
Musical M IDI Accompanim ent

MmA
Reference Manual

Bob van der Poel
Wynndel, BC, Canada

bvdp@uniserve.com

December 2, 2004



Table O f Contents

1 Overview and Introduction 7
1.1 License, Version and Legalities . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 7
1.2 InstallingMmA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 RunningMmA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 9
1.5 Theory Of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 9
1.6 Case Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 10

2 RunningMmA 12
2.1 Command Line Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 12
2.2 Lines and Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 14
2.3 Programming Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 14

3 Tracks and Channels 15
3.1 MmA Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Track Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 15
3.3 Track Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 16

3.3.1 Drum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Chord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
3.3.3 Arpeggio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17
3.3.4 Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
3.3.5 Bass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
3.3.6 Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.7 Solo and Melody . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 18

3.4 Silencing a Track . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 18

4 Patterns 19
4.1 Defining a Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 19

4.1.1 Bass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
4.1.2 Chord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
4.1.3 Arpeggio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23

2



Table O f Contents MmA

4.1.4 Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.5 Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
4.1.6 Drum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.7 Drum Tone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

4.2 Including Existing Patterns in New Definitions . . . . . . . .. . . . . . . . . . . . . . . 26
4.3 Multiplying and Shifting Patterns . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 26

5 Sequences 30
5.1 SeqClear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 31
5.2 SeqRnd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 32
5.3 SeqNoRnd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 33
5.4 SeqSize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 33

6 Grooves 34
6.1 Creating A Groove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 34
6.2 Using A Groove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 35

6.2.1 Overlay Grooves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 36
6.2.2 Library Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 37

7 Riffs 38
7.1 Riff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 38
7.2 Multiple Riffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 39

8 Musical Data Format 41
8.1 Bar Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 41
8.2 Bar Repeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 42
8.3 Chords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 42
8.4 Rests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 43
8.5 Case Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 44

9 Lyrics 45
9.1 Lyric Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 45

9.1.1 Event Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 46
9.1.2 Word Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 46

9.2 Setting Lyrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 46

10 Solo and Melody Tracks 50
10.1 Note Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 51

10.1.1 Notes on Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 52
10.1.2 Tilde Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 53
10.1.3 Using Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 54
10.1.4 Other Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 54

10.2 KeySig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 54
10.3 AutoSoloTracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 55
10.4 Drum Solo Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 55
10.5 Mallet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 56

3



Table O f Contents MmA

10.5.1 Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 56
10.5.2 Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 57

11 Chord Voicing 58
11.1 Voicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 58

11.1.1 Voicing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 59
11.1.2 Voicing Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 60
11.1.3 Voicing Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 60
11.1.4 Voicing Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 60
11.1.5 Voicing Dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 61
11.1.6 Voicing Rmove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 61

11.2 Compress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 61
11.3 DupRoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 62
11.4 Invert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 62
11.5 Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63
11.6 Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63

12 Tempo and Timing 65
12.1 Tempo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 65
12.2 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 66
12.3 TimeSig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 66
12.4 BeatAdjust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 67
12.5 Fermata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 68
12.6 Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 69

13 Volume and Dynamics 72
13.1 Accent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 73
13.2 AdjustVolume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 74
13.3 Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 74
13.4 Cresc and Decresc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 74
13.5 RVolume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 75
13.6 Saving and Restoring Volumes . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 76

14 Repeats 77

15 Variables, Conditionals and Jumps 79
15.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 79

15.1.1 Set [string] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 80
15.1.2 Mset [lines] MsetEnd/EndMset . . . . . . . . . . . . . . . . . . .. . . . . . . . 80
15.1.3 UnSet VariableName . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 80
15.1.4 ShowVars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 80
15.1.5 Inc and Dec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 81
15.1.6 VExpand On or Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 81

15.2 Predefined Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 82
15.3 Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 83

4



Table O f Contents MmA

15.4 Goto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 85

16 Low Level MIDI Commands 86
16.1 Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 86
16.2 ChannelPref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 87
16.3 ChShare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 87
16.4 MIDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 88
16.5 MidiFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 89
16.6 MIDISeq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 90
16.7 MIDIVoice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 92
16.8 MIDIClear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 93
16.9 MIDIinc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 93
16.10 Pan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 95
16.11 Portamento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 96
16.12 ChannelVolume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 96

17 Other Commands and Directives 97
17.1 Articulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 97
17.2 Copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 98
17.3 Comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 98
17.4 Debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 99
17.5 Delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 100
17.6 Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 100
17.7 Duplicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 101
17.8 Harmony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 101
17.9 HarmonyOnly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 102
17.10 Octave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 103
17.11 Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 103
17.12 On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 104
17.13 Print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 104
17.14 PrintActive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 104
17.15 RSkip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 104
17.16 RTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 105
17.17 ScaleType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 106
17.18 Seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 106
17.19 Strum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 107
17.20 Transpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 107
17.21 Unify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 107
17.22 Voice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 108
17.23 VoiceTr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 109

18 Begin/End Blocks 110
18.1 Begin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 110
18.2 End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 111

5



Table O f Contents MmA

19 Documentation Strings 112
19.1 Doc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 112
19.2 Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 112

20 Paths, Files and Libraries 113
20.1 File Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 113
20.2 Eof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 114
20.3 LibPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 114
20.4 OutPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 115
20.5 Include . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 115
20.6 IncPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 116
20.7 Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 116
20.8 MmaStart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 117
20.9 MmaEnd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 118
20.10 RC Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 118
20.11 Library Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 119

21 Creating Effects 120
21.1 Overlapping Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 120
21.2 Jungle Birds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 121

22 Frequency Asked Questions 122
22.1 AABA Song Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 122
22.2 Where’s the GUI? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 123
22.3 Where’s the manual index? . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 123

A Symbols and Constants 124
A.1 Chord Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 124
A.2 MIDI Voices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 127

A.2.1 Voices, Alphabetically . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 127
A.2.2 Voices, By MIDI Value . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 128

A.3 Drum Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 130
A.3.1 Drum Notes, Alphabetically . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 130
A.3.2 Drum Notes, by MIDI Value . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 130

A.4 MIDI Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 132
A.4.1 Controllers, Alphabetically . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 132
A.4.2 Controllers, by Value . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 133

B Command Summary 135

6



Chapter 1

Overview and Introduction

Musical MIDI Accompaniment,MmA1, generates standard MIDI2 files which can be used as a backup track
for a soloist. It was written especially for me—I am an aspiring saxophonist and wanted something to
practice my jazz solos. WithMmA I can create a track based on the chords in a song, transpose itto the
correct key for my instrument, and play my very bad improvisations until they get a bit better.

I also have a small combo group which is always missing at least one player. WithMmA generated tracks
we can practice and perform even if a rhythm player is missing. This all works much better than I expected
when I started to write the program.

1.1 License, Version and Legalities

The programMmA was written and is copyright Robert van der Poel, 2002—2004.

This program, the accompanying documentation, and libraryfiles can be freely distributed according to
the terms of the GNU General Public License (see the distributed file “COPYING”).

If you enjoy the program, make enhancements, find bugs, etc. send a note to me atbvdp@uniserve.com ;
or a postcard (or even money) to PO Box 57, Wynndel, BC, CanadaV0B 2N0.

The current version of this package is maintained at:http://mypage.uniserve.com/˜bvdp/mma/mma.
html .

This document reflects version 0.12 ofMmA .

Warning: This program is currently in a beta state. The commands used in the input files, the
output, the overall logic and anything else you can think of might change in the future.

This manual most likely has lots of errors. Spelling, grammar, and probably a number of the
examples need fixing. Please give me a hand and report anything. . . it’ll make it much easier
for me to generate a really good product for all of us to enjoy.

1Musical MIDI Accompaniment and the short formMmA in the distinctive script are names for a program written by Bob van
der Poel. The “MIDI Manufacturers Association, Inc.” uses the acronym MMA, but there is no association between the two.

2MIDI is an acronym for Musical Instrument Digital Interface.

7



1.2 Installing MmA Overview and Introduction

1.2 Installing MmA

MmA is a Python program developed with version 2.3 of Python. At the very least you will need this version
(or later) of Python!

To play the MIDI files you’ll need a MIDI player. Pmidi, tse3play, and many others are available for Linux
systems. For Windows and Mac systems I’m sure there are many,many choices.

You’ll need a text editor to create input files.

MmA consists of a variety of bits and pieces:

� The executable Python script, mma, must somewhere in your path. For users running a Windows
system, please check our website for details on how to install on these systems.3

� A number of Python modules. These should all be installed under the directory/usr/local/
share/mma/modules .

� A number of library files defining standard rhythms. These should all be installed under the directory
/usr/local/share/mma/lib/stdlib .

The script “install” will (hopefully) installMmA properly for you. It assumes that main script is to be
installed in/usr/local/bin and the support files in/usr/local/share/mma . If you want an alternate
location, you can edit the paths in the script. The only supported alternate to use is/usr/share/mma .

In addition, youcan runMmA from the directory created by the untar. This is not recommended, but will
show some ofMmA ’s stuff.

You should be “root” to run the install script.

1.3 RunningMmA

For details on the command line operations inMmA please refer to chapter 2.

To create a MIDI file you need to:

1. Create a text file (also referred to as the “input file”) withinstructions whichMmA understands. This
includes the chord structure of the song, the rhythm to use, the tempo, etc. The file can be created
with any suitable text editor.

2. Process the input file. From a command line the instruction:

mma myfile <ENTER>

will invoke MmA and, assuming no errors are found, create a MIDI file “myfile.mid”.

3. Play the MIDI file with any suitable MIDI player.

3If someone using a Mac system could let me know how to install on this system I’d be glad to include those details on my
website.

8



1.4 Comments Overview and Introduction

4. Edit the input file again and again until you get the perfecttrack.

5. Share any patterns, sequences and grooves with the authorso they can be included in future releases!

An input file consists of the following information:

1. MmA directives. These includeTempo, Time, Volume, etc. See chapter 17. .

2. Pattern, SequenceandGrooveSee chapters 4, 5 and 6.

3. Music information. See chapter 8.

4. Comment lines and blank lines. See below.

Items 1 to 3 are detailed later in this manual. Please read them before you get too involved in this program.

1.4 Comments

We do believe that proper indentation, white space and comments are agood thing. But, in most casesMmA
really doesn’t care:

� Any leading space or tab characters are ignored,

� Multiple tabs and other white space are treated as single characters,

� Any blank lines in the input file are ignored.

Each line is initially parsed for comments. A comment is anything following a “//” (2 forward slashes).4

Comments are stripped from the input stream. Lines startingwith theCommentdirective are also ignored.
See theCommentdiscussion for details (see page 98).

1.5 Theory Of Operation

To understand howMmA works it’s easiest to look at the initial development concept.Initially, a program
was wanted which would take a file which looked something like:

Tempo 120
Fm
C7
...

and end up with a MIDI file which played the specified chords over a drum track.

Of course, after starting this “simple” project a lot of complexities developed.

4We wanted to use “#” for comments, but that sign is used for “sharps” in chord notation.

9



1.6 Case Sensitivity Overview and Introduction

First, the chord/bar specifications. Just having a single chord per bar doesn’t work—many songs have
more than one chord per bar. Second, what is the rhythm of the chords? What about a bass line? Oh, and
what drum track?

Well, things got more complex after that. At a bare minimum, we needed the ability to:

� Be able to specify multiple chords per bar,

� Be able to define different patterns for chords, bass lines and drum tracks,

� Make the input files easy to create and debug,

� Provide a reusable library that a user could simply plug in, or modify.

From these simple needsMmA was created.

The basic building blocks ofMmA arePatterns. A pattern is a specification which tellsMmA what notes of a
chord to play, the start point in a bar for the chord/notes, and the duration and the volume of the notes.

MmA patterns are combined intoSequences. This lets you create multi-bar rhythms.

A collection of patterns can be saved and recalled asGrooves. This makes it easy to pre-define complex
rhythms in library files and incorporate them into your song with a simple two word command.

MmA is bar or measure based (we use the words interchangeably in this document). This means thatMmA
processes your song one bar at a time. The music specificationlines all assume that you are specifying a
single bar of music. The number of beats per bar can be adjusted; however, all chord changes must fall on
a beat division (the playing of the chord or drum note can occur anywhere in the bar).

To make the input files look more musical,MmA supportsRepeatsandRepeatEndings. However, complex-
ities like D.S. and Coda are not internally supported (but can be created by using theGotocommand).

1.6 Case Sensitivity

Just about everything in aMmA file is case insensitive.

This means that the command:

Tempo 120

could be entered in your file as:

TEMPO 120

or even

TeMpO 120

for the exact same results.

Names for patterns, and grooves are also case insensitive.

10



1.6 Case Sensitivity Overview and Introduction

The only exceptions are the names for chords, notes inSolos, and filenames. In keeping with standard
chord notation, chord names are in mixed case; this is detailed in Chapter 8. Filenames are covered in
Chapter 20.

11



Chapter 2

Running MmA

MmA is a command line program. To run it, simply type the program name followed by the required options.
For example,

mma test

processes the file “test”1 and creates the MIDI file “test.mid”.

2.1 Command Line Options

The following command line options are available:

Option Description

-v Show program’s version number and exit.

-d Enable LOTS of debugging messages. This option is mainly designed for program
development and may not be useful to users.

-o A debug subset. This option forces the display of complete filenames/paths as they
are opened for reading. This can be quite helpful in determining which library files
are being used.

-p Display patterns as they are defined. The result of this output is not exactly a duplicate
of your original definitions. Most notable are that the note duration is listed in MIDI
ticks, and symbolic drum note names are listed with their numeric equivalents.

-s Display sequence info during run. This shows the expanded lists used in sequences.
Useful if you have used sequences shorter (or longer) than the current sequence
length.

1Actually, the file “test” or “test.mma” is processed. Pleaseread section 20.1 (see page 113).

12



2.1 Command L ine Options Running MmA

-r Display running progress. The bar numbers are displayed as they are created com-
plete with the original input line. Don’t be confused by multiple listing of “*” lines.
For example the line

33 Cm * 2
would be displayed as:

88: 33 Cm * 2
89: 33 Cm * 2

This makes perfect sense if you remember that the same line was used to create both
bars 88 and 89.

-n Disable generation of MIDI output. This is useful for doing atest run or to check for
syntax errors in your script.

-e Show parsed/expanded lines. SinceMmA does some internal fiddling with input lines,
you may find this option useful in finding mismatchedBeginblocks, etc.

-c Display the tracks allocated and the MIDI channel assignments after processing the
input file. No output is generated.

-mBARS Set the maximum number of bars which can be generated. The default setting is 500
bars (a long song!2). This setting is needed since you can create infinite loops by
improper use of thegotocommand. If your song really is longer than 500 bars use
this option to increase the permitted size.

-g Update the library database for the files in theLibPath. You should run this command
after installing new library files or adding a new groove to anexisting library file. If
the database (stored in the fileMMADIR) is not updated,MmA will not be able to auto-
load an unknown groove.
The current installation ofMmA does not set directory permissions. It simply copies
whatever is in the distribution. If you have trouble using this option, you will proba-
bly have to reset the permissions on the lib directory.
MmA will update the groove database with all files in the currentLibPath. All files
musthave a “.mma” extension. Any directory containing a file named MMAIGNORE
will be ignored. Note, thatMMAIGNOREconsists of all uppercase letters and is usually
an empty file.

-G Same as the “-g” option (above), but the uppercase version forces the creation of a
new database file—an update from scratch just in case something really goes wrong.

-fFILE Set output to FILE. Normally the output is sent to a file with the name of the input file
with the extension “.mid” appended to it. This option lets you set the output MIDI
file to any filename.

-Mx Generate type 0 or 1 MIDI files. The paramater “x” must be set tothe single digit
“0” or ”1”. For more details, see theMidiSMF section on see page 89.

The following commands are used to create the documentation. As a user you should
probably never have a need for any of them.

2500 bars with 4 beats per bar at 200 BPM is about 10 minutes.

13



2.2 L ines and Spaces Running MmA

-Dx Expand and printDoccommands used to generate the standard library reference. No
MIDI output is generated when this command is given. Doc strings in RC files are
not processed. Files included in other files are processed.

-Dn Create a table of the available chord types.

-Dda Create a table of the MIDI drum note names, arranged alphabetically.

-Ddm Create a table of the MIDI drum note names, arranged by MIDI value.

-Dia Create a table of the MIDI instrument names, arranged alphabetically.

-Dim Create a table of the MIDI instrument names, arranged by MIDIvalue.

A number of the debugging commands can also be set dynamically in a song. See the debug section (see
page 99) for details.

2.2 Lines and Spaces

WhenMmA reads a file it processes the lines in various places. The firstreading strips out blank lines and
comments of the “//” type.

On the initial pass though the file any continuation lines arejoined. A continuation line is any line ending
with a single “/”—simply, the next line is concatenated to the current line to create a longer line.

Unless otherwise noted in this manual, the various parts of aline are delimited from each other by runs
of whitespace. Whitespace can be tab characters or spaces. Other characters may work, but that is not
recommended, and is really determined by Python’s definitions.

2.3 Programming Comments

MmA is designed to read and write files; it is not a filter (this could be changed, but we’re not sure why this
would be needed).

As noted earlier in this manual,MmA has been written entirely in Python.There were some initialconcerns
about the speed of a “scripting language” when the project was started, but Python’s speed appears to be
entirely acceptable. On an AMD Athlon 1900+ system running Mandranke Linux 10.1, most of songs
compile to MIDI in well under one second. If you need faster results, you’re welcome to recode this
program into C or C++, but it would be cheaper to buy a faster system, or spend a bit of time tweaking
some of the more time intensive Python loops.

The manual has been prepared with the LATEX typesetting system. Once life and the program settle down
the source files may be released as well. Currently, there aretwo versions available: a PDF file intended for
printing or on-screen display (generated with dvipdf) and aHTML version (transformed with LATEX2HTML)
for electronic viewing. If other formats are needed . . . please offer to volunteer.

14



Chapter 3

Tracks and Channels

This chapter discussesMmA tracks and MIDI channels. If you are reading this manual for the first time you
might find some parts confusing. If you do just skip ahead—youcan runMmA without knowing many of
these details.

3.1 MmA Tracks

To create your accompaniment tracks,MmA divides output into several internal tracks. There are a total of
8 different types of tracks, and an unlimited number of sub-tracks.

WhenMmA is initialized there are no tracks assigned; however, as your library and song files are processed
various tracks will be created Each created a unique name. The track types are discussed later in this
chapter, but for now they areBass, Chord, Walk, Drum, Arpeggio, Scale, MelodyandSolo.

All tracks are named by appending a “-” and“name” to the type-name. This makes it very easy to remember
the names, without any complicated rules. So, drum tracks can have names “Drum-1”, “Drum-Loud” or
even “Drum-a-long-name”. The other tracks follow the same rule.

In addition to the hyphenated names described above, you canalso name a track using the type-name.
So, “DRUM” is a valid drum track name. In our library files we usually use the type-name to describe
patterns.

All track names are case insensitive. This means that the names “Chord-Sus”, “CHORD-SUS” and
“CHORD-sus” all refer to the same track.

If you want to see the names defined in a song, just runMmA on the file with the “-c” command line option.

3.2 Track Channels

MIDI defines 16 distinct channels numbered 1 to 16.1 There is nothing which says that “chording” should
be sent to a specific channel, but the drum channel should always be channel 10.2

1We use the values 1 to 16 in this document. Internally they arestored as values 0 to 15.
2This is not a MIDI rule, but a convention established in the GM(General MIDI) standard. If you want to find out more

about this, there are lots of books on MIDI available.

15



3.3 Track D escriptions Tracks and Channels

ForMmA to produce any output, a MIDI channel must be assigned to a track. During initialization all of the
DRUM tracks are assigned to special MIDI channel 10. As musical data is created other MIDI channels
are assigned to various tracks as needed.

Channels are assigned from 16 down to 1. This means that the lower numbered channels will most likely
not be used, and will be available for other programs or as a “keyboard” track on your synth.

In most cases this will work out just fine. However, there are anumber of methods you can use to set the
channels “manually.” You might want to read the sections onChannel(see page 86),ChShare(see page
87),On (see page 104), andOff (see page 103).

