provides a connection to the JDBC URL specified in getUrl(). If a con-
nection already exists, that connection is returned, otherwise a new connection is created.

• getNewConnection() - Use this if you need to get a new connection for your bug report (i.e.
there's more than one connection involved).

• getConnection(String url) - Returns a connection using the given URL.

• getConnection(String url, Properties props) - Returns a connection using the
given URL and properties.

If you need to use a JDBC URL that is different from 'jdbc:mysql:///test', override the method
getUrl() as well.

Use the assertTrue(boolean expression) and assertTrue(String failureMes-
sage, boolean expression) methods to create conditions that must be met in your testcase
demonstrating the behavior you are expecting (vs. the behavior you are observing, which is why you are
most likely filing a bug report).

Finally, create a main() method that creates a new instance of your testcase, and calls the run meth-
od:

public static void main(String[] args) throws Exception {
new MyBugReport().run();

}

Once you have finished your testcase, and have verified that it demonstrates the bug you are reporting,
upload it with your bug report to http://bugs.mysql.com/.

1.6.3. Connector/J Change History

MySQL Connector/J

43

http://bugs.mysql.com/

The Connector/J Change History (Changelog) is located with the main Changelog for MySQL. See
MySQL Connector/J Change History [http://dev.mysql.com/doc/refman/5.1/en/cj-news.html].

MySQL Connector/J

44

http://dev.mysql.com/doc/refman/5.1/en/cj-news.html

	1. MySQL Connector/J
	Table of Contents
	1.1. Connector/J Versions
	1.1.1. Java Versions Supported

	1.2. Installing Connector/J
	1.2.1. Installing Connector/J from a Binary Distribution
	1.2.2. Installing the Driver and Configuring the CLASSPATH
	1.2.3. Upgrading from an Older Version
	1.2.3.1. Upgrading from MySQL Connector/J 3.0 to 3.1
	1.2.3.2. JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer

	1.2.4. Installing from the Development Source Tree

	1.3. Connector/J Examples
	1.4. Connector/J (JDBC) Reference
	1.4.1. Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J
	1.4.2. JDBC API Implementation Notes
	1.4.3. Java, JDBC and MySQL Types
	1.4.4. Using Character Sets and Unicode
	1.4.5. Connecting Securely Using SSL
	1.4.6. Using Master/Slave Replication with ReplicationConnection

	1.5. Connector/J Notes and Tips
	1.5.1. Basic JDBC Concepts
	1.5.1.1. Connecting to MySQL Using the DriverManager Interface
	1.5.1.2. Using Statements to Execute SQL
	1.5.1.3. Using CallableStatements to Execute Stored Procedures
	1.5.1.4. Retrieving AUTO_INCREMENT Column Values

	1.5.2. Using Connector/J with J2EE and Other Java Frameworks
	1.5.2.1. General J2EE Concepts
	1.5.2.1.1. Understanding Connection Pooling

	1.5.2.2. Using Connector/J with Tomcat
	1.5.2.3. Using Connector/J with JBoss

	1.5.3. Common Problems and Solutions

	1.6. Connector/J Support
	1.6.1. Connector/J Community Support
	1.6.2. How to Report Connector/J Bugs or Problems
	1.6.3. Connector/J Change History