Why bother with all these channels? It would be much easier toput all the information onto one channel,
but this would not permit you to set special effects (likePortamentoor Pan) for a specific track. It would
also mean that all your tracks would need to use the same instrumentation.

3.3 Track Descriptions

You might want to come back to this section after reading moreof the manual. But, somewhere we need
to describe the different track types, and why they exist.

Musical accompaniment comes in a combination of the following:

� Chords played in a rhythmic or sustained manner,

� Single notes from chords played in a sustained manner,

� Bass notes. Usually played one at a time in a rhythmic manner,

� Scales, or parts of scales. Usually as an embellishment,

� Single notes from chords played one at time: arpeggios.

� Drums and other percussive instruments played rhythmically.

Of course, this leaves the melody . . . but that is up to you, notMmA . . . but, if you suspect that some power
is missing here, read the brief description ofSoloandMelodytracks (see page 18) and the complete “Solo
and Melody Tracks” chapter (see page 50).

MmA comes with several types of tracks, each designed to fill different accompaniment roles. However, it’s
quite possible to use a track for different roles than originally envisioned. For example, the bass track can
be used to generate a single, sustained treble note—or, by enablingHarmonymultiple notes.

The following sections describe the tracks and give a few suggestions on their uses.

3.3.1 Drum

Drums are the first thing we usually think about when we hear the word “accompaniment”. AllMmA drum
tracks share MIDI channel 10, which is a GM MIDI convention. Drum tracks play single notes determined

16



3.3 Track D escriptions Tracks and Channels

by theTonesetting for a particular sequence.

3.3.2 Chord

If you are familiar with the sound of guitar strumming, then you’re familiar with the sound of a chord.
MmA chord tracks play a number of notes, all at the same time. The volume of the notes (and the number of
notes) and the rhythm is determined by pattern definitions. The instrument used for the chord is determined
by theVoicesetting for a sequence.

3.3.3 Arpeggio

In musical terms anarpeggio3 is the notes of a chord played one at a time.MmA arpeggio tracks take the
current chord and, in accordance to the current pattern, play single notes from the chord. The choice of
which note to play is mostly decided byMmA . You can help it along with theDirection modifier.

We useArpeggio tracks quite often to highlight rhythms. Using theRSkipdirective produces broken
arpeggios.

Using different note length values in patterns helps to makeinteresting accompaniments.

3.3.4 Scale

Another embellishment. WhenMmA plays a scale, it first determines the current chord. Its scales are started
on the first note of the chord (if the chord is a C7, the scale will be a C scale). Currently, three types of
scales are supported: major, natural minor and chromatic.

The major scale is selected for all chords which are not of a minor flavor, or if theScaleTypeis set to
Major.

The natural minor scale is selected for all “minor” chords. This includes chords such as “Cm7”, “G#m13”,
etc. If theScaleTypeis set toMinor this scale is always used.

If the ScaleTypeis set toChromatic, then a chromatic scale is used.

MmA plays successive notes of a scale. The timing and length of the notes is determined by the current
pattern. Depending on theDirection setting, the notes are played up, down or up and down the scale.

3.3.5 Bass

Basstracks are designed to play single notes for a chord for standard bass patterns. The note to be played,
as well as its timing, is determined by the pattern definition. The pattern defines which note from the

3The term is derived from the Italian “to play like a harp”.

17



3.4 Silencing a Track Tracks and Channels

current chord to play. For example, a standard bass pattern might alternate the playing of the root and fifth
notes of a scale or chord. You could also useBasstracks to play single, sustained treble notes.

3.3.6 Walk

The Walk tracks are designed to imitate “walking bass” lines. Traditionally, they are played on bass
instruments like the upright bass, bass guitar or tuba.

A Walktrack uses a pattern to define the note timing and volume. Which note is played is determined from
the current chord and a simplistic algorithm. There is no user control over the note selection.

3.3.7 Solo and Melody

SoloandMelodytracks are used for arbitary note data. Most likely, this is amelody or counter-melody
. . . but these tracks can also be used to create interesting ending, introductions or transitions.

3.4 Silencing a Track

There a number of ways to silence a track:

� Use theOff (page 103) command to stop the generation of MIDI data,

� Disable the sequence for the bar with an empty sequence (page31).

� Delete the entire sequence withSeqClear(page 31).

� Disable the MIDI channel with a “Channel 0” (page 86).

Please refer to the appropiate sections on this manual for further details.

18



Chapter 4

Patterns

MmA builds its output based onpatterns andsequencessupplied by you. These can be defined in the same
file as the rest of the song data, or can be included (see chapter 20) from a library file.

A pattern is a definition for a voice or track which describes what rhythm to play during the current bar.
The actual notes selected for the rhythm are determined by the song bar data (Chapter 8).

4.1 Defining a Pattern

The formats for the different tracks vary, but are similar enough to confuse the unwary.

Each pattern definition consists of three parts:

� A unique label to identify the pattern. This is case-insensitive. Note that the same label names can
be used in different tracks—for example, you could use the name “MyPattern” in both a Drum and
Chord pattern. . . but this is probably not a good idea. Names can use punctuation characters, but
must not begin with an underscore (“”). The pattern names “z” or “Z” and “-” are also reserved.

� A series of note definitions. Each set in the series is delimited with a “;”.

� The end of the pattern definition is indicated by the end-of-line.

In the following sections we show the definitions in continuation lines; however, it is quite legal to mash
all the information onto a single line.

The following concepts are used when defining a pattern:

Start When to start the note. This is expressed as a beat offset. Forexample, to start a note at the start of
a bar you use “1”, the second beat would be “2”, the fourth “4”,etc. You can easily use off-beats
as well: The “and” of 2 is “2.5”, the “and ahh” of the first beat is “1.75”, etc. Using a beat offset
greater than the number of beats in a bar or less than “1” is notpermitted. SeeTime(see page 66).

Duration The length of a note is somewhat standard musical notation. Since it is impractical to draw in
graphical notes or even to use fractions like1

4 MmA uses a shorthand notation detailed in the following
table:

19



4.1 D efining a Pattern Patterns

Notation Description
1 Whole note
2 Half
4 Quarter
8 Eighth
16 Sixteenth
32 Thirtysecond
64 Sixtyfourth
3 One note of an eighth-note triplet
0 A single MIDI tick

The last note length, “0” is a special value often used in drumtracks where the actual “ringing”length
appears to be controlled by the MIDI synth, not the driving program. Internally, a “0” note length in
converted to a single MIDI tick.

Lengths can have a single or double dot appended. For example, “2.” is a dotted half note and “4..”
adds an eight and sixteenth value to a quarter note.

Note lengths can be combined using “+”. For example, to make adotted eight note use the notation
“8+16”, a dotted half “2+4”, and a quarter triplet “3+3”.

It is permissible to combine notes with “dots” and “+”s. The notation “2.+4” would be the same as
a whole note.

The actual length of the note will be adjusted by theArticulatevalue (see page 97).

Volume The MIDI velocity1 to use for the specified note. For a detailed explanation of howMmA calculates
the volume of a note, see chapter 13.

MIDI velocities are limited to the range 0 to 127. However,MmA does not check the volumes specified
in a pattern for validity. This is a feature. If you want to ensure that a note is always sounded use a
very large value (eg. 1000) for the volume. That way, future adjustments will maintain a large value
and this large value will be clipped to the maximum permittedMIDI velocity.

In most cases velocities in the range 50 to 100 are useful.

Offset The offset into the current chord. If you have, for example, aC minor chord (C, E♭, and G) has 3
offsets: 0, 1 and 2. Note that the offsets refer to thechord not the scale. For example, a musician
might refer to the “fifth”—this means the fifth note of a scale .. . in a major chord this is the third
note, which has an offset of 2 inMmA .

Patterns can be defined forBass, Walking, Chord, Arpeggio, Chord andDrum tracks. All patterns are
shared by the tracks of the same type—Chord-SusandChord-Pianoshare the patterns forChord. As a
convenience,MmA will permit you to define a pattern for a sub-track, but remember that it will be shared
by all similar tracks. For example:

Drum Define S1 1 0 50

1MIDI “note on” events are declared with a “velocity” value. Think of this as the “striking pressure” on a piano.

20



4.1 D efining a Pattern Patterns

and

Drum-woof Define S1 1 0 50

Will generate identical outcomes.2

4.1.1 Bass

A bass pattern is defined with:

Position Duration Offset Volume ; ...

Each group consists of an beat offset for the start point, thenote duration, the note offset and volume.

The note offset is one of the digits “1” through “7”, each representing a note of the chord scale. So, if you
want to play the root and fifth in a traditional bass pattern you’d use “1” and “5” in your pattern definition.

The note offset can be modified by appending a single or multiple set of “+” or “-” signs. Each “+” will
force the note up an octave; each “-” forces it down. This modifier is handy in creating bass patterns when
you wish to alternate between the root note and the root up an octave . . . but we’re sure users will find
other interesting patterns. There is no limit to the number of “+”s or “-”s. You can even use both together
if you’re in a mood to obfuscate.

The note offset can be further modified with a single accidental ”#”, ”&” or ”b”. This modifier will raise
or lower the note by a semitone. Be careful using this! We’ve used a ”6#” to generate a dominate 7th in
our boogie-woggie library file.

Bass Define Broken8 1 8 1 90 ; /
2 8 5 80 ; /
3 8 3 90 ; /
4 8 1+ 80

Sheet Music EquivalentB
4
4

GI N GH N GH N GH N
Example 4.1: Bass Definition

2What really happens is that the definition is stored in a slot matching the track’s type, not it’s name.

21



4.1 D efining a Pattern Patterns

Example 4.1 defines 4 bass notes (probably staccato eight notes) at beats 1, 2, 3 and 4 in a4
4 time bar. The

first note is the root of the chord, the second is the fifth; the third note is the third; the last note is the root
up an octave. The volumes of the notes are set to a MIDI velocity of 90 for beats 1 and 3 and 80 for beats
2 and 4.

MmA refers to note tables to determine the “scale” to use in a basspattern. Each recognized chord type has
an associated scale. For example, the chord “Cm” consists ofthe notes “c”, “e♭” and “g”; the scale for this
chord is “c, d, e♭, f, g, a, b”.

Due to the ease in which specific notes of a scale can be specified, Basstracks and patterns are useful for
much more than “bass” lines! We use these tracks for sustained string voices, interesting arpeggio and
scale lines, and counter melodies.

4.1.2 Chord

A Chord pattern is defined with:

Position Duration Volume1 Volume2 .. ; ...

Each group consists of an beat offset for the start point, thenote duration, and the volumes for each note
in the chord. If you have fewer volumes than notes in a chord, the last volume will apply to the remaining
notes.

Chord Define Straight4+3 1 4 100 ; /
2 4 90 ; /
3 4 100 ; /
4 3 90 ; /
4.3 3 80 ; /
4.6 3 80

Sheet Music Equivalent

A4
4

GGG GGG GGG GGGH GGGH GGGH
3

Example 4.2: Chord Definition

Example 4.2 defines a44 pattern in a quarter, quarter, quarter, triplet rhythm. Thequarter notes sound on
beats 1, 2 and 3; the triplet is played on beat 4. The example assumes that you have C major for beats 1
and 2, and G major for 3 and 4.

22



4.1 D efining a Pattern Patterns

Using a volume of “0” will disable a note. So, you want only theroot and third of a chord to sound, you
could use something like:

Chord Define Dups 1 8 90 0 90 0; 3 8 90 0 90 0

4.1.3 Arpeggio

An Arpeggio pattern is defined with:

Position Duration Volume ; ...

The arpeggio tracks play notes from a chord one at a time. Thisis quite different from chords where the
notes are played all at once—refer to theStrumdirective (see page 107).

Each group consists of an beat offset, the note duration, andthe note volume. You have no choice as to
which notes of a chord are played (however, they are played inalternating ascending/descending order.3

Volumes are selected for the specific beat, not for the actualnote.

Arpeggio Define 4s 1 4 100; /
2 4 90; /
3 4 100; /
4 4 100

Sheet Music Equivalent

A4
4 G G G G

Example 4.3: Arpeggio Definition

Example 4.3 plays quarter note on beats 1, 2, 3 and 4 of a bar in4
4 time.

4.1.4 Walk

A Walking Bass pattern is defined with:

Position Duration Volume ; ...

3See theDirectioncommand (see page 100).

23



4.1 D efining a Pattern Patterns

Walking bass tracks play up and down the first part of a scale, paying attention to the “color”4 of the chord.
Walking bass lines are very common in jazz and swing music. The appear quite often as an “emphasis”
bar in marches.

Each group consists of an beat offset, the note duration, andthe note volume.MmA selects the actual note
pitches to play based on the current chord (you cannot changethis).

Walk Define Walk4 1 4 100 ; /
2 4 90; /
3 4 90

Example 4.4: Walking Bass Definition

Example 4.4 plays a bass note on beats 1, 2 and 3 of a bar in3
4 time.

4.1.5 Scale

A scale pattern is defined with:

Position Duration Volume ; ...

Each group consists of an beat offset for the start point, thenote duration, and volume.

Scale Define S1 1 1 90
Scale Define S4 S1 * 4
Scale Define S8 S1 * 8

Example 4.5: Scale Definition

Example 4.5 defines three scale patterns: “S1” is just a single whole note, not that useful on its own, but it
used as a base for “S4” and “S8”.

“S4” is 4 quarter notes and “S8” is 8 eight notes. All the volumes are set to a MIDI velocity of 90.

Scale patterns are quite useful in endings. More options forscales detailed in theScaleDirection(see page
100) andScaleType(see page 106) sections.

4The color of a chord are items like “minor”, “major”, etc. Thecurrent walking bass algorithm generates acceptable
(uninispired) lines. If you want something better there is nothing stopping you from using aRiff to over-ride the computer
generated pattern for important bars.

24



4.1 D efining a Pattern Patterns

4.1.6 Drum

Drum tracks are a bit different from the other tracks discussed so far. Instead of having each track saved
as a separate MIDI track, all the drum tracks are combined onto MIDI track 10.

A Drum pattern is defined with:

Position Duration Volume; ...

Drum Define S2 1 0 100; /
2 0 80 ; /
3 0 100 ; /
4 0 80

Example 4.6: Drum Definition

Example 4.6 plays a drum sound on beats 1, 2, 3 and 4 of a bar in4
4 time. The MIDI velocity (volume) of

the drum is 100 on beats 1 and 3; 80 on beats 2 and 4.

In this example we have used the special duration of “0” whichindicates 1 MIDI tick.

4.1.7 Drum Tone

Essential to drum definitions is theTonedirective.

When a drum pattern is defined, there is no drum tone or note specified in the pattern.. By default, all
drum patterns use a snare drum sound. But, this can (and should) be changed using theTonedirective.
This is normally issued at the same time as a sequence is set up(see chapter 5).

Toneis a list of drum sounds which match the sequence length. Here’s a short, concocted example (see
the library files for many more):

Drum Define S1 1 0 90
Drum Define S2 S1 * 2
Drum Define S4 S1 * 4
SeqClear
SeqSize 4
Drum Sequence S4 S2 S2 S4
Drum Tone SnareDrum1 SideKick LowTom1 Slap

Here we first define the drum patterns “S2” to sound a drum on beats 1 and 3 and “S4” to sound on beats
1, 2, 3 and 4 (see section 4.3 for details on the “*” option). Next we set a sequence size of 4 bars and
set a drum sequence to use this pattern. Finally, we instructMmA to use a SnareDrum1 sound in bar 1, a
SideKick sound in bar 2, a LowTom1 in bar 3 and a Slap in bar 4. Ifthe song has more than four bars, this
sequence will be repeated.

25



4.2 Including Existing Patterns in N ew Definitions Patterns

In most cases you will probably use a single drum tone name forthe entire sequence, but it can be useful
to alternate the tone between bars.

To repeat the same “tone” in a sequence list, use a single “/”.

The “tone” can be specified with a MIDI note value or with a symbolic name. For example, a snare drum
could be specified as “38” or “SnareDrum1”. Appendix A.3 lists all the defined symbolic names.

4.2 Including Existing Patterns in New Definitions

When defining a pattern, you can use an existing pattern name in place of a definition grouping. For
example, if we have already defined a chord pattern (which is played on beats 1 and 3) as:

Chord Define M13 1 4 80; 3 4 80

We can create a new pattern which plays on same beats and adds asingle push note just before the third
beat:

Chord Define M1+3 M13; 2.5 16 80 0

A few points to note:

� the existing pattern must exist and belong to the same track,

� the existing pattern is expanded in place,

� it is perfectly acceptable to have several existing definitions, just be sure to delimit each with a “;”,

� the order of items in a definition does not matter, each will beplaced at the correct position in the
bar.

This is a powerful shortcut in creating patterns. See the included library files for examples.

4.3 Multiplying and Shifting Patterns

Since most pattern definitions are, internally, repetitious, you can create complex rhythms by multiplying
a copy of an existing pattern. For example, if you have defineda pattern to play a chord on beats 1 though
4 (a quarter note strum), you can easily create a similar pattern to play eighth note chords on beats 1, 1.5,
etc. though 4.5 with a command like:

Track Define NewPattern OldPattern * N

where “Track” is a valid track name (“Chord”, “Walk”, “Bass”, “Arpeggio” or “Drum”, as well as “Chord2”
or “DRUM3”, etc.).

The “*” is absolutely required.

“N” can be any integer value between 2 and 100.

26



4.3 M ultiplying and Shifting Patterns Patterns

Drum Define S1 1 1 100
Drum Define S13 S1 * 2
Drum Define S1234 S2 * 2
Drum Define S8 S1234 * 2
Drum Define S16 S8 * 2
Drum Define S32 S16 * 2
Drum Define S64 S1 * 64

Example 4.7: Multiply Define

In example 4.7 we start by defining a Drum pattern which plays adrum tone on beat 1 (assuming4
4 time).

We then derive a new pattern, “S13” which is the old “S1” multiplied by 2. This new pattern will play a
tone on beats 1 and 3.

Next, “S1234” is created. This plays 4 notes on the each beat.

Note the definition for “S64”. We could have multiplied “S32”by 2, but for illustrative purposes have
used “S1” and multiplied it by 64.

WhenMmA multiplies an existing pattern it will (usually) do what youexpect. The start positions for all
notes are adjusted to the new positions; the length of all thenotes are adjusted (quarter notes become
eighth notes, etc.). No changes are made to note offsets or volumes.

Example 4.8 shows how to get a swing pattern which might be useful on a snare drum.

To see the effects of multiplying patterns, create a simple test file and process it thoughMmA with the “-p”
option.

Even cooler5 is combining a multiplier, and existing pattern and a new pattern all in one statment. The
following is quite legal (and useful):

Drum Define D1234 1 0 90 * 4

which creates drum hits on beats 1, 2, 3 and 4.

More contrived (but we need examples) is:

Drum Define Dfunny D1234 * 2; 1.5 0 70 * 2

If you’re really interested in the result, runMmA with the “-p” option with the above definition.

An existing pattern can be modified byshifting it a beat, or portion of a beat. This is done in aMmA
definition with theShiftdirective. Example 4.9 shows a triplet pattern created to play on beat 1, and then
a second pattern played on beat 3.

5In this case the word “cool” substitutes for the more correct“useful”.

27



4.3 M ultiplying and Shifting Patterns Patterns

Begin Drum Define
SB8 1 2+16 0 90 ; 3.66 4+32 80
SB8 SB8 * 4

End

Sheet Music Equivalent, Normal Notation

4
4

GT G GT G GT G GT G
Sheet Music Equivalent, Actual Rhythm

4
4

G GI G GI G GI G GI3 3 3 3

Example 4.8: Swing Beat Drum Definition

Note that the shift factor can be a negative or positive value. It can be fractional. Just be sure that the
factor doesn’t force the note placement to be less than 1 or greater than theTimesetting.

And, just like the multiplier discussed earlier you can shift patterns as they are defined. And shifts and
multipliers can be combined. So, to define a series of quarternotes on the offbeat you could use:

Drum Define D1234’ 1 0 90 * 4 Shift .5

which would create the same pattern as the longer:

Drum Define D1234’ 1.5 1 90; 2.5 1 90; 3.5 1 90; 4.5 1 90

28



4.3 M ultiplying and Shifting Patterns Patterns

Chord Define C1-3 1 3 90; /
1.33 3 90; 1.66 3 90

A4
4

GGG GGG GGG M M M3

Chord Define C3-3 C1-3 Shift 2A4
4

M M GGG GGG GGG M3

Example 4.9: Shift Pattern Definition

29



Chapter 5

Sequences

Patterns by themselves don’t do much good. They have to be combined into sequences to be of any use to
you or toMmA .

A Sequencecommand sets the pattern(s) used in creating each track in your song:

Track Sequence Pattern1 Pattern2 ...

“Track” can be any valid track name: “Chord”, “Walk”, “Walk-Sus”, “Arpeggio-88”, etc.

All pattern names used when setting a sequence need to be defined when this command is issued; or you
can use what appears to be a pattern definition right in the sequence command by enclosing the pattern
definition in a set of curly brackets “{ }”.

SeqClear
SeqSize 2
Begin Drum

Sequence Snare4
Tone Snaredrum1

End
Begin Drum-1

Sequence Bass1 Bass2
Tone KickDrum2

End
Chord Sequence Broken8
Bass Sequence Broken8
Arpeggio Sequence { 1 1 100 * 8 } { 1 1

80 * 4 }

Example 5.1: Simple Sequence

Example 5.1 creates a 2 bar pattern. The Drum, Chord and Bass patterns repeat on every bar; the Drum-1
sequence repeats after 2 bars. Note how the Arpeggio patternis defined at run-time.1

1If you runMmA with the “-s” option you’ll see pattern names in the format “1”. The leading underscore indicates that the
pattern was dynamically created in the sequence.

30



5.1 SeqClear Sequences

If there are fewer patterns thanSeqSize, the sequence will be filled out to correct size. If the numberof
patterns used is greater thanSeqSize(see Chapter 17) a warning message will be printed and the pattern
list will be truncated.

When defining longer sequences, you can use the “repeat” symbol, a single “/”, to save typing. For
example, the following two lines are equivalent:

Bass Sequence Bass1 Bass1 Bass2 Bass2
Bass Sequence Bass1 / Bass2 /

The special pattern name “-” (no quotes, just a single hyphen), or a single “z” can be used to turn a track
off. For example, if we have set the sequences in example 5.1 and decide to delete the Bass halfway though
the song we could:

Bass Sequence -

The special sequences, “-” or“z”, are also the equivalent ofa rest or “tacet” sequence. For example, in
defining a 4 bar sequence with a 1-5 bass pattern on the first 3 bars and a walking bass on bar 4 we might
do something like:

Bass Sequence Bass4-13 / / z
Walk Sequence z / / Walk4-4

When a sequence is created a series of pointers to the existing patterns are created. If you change the
definition of a particular pattern later in your file the new definition will have no effect on your exisiting
sequences.

Sequences are the workhorse ofMmA . With them you can set up many interesting patterns and variations.
This chapter should certainly give more detail and many moreexamples.

The following commands help manipulate sequences in your creations:

5.1 SeqClear

This command clears all existing sequences from memory. It is useful when defining a new sequence and
you want to be sure that no “leftover” sequences are active. The command:

SeqClear

deletes all sequence information.

Alternately, the command:

Drum SeqClear

deletesall drum sequences. This includes the track “Drum”, “Drum1”, etc.

If you use a sub-track:

Chord-Piano SeqClear

31



5.2 SeqRnd Sequences

only the sequence for that track is cleared.2

In addition to clearing the sequence pattern, the followingother settings are restored to a default condition:

� Track Invert setting,

� Track Sequence Rnd setting,

� Track MidiSeq setting,

� Track octave,

� Track voice,

� Track Rvolume,

� Track Volume,

� Track RTime,

� Track Strum.

CAUTION: It is not possible to clear onlyDrum, Chord, etc. using this command. Use the “-” option.

5.2 SeqRnd

Normally, the patterns used for each bar are selected in order. For example, if you had a sequence:

Drum-2 Sequence P1 P2 P3 z

bar 1 would use “P1”, bar 2 “P2”, etc. However, if you setSeqRndfor a specific track, the pattern used
for that trackwill be selected at random from the sequence list. Note that ’Z’ bars are included in the
selection. Due to the nature of random selection, it is quitepossible to get a several bars with the same (or
in the above case, no) pattern.

You can only use this command in a track or in a global context:

Drum SeqRnd

or

SeqRnd

The latter example is interesting. Let us assume you have thefollowing sequences defined (the contents
of the patterns don’t matter for the purpose of the example):

Chord C1 C2 C3 C4
Bass B1 B2 B3 z

2It is probably easier to use the command:

Chord-Piano Sequence -

if that is what you want to do. In this caseonly sequence pattern is cleared.

32



5.3 SeqNoRnd Sequences

Walk z / / W1

The idea of theBassandWalksequences is to playeitherone of the patterns, never both. If you were to
randomize the tracks you might get a bar with no bass at all, one of the two, or none. However, if you set
SeqRndoutside the tracks, then you will have one of the following patterns:

C1 B1 z
C2 B2 z
C3 B3 z
C4 z W1

A SeqRndis cleared by aSeqClearor aSeqNoRnddirective.

If you have setInvert for a track, the inversions will follow the patterns. For example:

Chord Sequence C1 C2 C3 C4
Invert 0 1 2 3 SeqRnd

Whenever pattern “C1” is selected it will be used with inversion 0, “C2” will always be inversion 1, etc.

5.3 SeqNoRnd

This command sets the sequence order for the specified track to normal. It undoes the effect of theSeqRnd
directive. Example:

Drum-3 SeqNoRnd

5.4 SeqSize

The number of bars in a sequence are set with the “SeqSize” command. For example:

SeqSize 4

sets it to 4 bars. The SeqSize applies to all tracks.

This command resets thesequence counterto 1.

If some sequences have already been defined, they will be truncated or expanded to the new size. Trun-
cation is done by removing patterns from the end of the sequence; expansion is done by duplicating the
sequence until it is long enough.

33



Chapter 6

Grooves

Grooves, in some ways, areMmA ’s answer to macros. . . but we think they are cooler, easier touse, and have
a more musical name.

Really, though, a groove is just a simple mechanism for saving and restoring a set of patterns and se-
quences. Using grooves it is easy to create sequence libraries which can be incorporated into your songs
with a single command.

6.1 Creating A Groove

A groove can be created at anytime in an input file with the command:

DefGroove SlowRhumba

Optionally, you can include a documentation string to the end of this command:

DefGroove SlowRumba A descriptive comment!

A groove name can include any character, including digits and punctuation. However, it cannot include a
’/’ 1.

In normal operation the documentation strings are ignored.However, whenMmA is run with the -Dx
command line option these strings are printed to the terminal screen in LATEX format. The standard library
document is generated from this data. The commentsmustbe suitable for LATEX: this means that special
symbols like “#”, “&”, etc. must be “quoted” with a preceding“ /”.

At this point the following information is saved:

� Current Sequence size,

� The current sequence for each track,

� Time setting (quarter notes per bar),

� “Accent”,

� “Articulation” settings for each track,

� “Compress”,

1The ’/’ is reservered for future enhancements.

34



6.2 U sing A Groove G rooves

� “Direction”,

� “DupRoot”,

� “Duplicate”,

� “Harmony”

� “HarmonyOnly””,

� “Invert”,

� “Limit”,

� “MidiSeq”,

� “Octave”,

� “RSkip”,

� “Rtime”,

� “Rvolume”,

� “Scale”,

� “SeqRnd”, globally and for each track,

� “Strum”,

� “Tone” for drum tracks,

� “Voice”,

� “VoicingCenter”,

� “VoicingMode”,

� “VoicingMove”,

� “VoicingRange”,

� “Volume” for tracks and master.

6.2 Using A Groove

You can restore a previously defined groove a anytime in your song with:

Groove Name

At this point all of the previously saved information is restored.

A few cautions:

35



6.2 U sing A Groove G rooves

� Pattern definitions arenot saved in grooves. Redefining a pattern results in a new pattern definition.
Sequences use the pattern definition in effect when the sequence is declared.

� The “SeqSize” setting is restored with a groove. The sequence point is also reset to bar 1. If you
have multi-bar sequences, restoring a groove may upset youridea of the sequence pattern.

6.2.1 Overlay Grooves

To make the creation of variations easier, you can useGroovein a track setting:

Scale Groove Funny

In this case only the information saved in the correspondingDefGroove Funnyfor theScaletrack will be
restored. You might think of this as a “groove overlay”. Havea look at the sample song “Yellow Bird” for
an example.

When restoring track grooves, as in the above example, theSeqSizeis not reset. The sequence size of the
restored track is adjusted to fit the current sequence size setting.

One caution with these “overlays” is that no check is done to see if the track you’re using exists. Yes, the
Groovemust have been defined, but not the track. Huh? Well, you need to know a bit about howMmA
parses files and how it handles new tracks. WhenMmA reads a line in a file it first checks to see if the first
word on the line is a simple command likePrint, MIDI or any other command which doesn’t require a
leading trackname. If it is, the appropriate function is called and file parsing continues. If it is not a simple
commandMmA tests to see if it is a track specific command. But to do that, itfirst has to test the first word
to see if it is a valid track name likeBassor Chord-Major. And, if it is a valid track name and that track
doesn’t exist, the track is created. . . this is donebeforethe rest of the command is processed. So, if you
have a command like:

Bass-Foo Groove Something

and you really meant to type:

Bass-Foe Groove Something

you’ll have a number of things happening:

1. The trackBass-Foowill be created. This is not an issue to be concerned over since no data will be
created for this new track unless you set aSequencefor it.

2. As part of the creation, all the existingGrooves will have theBass-Footrack (with its default/empty
settings) added to them.

3. And the current setting you think you’re modifying with the Bass-Foesettings will be created with
theBass-Foosettings (which are nothing).

4. Eventually you’ll wonder whyMmA isn’t working.

So, be very careful using this command option. Check your spelling. And use thePrintActivecommand
to verify yourGroovecreations.

36



6.2 U sing A Groove G rooves

6.2.2 Library Issues

If you are using a groove from a library file, you just need to dosomething like:

Groove Rhumba2

at the appropriate position in your input file.

One minor problem whichmayarise is that more than one library file has defined the same groove name.
This might happen if you have a third-party library file. For the proposes of this example, lets assume
that the standard library file “rhumba.mma” and a second file “xyz-rhumba.mma” both define the groove
“Rhumba2”. The auto-load routines (see page 116) which search the library database will load the first
“Rhumba2” it finds, and the search order cannot be determined. To overcome this possible problem, do a
explicit loading of the correct file. In this case, simply do:

Use xyz-rhumba

near the top of your file. And if you wish to switch to the groovedefined in the standard file, you can
always do:

Use rhumba

just before the groove call. TheUse will read the specified file and overwrite the old definition of
“Rhumba2” with its own.

37



Chapter 7

Riffs

In previous chapters we learned how to create aPatternwhich becomes a part of aSequence. And how to
set a musical style by defining aGroove.

These predfinedGroovesare wonderful things. And, yes, entire accompaniment tracks can be created with
just some chords and fewGrooves. But, often we want a bit of variety in the track.

7.1 Riff

TheRiff command permits the setting of an alternate pattern for any track for a single bar–this overrides
the currentSequencefor that track.

The syntax forRiff is very similar to that ofDefine, with the execption that no pattern name is used. You
might think ofRiff as the setting of anSequencewith an anonymous pattern.

A Riff is set with the command:

Track Riff Pattern

where:

Track is any validMmA track name,

Pattern is any existing pattern name defined for the specified track, or a pattern definition following the
same syntax as aDefine. In addition the pattern can be a single “z”, indicating no pattern for the
specified track.

Following is a short example usingRiff to change the Chord Pattern:

Groove Rhumba
1 Fm7
2 Bb7
3 EbM7
Chord Riff 1 4 100; 3 8 90; 3.666 8 80; 4.333 8 70
4 Eb6 / Eb
5 Fm7

38



7.2 M ultiple R iffs R iffs

In this case we have a Rhumba Groove for the song. But, in bar 4 we want to emphasize the melodic
pattern by chording a quarter-note triplet over beats 3 and 4. In this case we have defined the pattern right
in theRiff command.

Our next example shows thatRiff patterns can be defined just like the patterns used in a sequence.

Begin Drum
Define Emph1 1 0 128
Define Emph8 Emph1 * 8

End

Groove Blues

1 C
2 G
Drum1 Riff Emph8
3 G
4 F
5 C

In this case we have defined theEmph8 pattern as a series of eighth notes. We then apply this for the3rd
bar. If you compile and play this example you will hear a sporadic handclap on bar 3. TheDrum1 track
is using a handclap tone with a random skip factor (previously defined in the Blues groove).

The special pattern “z” can be used to turn off a track for a single bar. This is similar to using a “z” in the
Sequencedirective.

A few things to keep in mind when usingRiffs:

� A Riff is in effect for only one bar.

� Riff sequences are always enabled. Even if there is no sequence for a track, or if the “z” sequence is
being used, the pattern specified inRiff will apply.

� The existing voicing, articulation, etc. for the track willapply to theRiff.

� It’s quite possible to use a macro for repeatedRiffs. In example 7.1 we have created a macro which
sets theVolume, Articulate, etc. as well as the pattern. Note how the pattern is initially set as single
whole note, but redfined in theRiff as a run controlled by another macro. In bar 2 an eight note run
is played and in bar 5 this is changed to a run of triplets.

Riffs can also be used to specify a bar of music in aSolo or Melody track. Please see the “Solo and
Melody” chapter (see page 50).

7.2 Multiple Riffs

Use the syntax described above you can reset the sequence or set the melody notes for a single bar—the
bar which follows theRiff command. As an alternate, you can set a number of lines at onceusing theRiffs

39



7.2 M ultiple R iffs R iffs

Mset CRiff
Begin Scale

Define Run 1 1 120
Riff Run * $SSpeed
Voice AltoSax
Volume f
Articulate 80
Rskip 5

End
MsetEnd
Groove Blues
1 C
Set SSpeed 8
$CRiff
2 G
3 G
Set SSpeed 12
$CRIFF
5 C

Example 7.1: Using Macros and Riffs

command (the only difference here is the trailing “s”). Thiscommand “stacks” its argument on a special
stack; each line is “pulled” from the stack as successive chord lines are processed.

Recycling an earlier example, lets assume that we want to usea customized pattern for bars 4 and 5 in our
mythical song:

Groove Rhumba
1 Fm7
2 Bb7
3 EbM7
Chord Riffs 1 4 100; 3 8 90; 3.666 8 80; 4.333 8 70
Chord Riffs 1 2 100; 3 8 90;
4 Eb6 / Eb
5 Fm7

In this example the firstChord Riff will be used in bar 4; the second in bar 5. For an example of thissee
the sample fileegs/riffs.mma .

40



Chapter 8

Musical D ata Format

Compared to patterns, sequences, grooves and the various directives used inMmA , the actual bar by bar
chord notations are surprisingly simple.

Any line in your input file which is not a directive or comment is assumed to be a bar of chord data.

A line for chord data consists of the following parts:

� Optional line number,

� Chord or Rest data,

� Optional lyric data,

� Optional solo or melody data,

� Optional multiplier.

Formally, this becomes:

[num] Chord [Chord ...] [lyric] [solo] [ * Factor]

As you can see, all that is really needed is a single chord. So,the line:

Cm

is completely valid. As is:

10 Cm Dm Em Fm* 4

The optional solo or melody data is enclosed in “{ }”. The complete format and use is detailed in theSolo
and Melody Trackschapter (see page 50).

8.1 Bar Numbers

The optional leading bar number is silently discarded byMmA . It is really just a specialized comment which
helps you debug your music. Note that only a numeric item is permitted here.

Get in the habit of using bar numbers. You’ll thank yourself when a song seems to be missing a bar, or
appears to have an extra one. Without the leading bar numbersit can be quite frustrating to match your
input file to a piece of sheet music.

41



8.2 Bar Repeat M usical D ata Format

You should note that it is perfectly acceptable to have only abar number on a line. This is common when
you are using bar repeat, for example:

1 Cm * 4
2
3
4
5 A

8.2 Bar Repeat

Quite often music has several sequential identical bars. Instead of typing these bars over and over again,
MmA has an optionalmultiplier which can be placed at the end of a line of music data. The multiplier or
factor can is specified as “* NN” This will cause the current bar to repeated the specified number of times.
For example:

Cm / Dm / * 4

produces 4 bars of output with each the first 2 beats of each bara Cm chord and the last 2 a Dm. (The “/”
is explained below.)

8.3 Chords

The most important part of a musical data line is, of course, the chords. You can specify a different chord
for each beat in your music. For example:

Cm Dm Em Fm

specifies four different chords in a bar. It should be obviousby now that in a piece in44 you’ll end up with
a “Cm” chord on beat 1, “Dm” on 2, etc.

If you have fewer chord names than beats, the bar will be filledautomatically with the last chord name on
the line. In other words:

Cm

and

Cm Cm Cm Cm

are equivalent (assuming 4 beats per bar). There must be one (or more) spaces between each chord.

One further shorthand is the “/”. This simply means to repeatthe last chord. So:

Cm / Dm /

is the same as

42



8.4 Rests M usical D ata Format

Cm Cm Dm Dm

It is perfectly okay to start a line with a “/”. In this case thelast chord from the previous line is used. If
the first line of music data begins with a “/” you’ll get an error—MmA tries to be smart, but it doesn’t read
minds.

MmA recognizes a wide variety of chords in standard notation. Refer to the complete table in the appendix
for details (see page 124).

8.4 Rests

To disable a voice for a beat you can use a “z” for a chord name. If used by itself a “z” will disable all but
the drum tracks for the given beat. However, you can disable “Chord”, “Arpeggio”, “Scale”, “Walk” or
“Bass” tracks as well by appending a track specifier to the “z”. Track specifiers are the single letters “C”,
“A”, “S”, “W”, “B” or ‘D” and “!”. Track specifiers are only valid if you also specify a chord. The track
specifiers are:

D - All drum tracks,
W - All walking bass tracks,
B - All bass tracks,
C - All chord tracks,
A - All arpeggio tracks,
S - All scale tracks,
! - All tracks (almost the same as DWBCA, see below).

Assuming the “C” is the chord and “AB” are the track specifiers:

CzAB - mutes the “A” and “B” tracks,
z - mutes all the tracks except for the drums,
Cz - is not permitted,
zAB - is not permitted.

Assuming that you have a drum, chord and bass pattern defined:

Fm z G7zC CmzD

would generate the following beats:

1 - Drum pattern, Fm chord and bass,
2 - Drum pattern only,
3 - Drum pattern and G7 bass, no chord,
4 - Cm chord and bass, no drum.

In addition, there is a super-z notation. “z!” forces all instruments to be silent for the given beats. “z!” is
the same as “zABCDW”, except that the later is not valid sinceit needs a prefixed chord.

The “z” notation is used when you have a “tacet” beat or beats.The alternate notations can be used to
silence specific tracks for a beat or two, but this is used lessfrequently.

43



8.5 Case Sensitivity M usical D ata Format

8.5 Case Sensitivity

In direct conflict with the rest of the rules for input files, all chord namesare case sensitive. This means
that youcan notuse notations like “cm”—use “Cm” instead.

The “z” and the associated track specifiers are also case sensitive. For example, the form “Zc” willnot
work!

44



Chapter 9

Lyrics

MIDI files can include song lyrics. And some MIDI players or sequencers can display them as a file is
played. Some, but not all.

We’re not aware of any keyboards which display lyrics. And most Linux based do not display them.
Exceptions to the rule are the programsKmid which displays and highlights lyrics almost in a Karaoke
manner,xplaymidi andtimidity which display the lyrics in a secondary panel.

With this qualifier out of the way, there really is no reason for lyrics NOT to be useful in a program like
MmA . Singers do not want a melody playing while they are vocalizing (really, they are no different in this
than any other instrumentalist). And, it is our understanding that some platforms1 other than Linux support
lyric display in a more useful format.

The “Standard MIDI File” document describes aLyric Meta-event:

FF 05 len textLyric. A lyric to be sung. Generally, each syllable will be a separate lyric
event which begins at the event’s time.2

Unfortunately, not all players and creators follow the specification—the most notable exception are “.kar”
files. These files eschew theLyric event and place their lyrics as aText Event. There are programs strewn
on the net which convert between the two formats, and this author doesn’t really know if conversion is
needed.

If you want to read the word from the source, refer to the official MIDI lyrics documentation athttp:
//www.midi.org/about-midi/smf/rp017.shtml .

9.1 Lyric Options

MmA has a number of options in setting lyrics. They are all calledvia theLyric command. All options are
set as option/setting pairs with the option name and the setting joined with an “=”.

1Pointers and reviews to other players would be would appreciated.
2I am quoting from “MIDI Documentation” distributed with theTSE Library. Pete Goodcliffe, Oct. 21, 1999. Page 41.

45



9.2 Setting Lyrics Lyrics

9.1.1 Event Type

MmA supports both format for lyrics (discussed above). TheEVENToption is used to select the desired
mode.

Lyric EVENT=LYRIC

selects the defaultLyric Eventmode.

Lyric EVENT=TEXT

selects theText Eventmode. Use of this option also prints a warning message.

9.1.2 Word Splitting

Another option controlled by theLyric command is to determine the method used to split words. As
mentioned earlier (and in various MIDI documents), the lyrics should be split into syllables.MmA does
this by taking each word (ie. anything with whitespace surrounding it) and setting a MIDI event for that.
However, depending on your player, you might want only one event per bar. You might even want to put
the lyrics for several bars into one event. In this case simply set the “bar at a time” flag:

Lyric SPLIT=BAR

You can return to normal (syllable/word) mode at anytime with:

Lyric SPLIT=NORMAL

9.2 Setting Lyrics

Adding a lyric to your song is a simple matter . . . and like so many things, there is more than one way to
do it.

Lyrics can be set for a bar in-between a pair of[]s somewhere in a data bar.3 For example:

z [ Pardon ]
C [ me, If I’m ]
E7 [ sentimental, /r]
C [when we say good ]

The alternate method is to use theLyric Setdirective:

Lyric Set Hello Young Lovers

Unlike the otherLyric options, theSetoption must be the last one on a line, and it does not use the “=”
sign. If you are setting the lyric for a single verse the[]s are optional; however, for multiple verses they are

3Although the lyric can be placed anywhere in the bar, we recommend that you only place the lyric at the end of the bar. All
the examples follow this style.

46



9.2 Setting Lyrics Lyrics

used (just like they are when you include the lyric in a data/chord line). The advantage to usingLyric Setis
that you can specify multiple bars of lyrics at one point in your file. See the sample fileegs/lyrics.mma
for an example.

The lyrics for each bar are separated into individual events, one for each word . . . unless the option
Split=Bar has been used, in which case the entire lyric is placed at the offset corresponding to the start of
the bar.

MmA recognizes two special characters in aLyric:

� A /r is converted into an EOL character (hex value 0x0D). A/r should appear at the end of each
lyrical line.

� A /n is converted into a LF character (hex value 0x0A). A/n should appear at the end of each verse
or paragraph.

When a multi-verse section is created using aRepeator Goto, different lyrics can be specified for different
passes. In this case you simply specify two more sets of lyrics:

A / Am / [First verse] [Second Verse]

However, for this work properly you must set the internal counterLyricVersefor any verse other than 1.
This counter is set with the command:

Lyric Verse=Value | INC | DEC

This means that you can directly set the value (the default value is 1) with a command like:

Lyric Verse=2

And you can increment or decrement the value with theINC andDEC options. This is handy at to use in
repeat sections:

Lyric Verse=Inc

You cannot set the value to a value less than 1.

There are a couple of special cases:

� If there is only one set of lyrics in a line, it will be treated as text for verse 1, regardless of the value
of LyricVerse.

� If the value ofLyricVerseis greater than the number of verses found after splitting the line, then no
lyrics are produced. In most cases this is probably not what you want.

At times you may wish to overrideMmA ’s method of determining the beat offsets for a lyric or a single
syllable in a lyric. You can specify the beat in the bar by enclosing the value in “<>” brackets. For
example, suppose that your song starts with a pickup bar and you’d like the lyrics for the first bar to start
on beat 4:

z z z C [ <4>Hello ]
F [ Young lovers ]

47



9.2 Setting Lyrics Lyrics

Assuming4
4 the above would put the word “Hello” at beat 4 of the first bar; “Young” on the first beat of

bar 2; and “lovers” on beat 3 of bar 2.

Note: there must not be a space inside the “<>”, nor can there be a space between the bracket and the
syllable it applies to.

If you really want to have “<>” in your lyric, you can include a dummy to keepMmA happy:

C [ <><Verse 1.>This is a Demo ]

Example 9.14 shows a complete song with lyrics. You should also examine the file egs/lyrics.mma for
an alterante example.

4Included in this distribution assongs/twinkle.mma .

48



9.2 Setting Lyrics Lyrics

Tempo 200
Groove Folk
Repeat

1 G [Twinkle,] [When the]
2 G [Twinkle] [blazing ]
3 C [little] [sun is]
4 G [star; /r] [gone, /r]
5 Am [How I] [When he ]
6 G [wonder] [nothing]
7 D7 [what you] [shines u-]
8 G [are. /r] [pon. /r]
9 G [Up a-] [then you]
10 D7 [bove the] [show your]
11 G [world so] [little]
12 D [high, /r] [light, /r]
13 G [Like a] [Twinkle, ]
14 D7 [diamond] [twinkle,]
15 G [in the] [all the]
16 D7 [sky! /r] [night. /r]
17 G [Twinkle,]
18 G [twinkle]
19 C [Little]
20 G [star, /r]
21 Am [How I]
22 G [wonder]
23 D7 [what you]
24 G [are. /r /n]

Lyric Verse=Inc
RepeatEnd

Example 9.1: Twinkle, Twinkle, Little Star

49



Chapter 10

Solo and M elody Tracks

So far we have discussed the creation of accompaniment tracks using drum and chord patterns. However,
there are times when chording (and chord variations such as arpeggios) are not sufficient. Sometimes you
might want a real melody line!

MmA has two internal track types reserved for melodic lines. They are theSoloandMelodytracks. These
two track types are identical with two major exceptions:

� Solotracks are only initialized once, at startup. Commands likeSeqClearare ignored bySolotracks.

� No settings inSolotracks are saved or restored withGroovecommands.

These differences mean that you can set parameters for aSolotrack in a preamble in your music file and
have those settings valid for the entire song. For example, you may want to set an instrument at the top of
a song:

Solo Voice TenorSax

On the other hand,Melody tracks save and restore grooves just like all the other available tracks. If we
have the following sequence in a song file:

Melody Voice TenorSax
Groove Blues
... musical data

we should not be surprised to find that theMelodytrack playing with the default voice (Piano).

As a general rule, we have designedMelodytracks as a “voice” to accompany a predefined form defined
in aGroove—it is a good idea to defineMelodyparamaters as part of aGroove. Solotracks are thought to
be specific to a certain song file, with their parameters defined in the song file.

Apart from the exceptions noted above,SoloandMelodytracks are identical.

Unlike the other available tracks, you do not define a sequence or pattern for aSoloor Melody track.
Instead, you specify a series of notes as aRiff pattern. For example, consider the first two bars of “Bill
Bailey” (the details of melody notation will be covered later in this chapter):

Solo Riff 4c;2d;4f;
F
Solo Riff 4.a;8g#;4a;4c+;
F

50



10.1 Note Data Format Solo and M elody Tracks

In this example we have added the melody to our song file.

Specifying aRiff for each bar of your song can get tedious, so there is a shortcut . . . any data surrounded by
curly brackets “{ }” is interpeted as aRiff for a Soloor Melodytrack. This means that the above example
could be rewritten as:

F {4c;2d;4f; }
F {4.a;8g#;4a;4c+; }

By default the note data is inserted into theSolotrack. If more than one set of note data is present, it will
be inserted into the next track set by theAutoSoloTrackscommand (see page 55).

10.1 Note Data Format

The notes is aSoloor Melodytrack are specified as a series of “chords”. Each chord can be asingle note,
or several notes (all with the same duration). Each chord in the bar is delimited with a single semicolon.1

Each chord can have several parts. All missing parts will default to the value in the previous chord. The
various parts of a chord must be specified in the order given inthe following table.

Duration The duration of the note. This is specified in the same manner as chord patterns. The following
note values are permitted:

Notation Description
1 Whole note
2 Half
4 Quarter
8 Eighth
16 Sixteenth
32 Thirtysecond
64 Sixtyfourth
3 One note of an eight note triplet
0 A single MIDI tick

A duration can be modified by appending a single “.” which addshalf the value to the note. For
example, “2.” would be three beats.

A duration can be modified by appending a two “.”s which add three quarters of the value to the
note. For example, “2..” would be three and one half beats.

Note lengths can be combined using “+”. For example, to make adotted eight note use the notation
“8+16”, a dotted half “2+4”, and a quarter triplet “3+3”.

1I have borrowed heavily from the notation program MUP for thesyntax used here. For notation I highly recommend MUP
and use it for most of my notation tasks, including the creation of the score snippets in this manual. MUP is available from
Arkkra Enterprises,http://www.Arkkra.com/ .

51



10.1 Note Data Format Solo and M elody Tracks

It is permissible to combine notes with “dots” and “+”s. The notation “2.+4” would be the same as
a whole note.

Pitch The note in standard musical notation. The lowercase letters “a” to “g” are recognized as well as
“r” to specify a rest (please note the exception forDrum Solo Tracks, see page 55).

Accidental A pitch modifier consisting of a single “#” (sharp), “&” (flat)or “n” (natural). Please note that
an accidental will override the currentKeysigfor the current bar (just like in real musical notation).
Unlike standard musical notation the accidentalwill apply to similarly named notes in different
octaves.

Please note that when you specify a chord inMmA you can use either a “b” or a “&” to represent a
flat sign; however, when specifying notes for aSoloyou can only use the “&” character.

Octave Without an octave modifier, the current octave specified by the Octavedirective is used for the
pitch(es). Any number of “-” or “+” signs can be appended to a note. Each “-” drops the note by an
octave and each “+” will increase it. The base octave begins with “c” below the treble clef staff.

Volume A volume can be specified. The volume is a string like “ff” surrounded by “<>” brackets. For
example, to set the volume of a chord to “very loud”, you coulduse the string<ffff > in the chord
specification (see page 72) Of course, it is probably easier to set accented beats with theAccent
directive (see page 73).

Tilde The tilde character, ˜, can appear as the first or last item in anote sequence. As the last character
it signals that the final note duration extend past the end of the bar; as the first character it signals
to use the duratation extending past the end of the previous bar as an initial offset. For details, see
below.

Null You can set a “ignore” or “do nothing” chord with the simple notation “<>”. If this is the only
item in the chord then that chord will be ignored This means that no tones will be generated, and
the offset into the bar will not be changed. The use of the notation is mainly for tilde notation with
notes held over multiple bars.

To make your note data more readable, you can include any number of space and tab characters (which
are ignored byMmA ).

Example 10.1 shows a few bars of “Bill Bailey” with theMmA equivalent.

10.1.1 Notes on Duration

� If you have a note tied into a new bar in your music score you canspecify a note duration which
creates a note ending past the current bar end. For example, if you have a bar with a 2 half notes,
and the second one is tied to a half note in the next bar you might want something like:

Cm { 2a; 1b; }
F { 2r; 4a; b; }

Here we use a rest in the second bar to compensate for the extended duration of the preceeding note.

� Any notes which extend into the next bar will be reported in a warning message.

52



10.1 Note Data Format Solo and M elody Tracks

AW4
4 GG FF GG

F GTGT GV GI GG GG GG FF GG EE
KeySig 1b
F { 4ca-; 2da-; 4fd; }
F { 4.af; 8g#f; 4af; c+f; }
F { 4ca-; 2da-; 4fc; }
F { 1af; }

Example 10.1: Solo Notation

� Notes cannot start past the end of the of the current bar.

10.1.2 Tilde Duration

Notes tied across bar lines can be easily handled inMmA scores. Consider the following:

A4
4 G G G GF F F

It can be handled in three different ways in your score:

� F 4c;d;e;4+2f;
F 2r;2c;

In this case youMmA will generate a warning message since the last note of the first bar ends past the
end of that bar. The rest in the second bar is used to position the half note correctly.

� F 4c;d;e;4+2f˜;
F 2r;2c;

This time we’ve added a ˜ character to the end of the first line.In this case it just signals that we
“know” that the note is too long, so no warning is printed.

� F 4c;d;e;4+2f˜;
F ˜2c;

The cleanest method is shown here. The ˜forces the insertionof the extra 2 beats from the previous
bar into the start of the bar.

53



10.2 KeySig Solo and M elody Tracks

If you have a very long note, as in this example:

A4
4 G G G GC E F F

you can have both leading and ending tildes in the same chord;however, to forceMmA to ignore the chord
you need to include an empty chord marker:

C 4c;d;e;4+2f˜;
C ˜<>˜;
C ˜2c;

MmA has some builtin error detection which will signal problemsif you use a tilde at the end of a line which
doesn’t have a note held past the end of the current bar or if you use a tilde to start a bar which doesn’t
have one at the end of the previous bar.

10.1.3 Using Defaults

The use of default values can be a great timesaver, and lead toconfusion! For example, the following all
generate four quarter note “f”s:

Solo Riff 4f; 4f; 4f; 4f;
Solo Riff 4f; f; f; f;
Solo Riff 4f; 4; 4; 4;
Solo Riff 4f; ; ; ;

10.1.4 Other Commands

Most of the timing and volume commands available in other tracks also apply toSoloandMelodytracks.
Important commands to consider includeArticulate, VoiceandOctave. Also note thatTransposeis applied
to your note data.

10.2 KeySig

If you are includingSoloor Melodytracks you should set the key signature for the song:

KeySig 2b

The argument consists of a single digit “0” to “7” followed bya “b” or “&” for flat keys or a “#” for sharp
keys.

54



10.3 AutoSoloTracks Solo and M elody Tracks

Setting the key signature effects the notes used inSoloor Melodytracks and sets a MIDI Key Signature
event.

10.3 AutoSoloTracks

When a “{ }” expression is found in a chord line, it is assumed to be note data and is treated as aRiff. You
can have any number of “{ }” expressions in a chord line. They will be assigned to the tracks specified in
theAutoSoloTracksdirective.

By default, four tracks are assigned:Solo, Solo-1, Solo-2, andSolo-3. This order can be changed:

AutoSoloTracks Melody-Oboe Melody-Trumpet Melody-Horn

Any number of tracks can be specified in this command, but theymust all beSoloor Melodytracks. You
can reissue this command at any time to change the assignments.

The list set in this command is also used to “fill out” melody lines for tracks set asHarmonyOnly. Again,
an example:

AutoSoloTracks Solo-1 Solo-2 Solo-3 Solo-4
Solo-2 HarmonyOnly 3Above
Solo-3 HarmonyOnly 8Above

Of course, we set some voicing, etc. Now, we have a chord line:

C {4a;b;c;d; }

The note data{4a;b;c;d;} will be set to theSolo-1track. But, if we’ve not set any other note data by way
of Riff commands toSolo-2andSolo-3, the note data will also be copied to these two tracks. Note that the
trackSolo-4is uneffected since it isnot aHarmonyOnlytrack. This feature can be very useful in creating
harmony lines with the harmonies going to different instruments. The supplied fileegs/harmony.mma
shows an example.

10.4 Drum Solo Tracks

A solo or melody track can also be used to create drum solos. The first thing to do is to set a track as a
drum solo type:

Solo-MyDrums DrumType

This will create a newSolo track with the nameSolo-MyDrumsand set its “Drum” flag. If the track
already exists and has data in it, the command will fail. The MIDI channel 10 is automatically assigned to
all tracks created in this manner. You cannot change a “drum”track back to a normal track.

These is no limit to the number ofSoloor Melodytracks you can create . . . and it probably makes sense to
have several different tracks if you are creating anything beyond a simple drum pattern.

55



10.5 M allet Solo and M elody Tracks

Tracks with the “drum” setting ignoreTransposeandHarmonysettings.

The specification for pitches is different in these tracks. Instead of standard notation pitches, you must
specify a series of drum tone names or MIDI values. If you wantmore than one tone to be sounded
simultaneously, create a list of tones separated by commas.

Some examples:

Solo-MyDrums Riff 4 SnareDrum1; ; r ; SnareDrum1;

would create a snare hit on beats 1, 2 and 4 of a bar. Note how thesecond hit uses the default tone set in
the first beat.

Solo-MyDrums Riff 8,38;;;;

creates 4 hits, starting on beat 1. Instead of “names” we haveused MIDI values (in this case, 38 and
“SnareDrum1” are identical. Note how we use a “,” to separatethe initial length from the first tone.

Solo-MyDrums Riff 4 SnareDrum1,53,81; r; 4 SideKick ;

creates a “chord” of 3 tones on beat 1, a rest on beat 2, and a “SideKick” on beat 3.

Using MIDI values instead of names lets you use the full rangeof note values from 0 to 127. Not all will
produce valid tones on all synths.

10.5 Mallet

Some instruments (Steel-drums, banjos, marimbas, etc.) are normally played with rapidly repeating notes.
Instead of painfully inserting long lists of these notes, you can use theMallet directive for aSoloor Melody
track. TheMallet directive accepts a number of options, each a OPTION=VALUE pair. For example:

Solo-Marimba Mallet Rate=16 Decay=-5

The following options are supported:

10.5.1 Rate

TheRatemust be a valid note length (ie. 8, 16, or even 16.+8).

For example:

Solo-Marimba Mallet Rate=16

will set all the notes in the “Solo-Marimba” track to be sounded a series of 16th notes.

� Note duration modifiers such as articulate are applied to each resultent note,

� It is guaranteed that the note will sound at least once,

� The use of note lengths assures a consitant sound independent of the song tempo.

56



10.5 M allet Solo and M elody Tracks

To disable this setting use a value of “0”.

10.5.2 Decay

You can adjust the volume (velocity) of the notes being repeated whenMallet is enabled:

Solo-Mallet Mallet Decay=-15

The argument is a percentage of the current value to add to thenote each time it is struck. In this example,
assuming that the note length calls for 4 “strikes” and the initial velocity is 100, the note will be struck
with a velocity of 100, 85, 73 and 63.

Important: a positive value will cause the notes to get louder, negative values cause the notes to get softer.

Note velocities will never go below 1 or above 255.

The decay option value must be in the range -20 to 20. The default value is 0 (no decay).

57



Chapter 11

Chord Voicing

In music, a chord is simply defined as two more notes played simultaneously. Now, this doesn’t mean that
you can play just any two or three notes and get a chord which sounds nice—but whatever you do get will
be a chord of some type. And, to further confuse the unwary, different arrangements of the same notes
sound better (or worse) in different musical situations.

As a simple example, consider a C major chord. Built on the first, third and fifth notes of a C major scale
it can be manipulated into a variety of sounds:

A GGG
Root 

GGG
1st Inversion 

GGG
2nd Inversion 

GGG
Wide Position 

These are all C major chords . . . but they all have a different sound or color. The different forms a chord
can take are called “voicings”. Again, this manual is not intended to be a primer on musical theory—that’s
a subject way beyond our abilities, and (again) we really recommend your favorite music teacher and the
study of basic music theory if you want to understand how and whyMmA creates its tracks.

The different options in this chapter effect not only the waychords are constructed, but also the way bass
lines and other tracks are formed.

There are generally two ways inMmA to take care of voicings.

1. useMmA ’s extensiveVoicingoptions, most likely with the”Optimal” voicing algorithm,

2. do everything by yourself with the commandsInvert andCompress.

The commandsLimit andDupRootmay be used independently for both variants.

11.1 Voicing

The Voicing command is use to set the voicing mode and several other options relating to the selected
mode. The command needs to have aChord track specified and a series of Option=Value pairs. For
example:

58



11.1 Voicing Chord Voicing

Chord-Piano Voicing Mode=Optimal Rmove=10 Range=9

In the following sections we will cover all the options available.

11.1.1 Voicing Mode

The easiest way to deal with chord voicings is to via theVoicing Mode=XXoption.

When choosing the inversion of a chord to play an accompanistwill take into consideration the style of
the piece and the chord sequences. In a general sense, this isreferred to as “voicing”.

A large number of the library files have been written to take advantage of the following voicing commands.
However, not all styles of music take well to the concept. And, don’t forget about the other commands
since they are useful in manipulating bass lines, as well as other chord tracks (eg. sustained strings).

MmA has a variety of sophisticated, intelligent algorithms1 to deal with voicing.

As a general rule you should not use theInvert andCompresscommands in conjunction with theVoicing
command. If you do, you may create beautiful sounds. But, theresults are more likely to be less-than-
pleasing. Use of voicing and other combinations will display various warning messages.

The main command to enable voicings is:

Chord Voicing Mode=Type

As mentioned above, this command can only be applied toChord tracks. Also note that this effects all
bars in the sequence . . . you cannot have different voicings for different bars in the sequence (attempting
to do this would make no sense).

The following MODE types are available:

Optimal A basic algorithm which automatically chooses the best sounding voicing depending on the
voicing played before. Always try this option before anything else. It might work just fine without
further work.

The idea behind this algorithm is to keep voicings in a sequence close together. A pianist leaves his
or her fingers where they are, if they still fit the next chord. Then, the notes closest to the fingers are
selected for the next chord. This way characteristic notes are emphasized.

Root This Option may for example be used to turn offVoicingwithin a song.Voicing Mode=Rootmeans
nothing else than doing nothing, leaving all chords in root position.

None This is the same as theRootoption.

Invert Rather than basing the inversion selection on an analysis ofpast chords, this method quite stupidly
tries to keep chords around the base point of “C” by inverting“G” and “A” chords upward and “D”,
“E” and “F” downward. The chords are also compressed. Certainly not an ideal algorithm, but it
can be used to add variety in a piece.

1Great thanks are due to Alain Brenzikofer who not only pressured me into including theVoicingoptions, but wrote a great
deal of the actual code.

59



11.1 Voicing Chord Voicing

CompressedDoes the same as the stand-aloneCompresscommand. LikeRoot, it is only added to be
used in some parts of a song whereVoicing Mode=Optimalis used.

11.1.2 Voicing Range

To get wider or closer voicings, you may define a range for the voicings. This can be adjusted with the
Rangeoption:

Chord-Guitar Voicing Mode=Optimal Range=12

In most cases the default value of 12 should work just fine. But, you may want to fine tune . . . it’s all up to
you. This command only effects chords created withMode=Optimal.

11.1.3 Voicing Center

Just minimizing the Euclidean distance between chords doesn’t do the trick as there could be runaway
progressions that let the voicings drift up or down infinitely.

When a chord is “voiced” or moved to a new position, a “center point” must be used as a base. By default,
the fourth degree of the scale corresponding to the chord is areasonable choice. However, you can change
this with:

Chord-1 Voicing Center=<value>

The value in this command can be any number in the range 0 to 12. Try different values. The color of
your whole song might change.

Note that the value is the note in the scale, not a chord-note position.

This command only effects chords created withMode=Optimal.

11.1.4 Voicing Move

To intensify a chord progression you may want to have ascending or descending movement of voicings.
This option, in conjunction with theDir optional (see below) sets the number of bars over which a mov-
ment is done.

For theMoveoption to have any effect you must also set the direction to either -1 or 1. Be careful that
you don’t force the chord too high or low on the scale. Use of this command in aRepeatsection can
cause unexpected results. For this reason we suggest that you include anSeqcommand at the beginning
of repeated sections of your songs.

In most cases the use of this command is limited to a section ofa song, its use is not recommended in
groove files. You might want to do something like this in a song:

60



11.2 Compress Chord Voicing

..select groove with voicing
chords..
Chord-Piano Voicing Move=5 Dir=1
more chords..
Chord-Piano Voicing Move=5 Dir=-1
more chords..

11.1.5 Voicing Dir

This option is used in conjunction with theMoveoption to set the direction (-1 or 1) of the movement.

11.1.6 Voicing Rmove

As an alternate to movement in a specified direction, random movement can add some color and variety
to your songs. The command option is quite useful (and safe touse) in groove files. The argument for this
option is a percentage value specifying the frequency to apply a move in a random direction.

For example:

Chord-3 Voicing Mode=Optimal Rmove=20

would cause a movement (randomly up or down) in 20% of the bars. As noted earlier, using explicit
movement instructions can move the chord into an undesirable range or even “off the keyboard”; how-
ever, the algorithm used in RMOVE has a sanity check to ensurethat the chord center position remains,
approximately, in a two octave range.

11.2 Compress

WhenMmA grabs the notes for a chord, the notes are spread out from the root position. This means that
if you specify a “C13” you will have an “A” nearly 2 octaves above the root note as part of the chord.
Depending on your instrumentation, pattern, and the chord structure of your piece, notes outside of the
“normal” single octave range for a chordmaysound strange.

Chord Compress 1

ForcesMmA to put all chord notes in a single octave range.

This command is only effective inChordandArpeggiotracks. A warning message is printed if it is used
in other contexts.

Notes:Compresstakes any value between 1 and 5 as arguments (however, some values will have no effect
as detailed above). You can specify a differentCompressfor each bar in a sequence. Repeated values can
be represented with a “/”:

Chord Compress 1 / 0 /

61



11.3 DupRoot Chord Voicing

To restore to its default (off) setting, use a “0” as the argument.

For a similar command, with different results, see theLimit command (see page 63).

11.3 DupRoot

To add a bit of fullness to chords, it is quite common of keyboard players to duplicate the root tone of a
chord into a lower (or higher) octave. This is accomplished inMmA with the command:

DupRoot -1 1 -1 1

The command determines whether or not the root tone of a chordis duplicated in another octave. By
default notes are not added. A value of -1 will add a note one octave lower than the root note, -2 will add
the tone 2 octaves lower, etc. Similarly, the value of 1 will add a note one octave higher than the root tone,
etc.

Only the values -9 to 9 are permitted.

Different values can be used in each bar of the sequence.

The option is reset to 0 after allSequenceor SeqClearcommands.

TheDupRootcommand is only valid inChord tracks. A similar command isDuplicate(see page 101).

11.4 Invert

By defaultMmA uses chords in the root position. By example, the notes of a C major chord are C, E and G.
Chords can be inverted (something musicians do all the time). Sticking with our C major chord, the first
inversion shifts the root note up an octave and the chord becomes E, G and C. The second inversion is G,
C and E.

MmA extends the concept of inversion a bit by permitting the shift to be to the left or right, and the number
of shifts is not limited. So, you could shift a chord up several octaves by using large invert values.2

Inversions apply to each bar of a sequence. So, the followingis a good example:

SeqSize 4
Chord-1 Sequence STR1
Chord-1 Invert 0 1 0 1

Here we set the sequence pattern size to 4 bars and set the pattern for each bar in the Chord-1 track to
“STR1”. Without the next line, this would result in a rather boring, repeating pattern. But, the Invert
command forces the chord to be in the root position for the first bar, the first inversion for the second, etc.

2We’ve used the term “shift” here, but that’s not quite whatMmA does. The order of the notes in the internal buffer stays the
same, just the octave for the notes is changed. So, if the chord notes are “C E G” with the MIDI values “0, 4, 7” an invert of 1
would change the notes to “C2 E G” and the MIDI values to “12, 4, 7”.

62



11.5 L im it Chord Voicing

You can use a negative Invert value:

Chord-1 Invert -1

In this case the C major chord becomes G, C and E.

Note that using fewer Invert arguments than the current sequence size is permitted.MmA simply expands
the number of arguments to the current sequence size. You mayuse a “/” for a repeated value.

A Sequenceor ClearSeqcommand resetsInvert to 0.

This command on has an effect inChord andApreggiotracks. And, frankly,Arpeggios sound a bit odd
with inversions.

If you use a large value forInvert you can force the notes out of the normal MIDI range. In this case the
lowest or highest possible MIDI note value will be used.

11.5 Limit

If you use “jazz” chords in your piece, some people might not like the results. To some folks, chords like
11th, 13th, and variations have a dissonant sound. And, sometimes they are in a chart, but don’t really
make sense. TheLimit command can be used to set the number of notes of a chord used.

For example:

Chord Limit 4

will limit any chords used in theChord track to the first 4 notes of a chord. So, if you have a C11 chord
which is C, E, G, B♭, D, and F, the chord will be truncated to C, E, G and B♭.

This command only applies toChord andArpeggiotracks. It can be set for other tracks, but the setting
will have no effect.

Notes:Limit takes any value between 0 and 8 as an argument. The “0” argument will disable the command.
This command applies to all chords in the sequence—only one value can be given in the command.

To restore to its default (off) setting, use a “0” as the argument.

For a similar command, with different results, see theCompresscommand (see page 61).

11.6 Range

For Arpeggioand Scaletracks you can specify the number of octave used. The effectsof the Range
command is slightly different between the two.

Scale: Scale tracks, by default, create three octave scales. TheRangevalue will modify this to the number
of octaves specified. For example:

Scale Range 1

63



11.6 Range Chord Voicing

will force the scales to one octave. A value of 4 would create 4octave scales, etc.

Arpeggio: Normally, arpeggios use a single octave (really, they use whatever notes are in the chord, which
might exceed the octave). Using theRangecommand we specify the number of octaves to use. The values
of “0” and ”1” have the same effect.

64



Chapter 12

Tempo and T im ing

MmA has a rich set of commands to adjust and vary the timing of yoursong.

12.1 Tempo

The tempo of a piece is set in Beats per Minute with the “Tempo”directive.

Tempo 120

sets the tempo to 120 beats/minute. You can also use the tempocommand to increase or decrease the
current rate by including a leading “+”, “-” or “*” in the rate. For example (assuming the current rate is
120):

Tempo + 10

will increase the current rate to 130 beats/minute.

The tempo can be changed series of beats, much like a rit. or acc. in real music. Assuming that we are in
4
4, the current tempo is 120, and there are 4 beats in a bar, the command:

Tempo 100 1

will cause 4 tempo entries to be placed in the current bar (in the MIDI meta track). The start of the bar
will be 115, the 2nd beat will be at 110, the 3rd at 105 and the last at 100.

You can also vary an existing rate using a “+”, ”-” or “*” in therate.

You can vary the tempo over more than one bar. For example:

Tempo + 20 5.5

tellsMmA to increase the tempo by 20 beats per minute and to step the increase over the next five and a half
bars. Assuming a start tempo of 100 and 4 beats/bar, the meta track will have a tempo settings of 101,
102, 103 . . . 120. This will occur over 22 beats (5.5 bars * 4 beats) of music.

Using the multiplier is handy if you are switching to “doubletime”:

Tempo * 2

and to return:

65



12.2 T im e Tempo and T im ing

Temp * .5

Note that for “+”,”-” or “*” the sign must be separated from the tempo value by at least one space. The
value forTempocan be any value, but will be converted to integer for the finalsetting.

12.2 Time

MmA doesn’t really understand time signatures. It just cares about the number of beats in a bar. So, if you
have a piece in44 time you would use:

Time 4

For 3
4 use:

Time 3

For 6
8 you’d probably want either “2” or “6”.

Changing the time also cancels all existing sequences. So, after a time directive you’ll need to set up your
sequences or load a new groove1.

12.3 TimeSig

Even thoughMmA doesn’t really use Time Signatures, some MIDI programs do recognize and use them.
So, here’s a command which will let you insert a Time Signature in your MIDI output:

TimeSig NN DD

The NN parameter is the time signature numerator (the numberof beats per bar). In34 you would set this
to “3”.

The DD parameter is the time signature denominator (the length of the note getting a single beat). In3
4

you would set this to “4”.

The NN value must be an integer in the range of 1 to 126. The DD value must be one of 1, 2, 4, 8, 16, 32
or 64.

MmA assumes that all songs are in4
4 and places that MIDI event at offset 0 in the Meta track.

TheTimeSigvalue is remembered byGrooves and is properly set when grooves are switched. You should
probably have a time signature in any groove library files youcreate (the supplied files all do).

1The time value is saved/restored with grooves so setting a time is redundant in this case.

66



12.4 BeatAdjust Tempo and T im ing

12.4 BeatAdjust

Internally,MmA tracks its position in a song according to beats. For example, in a 4
4 piece the beat position

is incremented by 4 after each bar is processed. For the most part, this works fine; however, there are some
conditions when it would be nice to manually adjust the beat position:

� You may want to insert some extra (silent) beats at the end of bar to simulate a pause,

� You may want to delete some beats to handle a “short” bar.

Let us deal with both instances in turn. In example 12.1 we simulate a pause at the end of bar 10. One
problem with this logic is that the inserted beat will be silent, but certain notes (percussive things like
piano) often will continue to sound (this is related to the decay of the note, not thatMmA has not turned off
the note). Frankly, we’ve not been able to get this to work toowell . . . which is why theFermata(see page
68) was added.

Time 4
1 Cm / / /
...
10 Am / C /
BeatAdjust 1
...

Example 12.1: Adding Extra Beats

In example 12.2 we handle the problem of the “short bar”. In this example, the sheet music has the
majority of the song in4

4 time, but bar 4 is in2
4. We could handle this by setting theTimesetting to 2 and

creating some different patterns. Forcing silence on the last 2 beats and backing up the counter is a bit
easier.

1 Cm / / /
...
4 Am / z! /
BeatAdjust -2
...

Example 12.2: Short Bar Adjustment

Note that the adjustment factor can be a partial beat. For example:

BeatAdjust .5

will insert half of a beat between the current bars.

67



12.5 Fermata Tempo and T im ing

12.5 Fermata

A “fermata” or “pause” in written music tells the musician tohold a note for a longer period than the
notation would otherwise indicate. In standard music notation it is represented by a “

( . ” above a note.

To indicate all this inMmA we use a command like:

Fermata 1 1 200

Note that there are three parts to the command:

1. The beat offset from the current point in the score to applythe “pause”. The offset can be positive or
negative and is calculated from the current bar. Positive numbers will apply to the next bar; negative
to the previous. For offsets into the next bar you use offsetsstarting at “0”; for offsets into the
previous bar an offset of “-1” represents the last beat in that bar.

For example, if you were in44 time and wanted the quarter note at the end of the next bar to be
paused, you would use an offset of 3. The same effect can be achieved by putting theFermata
command after the bar and using an offset of -1.

2. The duration of the pause in beats. For example, if you havea quarter note to pause your duration
would be 1, a half note (or 2 quarter notes) would be 2.

3. The adjustment. This represented as a percentage of the current value. For example, to force a note
to be held for twice the normal time you would use 200 (two-hundred percent). You can use a value
smaller than 100 to force a shorter note, but this is seldom done.

Example 12.3 shows how you can place aFermatabefore or after the effected bar.

The second example, 12.4, shows the first four bars of a popular torch song. The problem with the piece is
that we want the first beat of bar four to be paused, and then we want to switch the accompaniment in the
middle of the bar. We have split the fourth bar with the first beat on one line and the balance on a second.
The “z!”s are used to “fill in” the 4 beats skipped by theBeatAdjust.

The following conditions will generate warning messages:

� A beat offset greater than one bar,

� A duration greater than one bar,

� An adjustment value less than 100.

This command works by adjusting the global tempo in the MIDI meta track at the point of the fermata. In
most cases you can put more than oneFermatacommand in the same bar, but they should be in beat order
(no checks are done). If theFermatacommand has a negative position argument, special code is invoked
to remove any note-on events in the duration specified, afterthe start of the beat.2 This means that extra
rhythm notes will not be sounded—probably what you expect a held note to sound like.

2Technically speaking,MmA determines an interval starting 5% of a beat after the start of the fermata to a point 5% of a beat
before the end. Any MIDI Note-On events in this range (in all tracks) are deleted.

68



12.6 Cut Tempo and T im ing

A4
4
G G G G3C G G G GGm7 

MmA Equivalent

Fermata 3 1 200
C
Gm7

Alternate

C
Fermata -1 1 200
Gm7

Example 12.3: Fermata

At G G G G G GW GV GC Vdim C G G G G G GG7 G G G G G GW GV GC Vdim C G G G GV3 C7 
G7 -

C C#dim
G7
C / C#dim
G7 z!
Fermata -4 1 200
Cut -3
BeatAdjust -3.5
Groove EasySwing
z! G7 C7

Example 12.4: Fermata with Cut

12.6 Cut

This command was born of the need to simulate a “cut” or, more correctly, a “caesura”. This is indicated
in music by two parallel lines put at the top of a staff indicating the end of a musical thought. The symbol

69



12.6 Cut Tempo and T im ing

is also referred to as “railroad tracks”.

The idea is to stop the music on all tracks, pause briefly, and resume.3

MmA provides thecut command to help deal with this situation. We have found it to be useful in other
situations. But, before we describe the command in detail, adiversion: just how is a note or chord
sustained in a MIDI file?

Let us assume that aMmA input file (and the associated library) files dictates that some notes are to be
played from beat 2 to beat 4 in an arbitrary bar. WhatMmA does is:

� determine the position in the piece as a midi offset to the current bar,

� calculate the start and end times for the notes,

� adjust the times (if necessary) based on adjustable features such asstrum, articulate, rtime, etc.,

� insert the required MIDI “note on” and “note off” commands atthe appropriate point in the track.

You may think that a given note starts on beat 2 and ends (usingarticulate 100) right on beat 3—but you
would most likely be wrong. So, if you want the note or chord tobe “cut”, what point do you use to
instructMmA correctly? Unfortunately, the simple answer is “it depends”. Again, our answers will consist
of some examples.

In this first case we wish to stop the track in the middle of the last bar. The simplest answer is:

1 C
...
36 C / z! /

Unfortunately, this will “almost” work. But, any chords which are longer than one or two beats may
continue to sound. This, often, gives a “dirty” sound to the end of the piece. The simple solution is to add
to the end of the piece:

Cut -2

Depending on the rhythm you might have to fiddle a bit with the cut value. But, the example here puts a
“all notes off” message in all the active tracks at the start of beat 3. The exact same result can be achieved
by placing:

Cut 3

beforethe final bar.

In our second example we want a tiny bit of silence between bars 4 and 5. This might be the end of an
introduction. The following bit should work:

1 C
2 G
3 G
4 C

3The answer to the music theory question of whether the “pause” takes timefrom the current beat or is treated as a “fermata”
is not clear—but as far asMmA is concerned the command has no effect on timing.

70



12.6 Cut Tempo and T im ing

Cut
BeatAdjust .2
5 G
...

In this case the “all notes off” is placed at the end of bar 4 andtwo-tenths of a beat is inserted at the same
location. Bar 5 continues the track.

Our final example show how you might combinecut with fermata. In this case the sheet music shows a
caesura after the first quarter note and fermatas over the quarter notes on beats 2, 3 and 4.

1 C C#dim
2 G7
3 C / C#dim
Fermata 1 3 120
Cut 1.9
Cut 2.9
Cut 3.9
4 G7 / C7 /
5 F6

A few tutorial notes on the above:

� The command

Fermata 1 3 120

applies a slow-down in tempo to the second beat for the following bar (an offset of 1), for 3 beats.
These 3 beats will be played 20% slower than the set tempo.

� The threecut commands insert MIDI “all notes off” in all the active tracksjustbeforebeats 2, 3 and
4.

Finally, the proper syntax for the command:

[Voice] Cut [Offset]

If the voice is omitted, MIDI “all notes off” will be insertedinto each active track.

If the offset is omitted, the current bar position will be used. This the same as using an offset value of 0.

71



Chapter 13

Volume and Dynam ics

MmA is very versatile when it comes to the volumes or dynamics used in your song.

Each generated note goes though 4 volume adjustments:

1. The initial volume is set in the pattern definition, see chapter 4,

2. the initial volume is adjusted with the track volume,

3. this volume is further adjusted with the master volume,

4. if certain notes are to be accented, the volume is further adjusted,

5. and, finally, if the random volume is set, this is applied,

For the most partMmA uses conventional musical score notation for volumes. Internally, the dynamic name
is converted to a percentage value. The note volume is adjusted by the percentage.

The following table shows the available volume settings andthe adjustment values.

Symbolic Name Ratio Adjustment
off 0
pppp 20
ppp 30
pp 45
p 55
mp 75
mf 90
f 100
ff 110
fff 120
ffff 150

The settingOff is useful for generating fades at the end of a piece. For example:

Volume ff
Decresc Off 5
G / Gm / * 5

will cause the last 5 bars of your music to fade from a “ff” to silence.

72



13.1 Accent Volume and Dynam ics

The initial volume (or velocity) is set in the pattern definition (see chapter 4). The following commands
set the master volume, track volume and random volume adjustments.

In addition to the volumes (velocities) generated byMmA your MIDI device can also change the mix be-
tween channels. See the discussion forChannelVolume(prefchannelvol).

13.1 Accent

“Real” musicians, in an almost automatic manner, emphasizenotes on certain beats. In popular Western
music written in4

4 time this is usually beats one and three. This emphasis sets the pulse or beat in a piece.

In MmA you can set the volumes in a pattern so that this emphasis is done. For example, when setting a
walking bass line pattern you could use a pattern definition like:

Define Walk W1234 1 4 100; 2 4 70; 3 4 80; 4 4 70

However, it is much easier to use a definition which has all thevolumes the same:

Define Walk W1234 1 1 90 * 4

and use theAccentcommand to increase or decrease the volume of notes on certain beats:

Walk Accent 1 20 2 -10 4 -10

The above command will increase the volume for walking bass notes on beat 1 by 20%, and decrease the
volumes of notes on beats 2 and 4 by 10%.

You can use this command for all tracks.

When specifying the accents, you must have matching pairs ofdata. The first item in the pair is the beat
(which can be fractional), the second is the volume adjustment. This is a percentage of the current note
volume that is added (or subtracted) to the volume. Adjustment factors must be in the range -100 to 100.

TheAccents apply to all bars in a track. You cannot set different accents for different bars. If you need
to do this it’s a simple matter to create duplicate tracks (which can even share the same MIDI channel).
For example, you might want even bars to have beats 1 and 3 accented and odd bars to have only beat 1
accented. An abbreviated attempt might look like:

Begin Chord-1
Sequence C1234 z
Voice Piano1
Accent 1 20 3 30

End
Begin Chord-2

Sequence z C1234
Voice Piano1
ChShare Chord-1
Accent 1 20

End

73



13.2 AdjustVolume Volume and Dynam ics

13.2 AdjustVolume

The ratios used to adjust the volume can be changed from the above table. For example, to change the
percentage used for the “mf” setting:

AdjustVolume MF 95

If you want to adjust a number of settings:

Begin AdjustVolume
PP 47
ppp 50

End

All values must be positive integers. Any value over 180 willbe reported as a warning.

You might want to do these adjustment in your MMArc file(s).

13.3 Volume

The volume for a track, or all tracks, is given the “Volume” command. Volumes can be specified much
like standard sheet music with the conventional dynamic names. These volumes can be applied to a track
or to the entire song. For example:

Arpeggio1 Volume p

sets the volume for Arpeggio1 track to something approximating piano.

Volume f

sets the master volume toforte.

In most cases the volume for a track will be set with the sequence definition; the master volume is used in
the music file to adjust the overall feel of the piece.

13.4 Cresc and Decresc

If you wish to adjust over a series of bars use theCrescor Decresccommands. These commands are only
valid in the master context; they can not be applied to individual tracks.

For all practical purposes, the two commands are equivalent, expect for the warning. If the new volume in
less than the current volume in aCresca warning will be displayed; the converse applies to aDecresc.

The command requires two arguments. The first is the new volume, the second is the number of bars to
adjust it over.

For example:

74



13.5 RVolume Volume and Dynam ics

Cresc fff 5

will gradually vary the master volume from its current setting to a triple forte over the next 5 bars.

Similarly:

Decresc mp 2

will decrease the master volume to mezzo piano over the next 2bars.

A SeqClearcommand will reset all track volumes to the defaultmf (ie. no adjustment).

When usingVolumefor a specific track, you can use a different value for each barin a sequence:

Drum Volume mp ff / ppp

A “/” can be used to repeat values.

13.5 RVolume

Not even the best musician can play each note at the same volume. Nor would he or she want to—the
result would be quite unmusical. The note volumes can be randomly adjusted with theRvolumecommand.

The command can be applied to a specific track or (if you’re brave) to all tracks.1 Examples:

Chord RVolume 10
RVolume 5

TheRVolumeargument is a percentage value by which a volume is adjusted.A setting of 0 disables the
adjustment for a track (this is the default).

When set, the note velocity (after the track and master volume adjustments) is randomized up or down by
the value. Again, using the above example, let us assume thata note in the current pattern gets a MIDI
velocity of 88. The random factor of 10 will adjust this by 10%up or down—the new value can be from
78 to 98.

The idea behind this is to give the track a more human soundingeffect. You can use large values, but it’s
not recommended. Usually, values in the 5 to 10 range work well. You might want slightly larger values
for drum tracks. Using a value greater than 30 will generate awarning message.

Notes:

� No generated value will be out of the valid MIDI velocity range.

� You may useRVolumewithout a leading track name. In this case it will effect all the tracks (probably
not recommended).

� When usingRVolumefor a specific track, you can use a different value for each barin a sequence:

Scale RVolume 10 0 / 20

1The best use of usingRVolumefor all tracks is with a “0” argument to (temporarily) disable the setting for all tracks.

75



13.6 Saving and Restoring Volumes Volume and Dynam ics

� A “/” can be used to repeat values.

13.6 Saving and Restoring Volumes

Dynamics can get quite complicated, especially when you areadjusting the volumes of a track inside
a repeat or other complicated sections of music. In this section we will attempt to give some general
guidelines and hints.

For the most part, the supplied groove files will have balanced volumes between the different instruments.
In a future version ofMmA a volumeAdjustcommand will let you fine tune differences between your synth
and the standards in the library. This will be done before verison 1.0.

Remember thatGrooves save all the current volume settings. This includes the master setting as well
as individual track settings. So, if you are using the mythical groove “Wonderful” and think that the
Chord-Pianovolume should be louder in a particular song it’s easy to do something like:

Groove Wonderful
Chord-Piano Volume ff
DefGroove Wonderful

Now, when you call this groove the new volume will be used. Note that you’ll have to do this for each
variation of the groove that you use in the song.

In most songs you will not need to do major changes. But, it is nice to use the same volume each time
though a section. In most cases you’ll want to do a explict setting at the start of a section. For example:

Repeat
Volume mf
....
Cresc ff 5
...
EndRepeat

Another useful technique is the use of the$ LastVolumemacro. For example:

Volume pp
...
Cresc f 5
...
$ LastVolume // restores to pp

76



Chapter 14

Repeats

MmA attempts to be as comfortable to use as standard sheet music.This includesrepeatsandendings.

More complex structures likeD.S., Coda, etc. arenot directly supported. But, they are easily simulated
with by using some simple variables, conditionals andGotos. See chapter 15 for details. Often as not,
it may be easier to use your editor to cut, paste and duplicate. Another, alternate, method of handling
complicated repeats is to set sections of code inMset(see page 80) variables and simply expand those.

A section of music to be repeated is indicated with aRepeatandRepeatendor EndRepeat1 In addition,
you can haveRepeatEndings.

1,2. 3. 4.A4
4

!Am !C !D7 TT !Dm D7 TT !G7 !A 

Repeat
1 Am
2 C
RepeatEnding 2
3 D7
RepeatEnding
4 D7 / Dm
RepeatEnd
5 G7
6 A

Example 14.1: Repeats

In example 14.1MmA produces music with bars:

1, 2, 3,

1The reason for bothEndRepeatandRepeatEndis that we have bothIfEnd andEndIf.

77



Repeats

1, 2, 3,
1, 2, 4,
1, 2, 5, 6

This works just like standard sheet music. Note that bothRepeatEndingand RepeatEndcan take an
optional argument indicating the number of times to use the ending or to repeat the block. The effect of
an optional count forRepeatEndingis illustrated in the example, above. The following simple example:

Repeat
1 Am
2 Cm
RepeatEnd 3

Will expand to:

1, 2,
1, 2,
1, 2

Note that the optional argument “3” produces a total of threecopies. The default argument forRepeatis
“2” (values less than 2 are not permitted).

Combining optional counts with bothRepeatEndingand RepeatEndis permitted. However, the final
repeats will not include the endings. Another example:

Repeat
1 Am
2 C
RepeatEnding 2
3 D7
RepeatEnd 2

Produces:

1, 2, 3,
1, 2, 3,
1, 2,
1, 2

MmA processes repeats by reading the input file and creating duplicates of the repeated material. This means
that a directive in the repeated material would be processedmultiple times. Unless you know what you
are doing, directives should not be inserted in repeat sections. Be especially careful if you define a pattern
inside a repeat. UsingTempowith a “+” or “-” will be problematic as well.

Repeats can be nested to any level.

There must be oneRepeatEndor EndRepeatfor everyRepeat. Any number ofRepeatEndingscan be
included before theRepeatEnd.

78



Chapter 15

Variables, Conditionals and Jumps

To make the processing of your music easier,MmA supports a very primitive set for variable manipulations
along with some conditional testing and the oft-frowned-upon gotocommand.

15.1 Variables

MmA lets you set a variable, much like in other programming languages and to do some basic manipulations
on them. Variables are most likely to be used for two reasons:

� For use in setting up conditional segments of your file,

� As a shortcut to entering complex chord sequences.

To begin, the following list shows the available commands toset and manipulate variables:

Set VariableName String
Mset VariableName ... MsetEnd
UnSet VariableName
ShowVars
Inc Variablename [value]
Dec Variablename [value]
Vexpand ON/Off

All variable names are case-insensitive. Any characters can be used in a variable name. The only excep-
tions are that a variable name cannot start with a “$” or a “” (an underscore—this is reserved for internal
variables, see below).

Variables are set and manipulated by using their names. Variables are expanded when their name is
prefaced by a space followed by single “$” sign. For example:

Set Silly Am / Bm /
1 $Silly

The first line creates the variable “Silly”; the second creates a bar of music with the chords “Am / Bm /”.

Note that the “$” must be the first item on a line or follow a space character. For example, the following
will NOT work:

79



15.1 Variables Variables, Conditionals and Jumps

Set Silly 4a;b;c;d;
1 Am {$Silly }

However:

1 Am { $Silly }

will work fine.

Following are details on all the available variable commands:

15.1.1 Set [string]

Set or create a variable. You can skip theString if you do want to assign an empty string to the variable.
A valid example is:

Set PassCount 1

15.1.2 Mset [lines] MsetEnd/EndMset

This command is quite similar toSet, butMsetexpects multiple lines. An example:

MSet LongVar
1 Cm
2 Gm
3 G7

MsetEnd

It is quite possible to set a variable to hold an entire section of music (perhaps a chorus) and insert this via
macro expansion at various places in your file.

EachMsetmust be terminated by aEndMsetor MsetEndcommand (on its own separate line).

15.1.3 UnSet VariableName

Removes the variable. This can be useful if you have conditional tests which simply rely on a certain
variable being “defined”.

15.1.4 ShowVars

Displays the names of the defined variables and their contents. Mainly used for debugging. The display
will preface each variable name with a “$”. Note that internal MmA variable are also displayed with this
command.

80



15.1 Variables Variables, Conditionals and Jumps

15.1.5 Inc and Dec

These commands increment or decrement a variable. If no argument is given, a value of 1 is used; other-
wise, the value specified is used. The value can be an integer or a floating point number.

A short example:

Set PassCount 1
Set Foobar 4
Showvars
Inc FooBar 4
Inc PassCount
ShowVars

This command is quite useful for creating conditional testsfor proper handling of codas or groove changes
in repeats.

15.1.6 VExpand On or Off

Normally variable expansion is enabled. These two options will turn expansion on or off. Why would you
want to do this? Well, here’s a simple example:

Set LeftC Am Em
Set RightC G /
VExpand Off
Set Full $LeftC $RightC
VExpand On

In this case the actual contents of the variable “Full” is “$LeftC $RightC”. If theOff/Onoption lines had
not been used, the contents would be “Am Em G /”. You can easilyverify this with theShowVarsoption.

WhenMmA processes a file it expands variables in a recursive manner. This means that, in the above
example, the line:

1 $Full

will be changed to:

1 Am Em G /

However, if later in the file, you change the definition of one of the variables . . . for example:

Set LeftC Am /

the same line will now be “1 Am / G /”.

Most ofMmA ’s internal commandscan be redefined with variables. However, we really don’t think you
should use this feature. It’s been left for two reasons: it might be useful, and, it’s hard to disable.

However, not all commands can be redefined. The following is short list of things which will work (but,
again, we’re not suggesting you do this):

81



15.2 Predefined Variables Variables, Conditionals and Jumps

Set Rate Tempo 120
$Rate
Set R Repeat
$R

But, the following will not work:

Set B Begin
Set E End
$B Arpeggio Define
....
$E

This fails since the Begin/End constructs are expanded before variable expansion. However:

Set A Define Arpeggio
Begin $a ... End

is quite alright.

Even though you can use a variable to substitute for theRepeator If directives, using one forRepeat-
End/EndRepeat, RepeatEnding. Labelor IfEnd/EndIf will fail.

Variable expansion should usually not be a concern. In most normal files,MmA will expand variables as
they are encountered. However, when reading the data in aRepeat, If or Mset section the expansion
function is skipped—but, when the lines are processed, after being stored in an internal queue, variables
are expanded.

15.2 Predefined Variables

For your convenienceMmA tracks a number of internal settings and saves their values in variables you can
access just like you would a user defined variable. All of these “internal” variables are prefaced with a
single underscore. For example, the current tempo is saved in the variableTEMPO; this can be accessed
in your script with the notation$ TEMPO.

Groove Name of the currently selected groove. May be empty if no groove has been selected.

LastGroove Name of the groove selectedbeforethe currently selected groove.

SeqSizeCurrentSeqSizesetting.

Tempo CurrentTempo. Note that if you have used the optionalbar countin setting the tempo this will
be the target tempo.

Time The currentTime(beats per bar) setting.

Transpose CurrentTransposesetting.

Volume Current global volume setting.

82



15.3 Conditionals Variables, Conditionals and Jumps

LastVolume Previously set global volume setting.

Debug Current debug settings.

LastDebug Debug settings prior to lastDebugcommand. This setting can be used to restore settings, ie:

Debug Warnings=off
... stuff generating annoying warnings
Debug $ LastDebug

15.3 Conditionals

The most important reason we created variables inMmA was to use them in conditionals. InMmA a condi-
tional consists of a line starting with anIf directive, a test, a series of lines to process (depending upon the
result of the test), and a closingEndIf or IfEnd1 directive. An optionalElsestatement may be included.

The first set of tests are unary (they take no arguments):

Def VariableName Returns true if the variable has been defined.

Ndef VariableName Returns true if the variable has not been defined.

In the above tests you must supply the name of a variable—don’t make the mistake of including a “$”
which will invoke expansion and result in something you werenot expecting.

A simple example:

If Def InCoda
5 Cm
6 /

Endif

The other tests are binary (they take two arguments):

LT Str1 Str2 Returns true ifStr1 is less thanStr2. (Please see the discussion below on how the tests are
done.)

LE Str1 Str2 Returns true ifstr1 is less than or equal toStr2.

EQ Str1 Str2 Returns true ifstr1 is equal toStr2.

NE Str1 Str2 Returns true ifstr1 is not equal toStr2.

GT Str1 Str2 Returns true ifstr1 is greater thanStr2.

GE Str1 Str2 Returns true ifstr1 is greater than or equal toStr2.

In the above tests you have several choices in specifyingStr1andStr2. At some point, whenMmA does the
actual comparison, two strings or numeric values are expected. So, you really could do:

1We probably suffer from mild dyslexia and can’t remember if the command is IFEND or ENDIF, so both are permitted.
Use whichever is more comfortable for you.

83



15.3 Conditionals Variables, Conditionals and Jumps

If EQ abc ABC

and get a “true” result. The reason that “abc” equals “ABC” isthat all the comparisons inMmA are case-
insensitive.

You can also compare a variable to a string:

If GT $foo abc

will evaluate to “true” if thecontentsof the variable “foo” evaluates to something “greater than”“abc”.
But, there is a bit of a “gotcha’ here. If you have set “foo” to atwo word string, thenMmA will choke on
the command. In the following example:

Set Foo A B
If GT $Foo abc

the comparison is passed the line:

If GT A B abc

andMmA seeing three arguments generates an error. If you want the comparison done on a variable which
might be more than one word, use the “$$” syntax. This delays the expansion of the variable until theIf
directive is entered. So:

If $$foo abc

would generate a comparison between “A B” and “ABC”.

Delayed expansion can be applied to either variable. It onlyworks in anIf directive.

Strings and numeric values can be confusing in comparisons.For example, if you have the strings “22”
and ”3” and compare them as strings, “3” is greater than “22”;however, if you compare them as values
then 3 is less than 22.

The rule inMmA is quite simple: If either string in a comparison is a numericvalue, both strings are
converted to values. Otherwise they are compared as strings. 2

This lets you do consistent comparisons in situations like:

Set Count 1
If LE $$Count 4

....
IfEnd

Note that in the above example we could have used “$Count”, but you should probably always use the
“$$” in tests.

Much like other programming languages, an optionalElsecondition may be used:

If Def Coda
Groove Rhumba1

2An attempt is made to convert each string to a float. If conversion of both strings is successful, the comparison is made
between two floats, otherwise two strings are used.

84



15.4 Goto Variables, Conditionals and Jumps

Else
Groove Rhumba

Endif

TheElsestatement(s) are processed only if the test for theIf test is false.

Nesting ofIf s is permitted:

If ndef Foo
Print Foo has been defined.

Else
If def bar

Print bar has been defined. Cool.
Else

Print no bar...go thristy.
Endif

Endif

works just fine. We’ve used indentation in our examples to clearly show the nesting and conditions. We
suggest you do the same.

15.4 Goto

The Goto command redirects the execution order of you script to the point at which aLabel has been
defined. There are really two parts to this:

1. A command defining a label, and,

2. TheGotocommand.

A label is set with theLabeldirective:

Label Point1

The string defining the label can be any sequence of characters. Labels are case-insensitive. You can not
set two points in your file to the same label.

To cause execution to jump to a labeled point:

Goto Point1

This causes an immediate jump. Any remaining lines in a repeat or conditional segment are discarded.

MmA does not check to see if you are jumping into a repeat or conditional section of code—but doing so
will usually cause an error. Jumping out of these sections isusually safe.

For an example of how to use some simple labels to simulate a “DS al Coda” examine the file “lullaby-of-
Broadway” in the sample songs directory.

85



Chapter 16

Low Level M IDI Commands

The commands discussed in this chapter directly effect yourMIDI output devices.

Not all MIDI devices are equal. Many of the effects in this chapter may be ignored by your devices. Sorry,
but that’s just the way MIDI is.

16.1 Channel

As noted in the Tracks and Channels chapter (see page 15),MmA assigns MIDI channels dynamically as
it creates tracks. In most cases this works fine; however, youcan if you wish force the assignment of a
specific MIDI channel to a track with theChannelcommand.

You cannot assign a channel number to a track if it already defined (well, see the sectionChShare, below,
for the inevitable exception), nor can you change the channel assignments for any of theDrum tracks.

Let us assume that you want theBasstrack assigned to MIDI channel 8. Simply use:

Bass Channel 8

Caution: If the selected channel is already in use an error will be generated. Due to the wayMmA allocates
tracks, if you really need to manually assign track we recommend that you do this in aMMArc file.

You can disable a channel at any time by using a channel numberof 0:

Arpeggio-1 Channel 0

will disable the Arpeggio-1 channel, freeing it for use by other tracks. A warning message is generated.
Disabling a track without a valid channel is fine. When you seta channel to 0 the track is also disabled.
You can restart the track with theOncommand (see page 104).

You don’t need to have a valid MIDI channel assigned to a trackto do things like: Pan, Portamento,
ChannelVolumeor even the assignment of any music to a track. MIDI data is created in tracks and then
sent out to the MIDI buffers. Channel assignment is checked and allocated at this point, and an error will
be generated if no channels are available.

It’s quite acceptable to do channel reassignments in the middle of a song. Just assign channel 0 to the
unneeded track first.

MIDI channel settings arenot saved inGrooves.

86



16.2 ChannelPref Low Level M IDI Commands

MmA inserts a MIDI “track name” meta event when the channel buffers are first assigned at a MIDI offset
of 0. If the MIDI channel is reassigned, a new “track name” is inserted at the current song offset.

A more general method is to useChannelPrefdetailed below.

16.2 ChannelPref

If you prefer to have certain tracks assigned to certain channels you can use theChannelPrefcommand to
create a custom set of preferences. By default,MmA assigns channels starting at 16 and working down to
1 (with the expection of drum tracks which are all assigned channel 10). If, for example, you would like
theBasstrack to be on channel 9, sustained bass on channel 3, andArpeggioon channel 5, you can have
a command like:

ChannelPref Bass=9 Arpeggio=5 Bass-Sus=3

Most likely this will be in yourmmarcfile.

You can use multiple command lines, or have multiple assignments on a single line. Just make sure that
each item consists of a trackname, an “=” and a channel numberin the range 1 to 16.

16.3 ChShare

MmA is fairly conservative in its use of MIDI tracks. “Out of the box” it demands a separate MIDI channel
for each of its tracks, but only as they are actually used. In most cases, this works just fine.

However, there are times when you might need more tracks thanthe available MIDI channels or you may
want to free up some channels for other programs.

If you have different tracks with the same voicing, it’s quite simple. For example, you might have an
arpeggio and scale track:

Arpeggio Sequence A16 z
Arpeggio Voice Piano1
Scale Sequence z S8
Scale Voice Piano1

In this example,MmA will use different MIDI channels for theArpeggioand theScale. Now, if you force
channel sharing:

Scale ChShare Arpeggio

both tracks will use the same MIDI channel.

This is really foolproof in the above example, especially since the same voice is being used for both. Now,
what if we wanted to use a different voice for the tracks?

87



16.4 M IDI Low Level M IDI Commands

Arpeggio Sequence A16 z
Arpeggio Voice Piano1 Strings
Scale Sequence z S8
Scale ChShare Arpeggio

You might think that this would work, but it doesn’t.MmA ignores voice changes for bars which don’t have
a sequence, so it will set “Piano1” for the first bar, then “Strings” for the second (so far, so good). But,
when it does the third bar (anArpeggio) it will not know that the voice has been changed to “Strings”by
theScaletrack.

So, the general rule for track channel sharing is to use only one voice.

One more example which doesn’t work:

Arpeggio Sequence A8
Scale Sequence S4
Arpeggio Voice Piano1
Scale Voice Piano1
Scale ChShare Arpeggio

In this example we have an active scale and arpeggio sequencein each bar. Since both use the same voice,
you may think that it will work just fine . . . but it may not. The problem here is thatMmA will generate
MIDI on and off events which may overlap each other. One or theother will be truncated. If you are using
a different octave, it will work much better. It may sound okay, but you should probably find a better way
to do this.

When aChSharedirective is parsed the “shared” channel is first checked to ensure that it has been assigned.
If not currently assigned, the assignment is first done. Whatthis means is that you are subvertingMmA ’s
normal dynamic channel allocation scheme. This may cause isa depletion of avaiable channels.

Please note that we’ve never found it really necessary to usetheChSharecommand, so it might have more
problems than outlined here. But, to do some testing we do usethe command to shareBassandWalk
channels in a few groove files.

This command will always display a warning message.

For another, simpler, way of reassigning MIDI tracks and lettingMmA do most of the work for you, refer to
theDeletecommand (see page 100).

16.4 MIDI

The complete set of MIDI commands is not limitless—but from this end it seems that adding commands
to suit every possible configuration is never-ending. So, inan attempt to satisfy everyone, we’ve added a
command which will place any arbitray MIDI stream in your tracks. In most cases this will be a MIDI
“Sysex” or “Meta” event.

The data can be placed in the meta track or a specific voicing track.

88



16.5 M idiF ile Low Level M IDI Commands

For example, you might want to start a song off with a MIDI reset:

MIDI 0xF0 0x05 0x7e 0x7f 0x09 0x01 0xf7

The values passed to the MIDI command are normal integers; however, they must all be in the range of
0x00 to 0xff. In most cases it is easiest to use hexadecimal numbers by using the “0x” prefix. But, you
can use plain decimal integers if you prefer.

In the above example:

0xF0 Designates a SYSEX message

0x05 The length of the message

0x7e . . . The actual message

Another example places the key signature of F major (1 flat) inthe meta track:

MIDI 0xff 0x59 0x02 0xff 0x00

Somecautions:

� MmA makes no attempt to verify the validity of the data!

� The “Length” field must be manually calculated.

� Malformed sequences can create unplayable MIDI files. In extreme situations, these might even
damange your synth. You are on your own with this command . . . be careful.

� TheMidi directive always places data in theMeta track at the current time offset into the file. This
should not be a problem.

Cautions aside, an include file which the author uses has beenincluded in the main distribution asincludes/
init.mma . You might want to have the command:

MMAstart init

in yourmmarcfile. The file is pretty well commented and it sets a synth up to something reasonably sane.

If you need a brief delay after a raw MIDI command, it is possible to insert a silent beat with theBeatAdjust
command (see page 67). See the fileincludes/reset.mma for an example.

16.5 MidiFile

This option controls some fine points of the generated MIDI file. The command is issued with a series of
paramaters in the form “MODE=VALUE”. You can have mulitple settings in a singleMidiFile command.

MmA can generate two types of SMF (Standard MIDI Files):

0. This file contains only one track into which the data for allthe different channel tracks has been
merged. A number of syths which accept SMF (Casio, Yamaha andothers) only accept type 0 files.

89



16.6 M IDISeq Low Level M IDI Commands

1. This file has the data for each MIDI channel in its own track.This is the default file generated by
MmA .

You can set the filetype in an RC file (or, for that matter, in anyfile processed byMmA ) with the command:

MidiFile SMF=0

or

MidiFile SMF=1

You can also set it on the command line with the -M option. Using the command line option will override
theMidiSMF command if it is in a RC file.

By defaultMmA uses “running status” when generating MIDI files. This can bedisabled with the command:

MidiFile Running=0

or enabled (but this is the default) with:

MidiFile Running=1

Files generated without running status will be about 20 to 30% larger than their compressed counterparts.
They may be useful for use with braindead sequencers and in debugging generated code. There is no
command line equivalent for this option.

16.6 MIDISeq

It is possible to associate a set of MIDI controller messageswith certain beats in a sequence. For example,
you might want to have the Modulation Wheel set for the first beats in a bar, but not for the third. The
following example shows how:

Seqsize 4
Begin Bass-2

Voice NylonGuitar
Octave 4
Sequence { 1 4 1 90; 2 4 3 90; 3 4 5 90; 4 4 1+ 90 }
MIDIDef WheelStuff 1 1 0x7f ; 2 1 0x50; 3 1 0
MidiSeq WheelStuff
Articulate 90

End

C ∗ 4

TheMidiSeqcommand is specific to a track and is saved as part of theGroovedefinition. This lets style
file writers use enhanced MIDI features to dress up their sounds.

The command has the following syntax:

TrackName MidiSeq <Beat> <Controller> <Datum> [ ; ...]

90



16.6 M IDISeq Low Level M IDI Commands

where:

Beat is the Beat in the bar. This can be an integer (1,2, etc.) or a floating point value (1.2, 2.25, etc.). It
must be 1 or greater and less than the end of bar (in4

4 it must be less than 5).

Controller A valid MIDI controller. This can be a value in the range 0x00 to 0x7f or a symbolic name.
See see page 132 for a list of defined names.

Datum All controller messages use a single byte “parameter” in therange 0x00 to 0x7f.

You can enter the values in either standard decimal notationor in hexadecimal with the prefixed “0x”. In
most cases, your code will be clearer if you use values like “0x7f” rather than the equivalent “127”.

The MIDI sequences specified can take several forms:

1. A simple series like:

MIDISeq 1 ReleaseTime 50; 3 ReleaseTime 0

in this case the commands are applied to beats 1 and 3 in each bar of the sequence.

2. As a set of names predefined in anMIDIDef command:

MIDIdef Rel1 1 ReleaseTime 50; 3 ReleaseTime 0
MIDIdef Rel2 2 ReleaseTime 50; 4 ReleaseTime 0
MIDISeq Rel1 Rel2

Here, the commands defined in “Rel1” are applied to the first bar in the sequence, “Rel2” to the
second. And, if there are more bars in the sequence than definitions in the line, the series will be
repeated for each bar.

3. A set of series enclosed in{ } braces. Each braced series is applied to a different bar in the sequence.
The example above could have been does as:

MIDISeq { 1 ReleaseTime 50; 3 ReleaseTime 0 } /
{ 2 ReleaseTime 50; 4 ReleaseTime 0 }

4. Finally, you can combine the above into different combinations. For example:

MIDIDef Rel1 1 ReleaseTime 50
MIDIDef Rel2 2 ReleaseTime 50
MIDISeq { Rel1; 3 ReleaseTime 0 } { Rel2; 4 ReleaseTime 0 }

You can have specify different messages for different beats(or different messages/controllers for the same
beat) by listing them on the sameMidiSeqline separated by “;”s.

If you need to repeat a sequence for a measure in a sequence youcan use the special notation “/” to force
the use of the previous line. The special symbol “z” or ”-” canbe used to disable a bar (or number of bars).
For example:

Bass-Dumb MIDISeq 1 ReleaseTime 20 z / FOOBAR

would set the “ReleaseTime” sequence for the first bar of the sequence, no MIDISeq events for the second
and third, and the contents of “FOOBAR” for the fourth.

91



16.7 M IDIVoice Low Level M IDI Commands

To disable the sending of messages just use a single “-”:

Bass-2 MidiSeq - // disable controllers

16.7 MIDIVoice

Similar to theMIDISeqcommand discussed in the previous section, theMIDIVoice command is used to
insert MIDI controller messages into your files. Instead of sending the data for each bar asMIDISeqdoes,
this command just sends the listed control events at the start of a track and then, if needed, at the start of
each bar.

Again, a short example. Let us assume that you want to use the “Release Time” controller to sustain notes
in a bass line:

Seqsize 4
Begin Bass-2

Voice NylonGuitar
MidiVoice 1 ReleaseTime 50
Octave 4
Sequence { 1 4 1 90; 2 4 3 90; 3 4 5 90; 4 4 1+ 90 }
Articulate 60

End

C ∗ 4

should give an interesting effect.

The syntax for the command is:

Track MIDIVoice <beat> <controller> <Datum> [; ...]

This syntax is identical to that discussed in the section forMIDISeq, above. The<beat>value is required
for the command—it determines if the data is sent before or after theVoice command is sent. Some
controllers are reset by a voice, others not. My experimentsshow thatBankshould be sent before, most
others after. Using a “beat” of “0” forces the MidiVoice datato be sent before the Voice control; any other
“beat” value causes the data to be sent after the Voice control. In this silly example:

Voice Piano1
MidiVoice {0 Bank 5; 1 ReleaseTime 100 }

we end up with MIDI data being created something like:

0 Param Ch=xx Con=00 val=05
0 ProgCh Ch=xx Prog=00
0 Param Ch=xx Con=72 val=80

All the MIDI events occur at the same offset, but the order is (may be) important.

92



16.8 M IDIClear Low Level M IDI Commands

By defaultMmA assumes that the MIDIVoice data is to be used only for the firstbar in the sequence. But,
it’s possible to have a different sequence for each bar in thesequence (just like you can have a different
Voicefor each bar). In this case, group the different data groups with {} brackets:

Bass-1 MIDIVoice {1 ReleaseTime 50 } {1 ReleaseTime 20 }

This list is stored with otherGroovedata, so is ideal for inclusion in a style file.

If you want to disable this command after it has been issued you can use the form:

Track MIDIVoice - // disable

Some technical notes:

� MmA tracks the events sent for each bar and will not duplicate sequences.

� Be cautious in using this command to switch voice banks. If you don’t switch the voice bank back
to a sane value you’ll be playing the wrong instruments!

� Do use theMIDIClear command (below) to “undo” anything you’ve done via aMIDIVoice com-
mand.

16.8 MIDIClear

As noted earlier in this manual you should be very careful in programming MIDI sequences into your song
and/or library files. Doing damage to a synthesizer is probably a remote possibility . . . but leaving it in a
unexpected mode is likely. For this reason we have included theMIDIClear command as a companion to
theMIDIVoiceandMIDISeqcommands.

Each time a MIDI track (not necessary the same as aMmA track) is ended or a newGrooveis started, a check
is done to see if any MIDI data has been inserted in the track with aMIDIVoice or MIDISeqcommand. If
it has, a further check is done to see if there is an “undo” sequence defined via aMIDIClear command.
That data is then sent; or, if data has not be defined for the track, a warning message is displayed.

TheMIDIClear command uses the same syntax asMIDIVoiceandMIDISeq; however, you can not specify
different sequence for different bars in the sequence:

Bass-Funky MIDIClear 1 Modulation 0; 1 ReleaseTime 0

As in MIDIVoice andMIDISeqyou can include sequences defined in aMIDIDef. The<beat>offsets are
required, but ignored.

16.9 MIDIinc

MmA has the ability to include a user supplied MIDI file at any point of its generated files. These included
files can be used to play a melodic solo over aMmA pattern or to fill a section of a song with something like
a drum solo.

93



16.9 M IDIinc Low Level M IDI Commands

When theMIDIinc command is encountered the current line is parsed for options, the file is inserted into
the stored MIDI stream, and processing continues. The include has no effect on any song pointers, etc.

MIDIinc has a number of options, mostly set in the form OPTION=VALUE.Following are the recognized
values:

FILENAME The filename of the file to be included. This must be a complete filename. No processing
or expansion is done byMmA on the name.

VOLUME An adjustment for the volume of all the note on events in the included MIDI file. The ad-
justment is specified as a percentage with values under 100 decreasing the volume and over 100
increased it. If the resultant volume (velocity) is less than 1 a velocity of 1 will be used; if it is over
127, 127 will be used.

OCTAVE Octave adjustment for all notes in the file. Values in the range -4 to 4 are permitted. Notes in
drum tracks (channel 10) will not be effected.

TRANSPOSE Transposition adjustment settings in the range -24 ot 24 arepermitted. If you do not set a
value for this the global transpose setting will be applied (expecting channel 10, drum, notes).

TRACK A trackname must be be set into which notes are inserted. You can set more than one track/channel
if you wish. For example, if you had the optionDRUM=10any notes in the MIDI file with a channel
10 setting would be inserted into theMmA Drum track. Similarity,Solo-Tenor=1will copy notes from
channel 1 into theSolo-Tenortrack. If the track doesn’t exist, it will be created. Note: this means
that the channel assignment in your included file and the newMmA generated file will most likely be
different.

A complete example of usage is shown in the files in the directory egs/frankie in the distribution. A
short example:

MIDIinc File=test.mid Solo-Piano=1 Drum=10 Volume=70

will include the MIDI file “test.mid” at the current positionand assign all notes in channel 1 to theSolo-
Pianotrack and the notes from channel 10 to theDrum track. The volumes for all the notes will be adjusted
to 70

A few notes:

� MIDI files to be included do not have to have the same tempo. MIDI adjusts this automatically on
playback. However, the internal setting for beat division should be the same.MmA assumes a beat
division of 192 (this is set in bytes 12 and 13 of the MIDI file).If the included file differs a warning
is printed andMmA will attempt to adjust the timings.

� All files are parsed to find the offset of the first note-on event; notes to be included are set with their
offsets compensated by that time. This means that any silence at the start of the included file is
skipped. If you want the included file to start somewhere besides the start of the current bar you can
use aBeatadjustbefore theMidiInc—use another to move the pointer back right after the includeto
keep the song pointer correct.

� Not all events in the included files are transferred: notablyall system and meta events are ignored.

94



16.10 Pan Low Level M IDI Commands

� If you want to apply differentVolumeor other options to different tracks, just do multiple includes
of the same file (with each include using a different track andoptions).

16.10 Pan

In MIDI-speak “pan” is the same as “balance” on a stereo. By adjusting thePanfor a track you can direct
the output to the left, right or both speakers. Example:

Bass Pan 4

This command is only available in track mode. The data generated is not sent into the MIDI stream until
musical data is created for the relevant MIDI channel.

The value specified must be in the range 0 to 127, and must be an integer.

Panis not saved or restored byGroovecommands, nor is it effected bySeqClear. A Panis inserted directly
into the MIDI track at the point at which it is encountered in the music file. This means that the effect of
Panwill be in use until anotherPan is encountered.

Pan can be used in MIDI compositions to emulate the sound of anorchestra. By assigning different values
to different groups of instruments, you can get the feeling of strings, horns, etc. all placed in the “correct”
position on the stage.

We use Pan for much cruder purposes. When creating accompaniment tracks for our jazz group, we set
all the bass tracks (Bass, Walk, Bass-1, etc) to a Pan 0. Now, when practicing at home we can have a
“full band”; and the bass player can practice without the generated bass lines simply by turning off the left
speaker.

Because your MIDI keyboard most likely does not do a reset between tunes, you should probably undo
anyPaneffects at the end of your file. Example:1

Include swing
Groove Swing
Bass Pan 0
Walk Pan 0
1 C
2 C
...
123 C
Bass Pan 64
Walk Pan 64

1This is much easier to do with the MMAStart and MMAEnd options(see chapter 20).

95



16.11 Portamento Low Level M IDI Commands

16.11 Portamento

This sets the MIDI portamento (in case you’re new to all this,portamento is like glissando between notes—
wonderful, if you like trombones! To enable portamento:

Arpeggio Portamento 30

The parameter can be any value between 1 and 127. To turn the sliding off:

Arpeggio Portamento 0

This command will work with any track (including drum tracks). However, the results may be somewhat
“interesting” or “disappointing”, and many MIDI devices don’t support portamento at all. So, be cautious.
The data generated is not sent into the MIDI stream until musical data is created for the relevant MIDI
channel.

16.12 ChannelVolume

MIDI devices equipped with mixer settings can make use of the“Channel” or “Master” volume settings.2

MmA doesn’t set any channel volumes without your knowledge. If you want to use a set of reasonable
defaults, look at the fileincludes/init.mma which sets all channels other than “1” to “100”. Channel
“1” is assumed to be a solo/keyboard track and is set to the maximum volume of “127”.

You can set all or selectedChannelVolumes:

ChannelVolume 99

will set all channels to “99”. And:

Chord ChannelVolume 55

will set only the Chord track channel. For most users, the useof this command isnot recommended since
it will upset the balance of the library grooves. If you need atrack softer or louder you should use the
volume setting for the track.

The data generated is not sent into the MIDI stream until musical data is created for the relevant MIDI
channel.

2We discovered this on our keyboard after many frustrating hours attempting to balance the volumes in the library. Other
programs would change the keyboard settings, and not being aware of the changes, we’d end up scratching our heads.

96



Chapter 17

Other Commands and D irectives

In addition to the “Pattern”, “Sequence”, “Groove” and “Repeat” and other directives discussed earlier,
and chord data,MmA supports a number of directives which affect the flavor of your music.

The subjects presented in this chapter are ordered alphabetically.

17.1 Articulate

WhenMmA processes a music file, all the note lengths specified in a pattern are converted to MIDI lengths.

For example in:

Bass Define BB 1 4 1 100; 2 4 5 90; 3 4 1 80; 4 4 5 90

we define bass notes on beats 1, 2, 3 and 4. All these notes are defined as quarter notes.MmA , being quite
literal about things, will make each note exactly 192 MIDI ticks long—which means that the note on beat
2 will start at the same time as the note on beat 1 ends.

MmA has an articulate setting for each voice. This value is applied to shorten the note length. By default,
the setting is 90. Each generated note duration is taken to bea percentage of this setting, So, a quarter note
with a MIDI tick duration of 192 will become 172 ticks long.

If articulate is applied to a short note, you are guaranteed that the note will never be less than 1 MIDI tick
in length.

To set the value, use a line like:

Chord-1 Articulate 96

Articulate values must be greater than 0 and less than or equal to 100.

You can specify a differentArticulatefor each bar in a sequence. Repeated values can be represented with
a “/”:

Chord Articulate 50 60 / 30

Notes: The full values for the notes are saved with the pattern definition. The articulate adjustment is
applied at runtime. The articulate setting is saved with agroove.

97



17.2 Copy Other Commands and D irectives

17.2 Copy

Sometimes it is useful to duplicate the settings from one voice to another. TheCopycommand does just
that:

Bass-1 Copy Bass

will copy the settings from theBasstrack to theBass-1track.

TheCopycommand only works between tracks of the same type.

The following settings are copied:

� Volume (see page 74)

� RVolume (see page 75)

� RSkip (see page 104)

� RTime (see page 105)

� Strum (see page 107)

� Octave (see page 103)

� Harmony (see page 101)

� Direction (see page 100)

� ScaleType (see page 106)

� Voice or Tone (see page 108 or 25)

� Invert (see page 62)

� Articulate (see page 97)

� Compress (see page 61)

17.3 Comment

As previously discussed, a comment inMmA is anything following a “//” in a line. A second way of
marking a comment is with theCommentdirective. This is quite useful in combination theBeginandEnd
directives. For example:

Begin Comment
This is a description spanning

several lines which will be
ignored by MMA.

End

You could achieve the same with:

98



17.4 D ebug Other Commands and D irectives

// This is a description spanning
// several lines which will be
// ignored by MMA.

or even:

Comment This is a description spanning
Comment several lines which will be
Comment ignored by MMA.

One minor difference between// andCommentis that the first is discarded when the input stream is read;
the more verbose version is discarded during line processing.

We find thatBegin Comment/Endis handy to delete large sections of a song we are writing on a temporary
basis.

17.4 Debug

To enable you to find problems in your song files (and, perhaps,even find problems withMmA itself) various
debugging messages can be displayed. These are normally setfrom the command line (see page 12).

However, it is possible to enable various debugging messages dynamically in a song file using theDebug
directive. In a debug statement you can enable or disable anyof a variety of messages. A typical directive
is:

Debug Debug=On Expand=Off Patterns=On

Each section of the debug directive consists of amodeand the command wordON or Off. The two parts
must be joined by a single “=”. You may use the values “0” for “Off” and “1” for “On” if desired.

The available modes with the equivalent command line switches are:

Mode Command Line Equivalent
Debug -d debugging messages
Filenames -o display filenames
Patterns -p pattern creation
Sequence -s sequence creation
Runtime -r running progress
Warnings -w warning messages
Expand -e display expanded lines

The modes and command are case-insensitive (although the command line switches are not).

The current state of the debug flags is saved in the variable $Debug and the state prior to a change is saved
in $ LastDebug.

99



17.5 D elete O ther Commands and D irectives

17.5 Delete

If you are using a track in only one part of your song, especially if it is at the start, it may be wise to free
that track’s resources when you are done with it. TheDeletecommand does just that:

Solo Delete

If a MIDI channel has been assigned to that track, it is markedas “available” and the track is deleted. Any
data already saved in the MIDI track will be written whenMmA is finished processing the song file.

17.6 Direction

In tracks using chords or scales you can change the directionin which they are applied:

Scale Direction UP

The effects differ in differnt track types. ForScaleandArpeggiotracks:

UP Plays in upward direction only
DOWN Plays in downward direction only
BOTH Plays upward and downward (default)

RANDOM Plays notes from the chord or scale randomly

When this command is encountered in aScaletrack the start point of the scale is reset.

A Walk track recognizes the following option settings:

BOTH The default. The bass pattern will go up and down a partial
scale. Some notes may be repeated.

UP Notes will be chosen sequentially from an accending, parial scale.
DOWN Notes will be chosen sequentially from a decending, partial scale.

RANDOM Notes will be chosen in a random direction from a parital scale.

All four patterns are useful and create quite different effects.

In aChord track the command is only used whenStrumis set. The default setting isUp; any setting other
thanDown is treated asUp.

You can specify a differentDirection for each bar in a sequence. Repeated values can be represented with
a “/”:

Arpeggio Direction Up Down / Both

The setting is ignored byBass, DrumandSolotracks.

100



17.7 Duplicate O ther Commands and D irectives

17.7 Duplicate

Judicious use of theDuplicatedirective can do much to make a composition sound “fuller”. Essentially
what it does is to duplicate all the notes played to a specifiedoctave. For example:

Begin Bass
Define B1234 0 4 1 90; 1 4 5 90; 2 4 1 90; 3 4 5 90
Sequence B1234
Octave 4
Duplicate -1

End

Creates aBassline which plays a single note on beats 1, 2, 3 and 4 (the root and fifth of the chord). The
Duplicatedirective forces the notes to be played in the specified octave and one octave below that.

Notes:Duplicatetakes any value between -9 and 9 as arguments—but, if the resulting note is forced out
of the MIDI range, the note will not sound.

You can specify a differentDuplicatefor each bar in a sequence. Repeated values can be represented with
a “/”:

Chord Duplicate -1 1 / 0

To restore to its normal (off) setting, use a “0” as the argument.

This command has no effect on aDrum, SoloandMelody tracks (no warnings or errors are generated).
For a similar command seeDupRoot(see page 62).

17.8 Harmony

MmA can generate harmony notes for you . . . just like hitting two or more keys on the piano! And you don’t
have to take lessons.

Automatic harmonies are available for the following track types: Bass, Walk, Apreggio, Scale, Solo and
Melody. To enable harmony notes, use a command like:

Solo Harmony 2

You can set a different harmony method for each bar in your sequence.

The following are valid harmony methods:

2 Two part harmony. The harmony note selected is lower (on the scale).

3 Three part harmony. The harmony notes selected are lower.

OPEN Two part harmony, however the gap between the two notes is larger than in “2”.

2Above The same as “2”, but the harmony note is raised an octave.

3Above The same as “3”, but both notes are raised an octave.

101



17.9 HarmonyOnly Other Commands and D irectives

OpenAbove The same as “Open”, but the note is raised an octave.

8 or 8BELOW A single note one octave below is added.

8ABOVE A single note one octave above is added.

16 or 16BELOW A single note two octaves below are added.

16ABOVE A single note two octaves above are added.

8BOTH Notes an octave above and below are added.

16BOTH Notes two octaves above and below are added.

All harmonies are created using the current chord.

To disable harmony use a “0” or a “-”.

Be careful in using harmonies. They can make your song sound heavy, especially withBassnotes.

Just in case you are thinking thatMmA is a wonderful musical creator when it comes to harmonies, don’t be
fooled.MmA ’s ideas of harmony are quite facile. It determines harmony notes by finding a note lower than
the current note being sounded in the chord. And its notion of“open” is certainly not that of traditional
music theory. But, the sound isn’t too bad.

The command has no effect onDrumor Chord tracks.

17.9 HarmonyOnly

As a added feature to the automatic harmony generation discussed in the previous section, it is possible to
set a track so that itonly plays the harmony notes. For example, you might want to set uptwo arpeggio
tracks with one playing quarter notes on a piano and a harmonytrack playing half notes on a violin. The
following snippet is extracted from the song file “Cry Me A River” and sets up 2 different choir voices:

Begin Arpeggio
Sequence A4
Voice ChoirAahs
Invert 0 1 2 3
SeqRnd
Octave 5
RSkip 40
Volume p
Articulate 99

End

Begin Arpeggio-2
Sequence A4
Voice VoiceOohs
Octave 5

102



17.10 Octave Other Commands and D irectives

RSkip 40
Volume p
Articulate 99
HarmonyOnly Open

End

Just like theHarmonycommand, above, you can have different settings for each barin your sequence.
Setting a bar (or the entire sequence) to ’‘-” or “0” disablesboth theHarmonyandHarmonyOnlysettings.

The command has no effect onDrumor Chord tracks.

If you want to use this feature withSoloor Melodytracks you can duplicate the notes in yourRiff or inline
notationor set the voices to use via theAutoHarmonyTrackscommand (see see page 55).

17.10 Octave

WhenMmA initializes and after theSeqClearcommand all track octaves are set to “4”. This will place most
chord and bass notes in the region of middle C.

You can change the octave for any voice withOctavecommand. For example:

Bass-1 Octave 3

Sets the notes used in the “Bass-1” track one octave lower than normal.

The octave specification can be any value from 0 to 10. Variouscombinations ofInvert, Transposeand
Octavecan force notes to be out of the valid MIDI range. In this case the lowest or highest available note
will be used.

You can specify a differentOctavefor each bar in a sequence. Repeated values can be represented with a
“/”:

Chord Octave 4 5 / 4

17.11 Off

To disable the generation of MIDI output on a specific track:

Bass Off

This can be used anywhere in a file. Use it to override the effect of a predefined groove, if you wish. This
is simpler than resetting a voice in a groove. The only way to reset this command is with aOndirective.

103



17.12 On Other Commands and D irectives

17.12 On

To enable the generation of MIDI output on a specific track which has been disabled with anOff directive:

Bass On

17.13 Print

The Print directive will display its argument to the screen when it is encountered. For example, if you
want to print the filename of the input file while processing, you could insert:

Print Making beautiful music for MY SONG

No control characters are supported.

This can be useful in debugging input files.

17.14 PrintActive

ThePrintActivedirective will the currently activeGrooveand the active tracks. This can be quite useful
when writing groove files and you want to modify and existing groove.

Any parameters given are printed as single comment at the endof the header line.

This is strictly a debugging tool. NoPrintActivestatements should appear in finalized grooves or song
files.

17.15 RSkip

To aid in creating syncopated sounding patterns, you can usetheRSkipdirective to randomly silence or
skip notes. The command takes a value in the range 0 to 99. The “0” argument disables skipping. For
example:

Begin Drum
Define D1 1 0 90
Define D8 D1 * 8
Sequence D8
Tone OpenHiHat
RSkip 40

End

104



17.16 RT ime Other Commands and D irectives

In this case we have defined a drum pattern to hit short notes 8 per bar and have set up a sequence to play
this with “OpenHiHat”. TheRSkipargument of “40” will cause the note to be NOT sounded (randomly)
only 40% of the time.

Using a value of “10” will cause notes to be skipped 10% for thetime (they are played 90% of the time),
“90” means to skip the notes 90% of the time, etc.

You can specify a differentRSkipfor each bar in a sequence. Repeated values can be represented with a
“/”:

Scale RSkip 40 90 / 40

If you use theRSkipin a chord track, the entire chordwill not be silenced. The option will be applied to
the individual notes of each chord. This may or may not be whatyou are after. You cannot use this option
to generate entire chords randomly. For this effect you needto create several chord patterns and select
them withSeqRnd.

You can useRSkipwithout a track argument. This is useful when used with an argument of “0” to (tem-
porarily) disable the setting for all tracks.

17.16 RTime

One of the biggest problem with computer generated drum and rhythm tracks is that, unlike real musicians,
the beats are precise and “on the beat”. TheRTimedirective attempts to solve this.

The command can be applied to all tracksfootnote:The best use of usingRTimefor all tracks is with a “0”
argument to (temporarily) disable the setting for all tracks.

RTime 5

or a specified one:

Drum4 Rtime 4

The value passed to the RTime directive are the number of MIDIticks with which to vary the start time of
the notes. For example, if you specify “5” the start times will vary from -5 to +5 ticks) on each note for
the specified track. There are 192 MIDI ticks in each quarter note.

Any value from 0 to 100 can be used; however values in the range0 to 10 are most commonly used.
Exercise caution in using large values!

You can specify a differentRTimefor each bar in a sequence. Repeated values can be represented with a
“/”:

Chord RTime 4 10 / 4

105



17.17 ScaleType Other Commands and D irectives

17.17 ScaleType

This option is only used byScaletracks. It can be set for other tracks, but the setting is not used.

By default, theScaleTypeis set toAuto. The settings permissible are:

CHROMATIC Forces use of a chromatic scale
AUTO Uses scale based on the current chord (default)

When this command is encountered in aScaletrack the start point of the scale is reset.

17.18 Seq

If your sequence, or groove, has more than one pattern (ie. you have set SeqSize to a value other than 1),
you can use this directive to force a particular pattern point to be used. The directive:

Seq

resets thesequence counterto 1. This means that the next bar will use the first pattern in the current
sequence. You can force a specific pattern point by using an optional value after the directive. For example:

Seq 8

forces the use of pattern point 8 for the next bar. This can be quite useful if you have a multibar sequence
and, perhaps, the eight bar is variation which you want used every eight bars, but also for a transition bar,
or the final bar. Just put aseq 8at those points. You might also want to put aseqat the start of sections to
force the restart of the count.

This command will also disable the effects ofSeqRnd. One difference betweenSeqNoRndandSeqis that
the current sequence point is set with the latter; withSeqNoRndit is left at a random point.

Note: Using a value greater than the currentSeqSizeis not permitted.

This is a very useful command! For example, look at the four bar introduction of the song “Exactly Like
You”:

Groove BossanovaEnd
seq 3
1 C
seq 2
2 Am7
seq 1
3 Dm7
seq 3
4 G7 / G7#5

Here we have used the four bar ending groove to create an interesting introduction.

106



17.19 Strum Other Commands and D irectives

17.19 Strum

By defaultMmA plays all the notes in a chord at the same time. To make the chord more like something a
guitar or banjo might play, use theStrumdirective. For example:

Chord-1 Strum 5

sets the strumming factor to 5 for track Chord-1.

Setting theStrumin any track other than aChord track will generate a warning message and the command
will be ignored.

The strum factor is specified in MIDI ticks. Usually values around 10 to 15 work just fine. The valid range
for Strumis 0 to 100.

You can specify a differentStrumfor each bar in a sequence. Repeated values can be represented with a
“/”:

Chord Strum 20 5 / 10

Note: When chords have both astrumandinvertapplied, the order of the notes played will not necessarily
be root, third, etc. The notes are sorted into ascending order, so for a C major scale with andinvert of 1
the notes played would be “E G C”. That is, unless theDirection (see page 100) has been set to “DOWN”
in which case the order would be reversed (but the notes wouldbe the same).

17.20 Transpose

You can change the key of a piece with the “Transpose” command. For example, if you have a piece
notated in the key of “C” and you want it played back in the key of “D”:

Transpose 2

will raise the playback by 2 semi-tones. Since I play tenor saxophone, I quite often do:

Transpose -2

which puts the MIDI keyboard into the same key as my horn.

You can use any value between -12 and 12. All tracks (with the logical exception of the drum tracks) are
effected by this command.

17.21 Unify

The Unify command is used to force multiple notes of the same voice and pitch to be combined into a
single, long, tone. This is very useful when creating a sustained voice track. For example, consider the
following which might be used in real groove file:

107



17.22 Voice O ther Commands and D irectives

Begin Bass-Sus
Sequence 1 1 1 90 4
Articulate 100
Unify On
Voice TremoloStrings

End

Without theUnify Oncommand the strings would be sounded (or hit) four times during each bar; with it
enabled the four hits are combined into one long tone. This tone can span several bars if the note(s) remain
the same.

The use of this command depends on a number of items:

� TheVoicebeing used. It makes sense to use enable the setting if using asustained tone like “Strings”;
it probably doesn’t make sense if using a tone like “Piano1”.

� For tones to be combined you will need to haveArticulateset to a value of 100. Otherwise the on/off
events will have small gaps in them which will cancel the effects ofUnify.

� Ensure thatRtimeis not set forUnify tracks since the start times may cause gaps.

� If your pattern or sequence has different volumes in different beats (or bars) the effect of aUnify
will be to igore volumes other than the first. Only the firstNote Onand the lastNote Offevents will
appear in the MIDI file.

You can specify a differentUnify for each bar in a sequence. Repeated values can be represented with a
“/”:

Chord Unify On / / Off

But, we’re not sure why you’d want to.

Valid arguments are “On” or “1” to enable; “Off” or “0” to disable.

17.22 Voice

The MIDI instrument or voice used for a track is set with:

Chord-2 Voice Piano1

Voices apply only to the specified track. The actual instrument can be specified via the MIDI instrument
number, or with the symbolic name. See the tables in the MIDI voicing section (see page 127) for lists of
the recognized names.

You can create interesting effects by varying the voice usedwith drum tracks. By default “Voice 0” is
used. However, you can change the drum voices. Our library files do not change the voices since this
appears to be highly dependent on the MIDI synth you are using.

You can specify a differentVoicefor each bar in a sequence. Repeated values can be represented with a
“/”:

108



17.23 VoiceTr O ther Commands and D irectives

Chord Voice Piano1 / / Piano2

17.23 VoiceTr

In previous section we saw how to set a voice for a track by using its standard MIDI name. TheVoiceTr
command sets up a translation table that can be used in two different situations:

� It permits creation of your own names for voices (perhaps fora foreign language),

� It lets you override or change voices used in standard library files.

VoiceTrworks by setting up a simple translation table of “name” and “alias” pairs. WheneverMmA encoun-
ters a voice name in a track command it first attempts to translate this name though the alias table.

To set a translation (or series of translations):

VoiceTr Piano1=Clavinet Hmmm=18

Note that you additionalVoiceTrcommands will add entries to the existing table. To clear thetable use
the command with no arguments:

VoiceTr // Empty table

Assuming the first command, the following will occur:

Chord-Main Voice Hmmm

TheVoicefor theChord-Maintrack will be set to “18” or “Organ3”.

Chord-2 Voice Piano1

TheVoicefor theChord-2track will be set to “Clavinet”.

If your synth does not follow standard GM-MIDI voice naming conventions you can create a translation
table which can be included in all yourMmA song files via an RC file. But, do note that the resulting files
will not play properly on a synth conforming to the GM-MIDI specification.

Following is an abbreviated and untested example for using an obsolete and unnamed synth:

VoiceTr Piano1=3 /
Piano2=4 /
Piano3=5 /
... /
Strings=55 /
...

Notes: the translation is only done one time and no verification is done when the table is created.

109



Chapter 18

Begin/End B locks

Entering a series of directives for a specific track can get quite tedious. To make the creation of library
files a bit easier, you can create a block. For example, the following:

Drum Define X 0 2 100; 50 2 90
Drum Define Y 0 2 100
Drum Sequence X Y

Can be replaced with:

Drum Begin
Define X 0 2 100; 50 2 90
Define Y 0 2 100 End

Drum Sequence X Y

Or, even more simply, with:

Drum Begin Define
X 0 2 100; 50 2 90
Y 0 2 100

End

If you examine some of the library files you will see that we usethis shortcut a lot.

18.1 Begin

TheBegincommand requires any number of arguments. Valid examples include:

Begin Drum
Begin Chord2
Begin Walk Define

Once aBeginblock has been entered, all subsequent lines have the words from theBegincommand pre-
pended to each line of data. There is not much magic here—Begin/End is really just some syntactic sugar.

110



18.2 End Begin/End B locks

18.2 End

To finish off aBeginblock, use a singleEndon a line by itself.

Defining musical data, repeats, or otherBegins inside a block (other than COMMENT blocks) will not
work.

Nesting is permitted. Eg:

Scale Begin
Begin Define

stuff
End
Sequence stuff

End

A Beginmust be competed with aEndbefore the end of a file, otherwise an error will be generated.The
UseandIncludecommands are not permitted inside a block.

111



Chapter 19

Documentation Strings

We’ve mentioned a few times already the importance of clearly documenting your files and library files.
For the most part, you can use comments in your files; but in library files we suggest you use theDoc
directive.

In addition to the commands listed in this chapter, you should also note theDefGroovesection (see page
34).

For some real-life examples of how to document your library files, look at any of the library files supplied
with this distribution.

19.1 Doc

A Doccommand is pretty simple:

Doc This is a documentation string!

In most cases,Docs are treated asComments. However, if the-Dx1 option is given on the command line,
Docs are processed and printed to standard output.

For producing theMmA Standard Library Reference a trivial Python program is used to collate the output
generated with a command like:

mma -Dx -w /usr/local/lib/mma/swing

Note, we added the ’-w’ option to suppress the printing of warning messages.

19.2 Author

As part of the documentation package, there is aAuthorcommand:

Author Bob van der Poel

CurrentlyAuthor lines are processed and the data is saved, but never used. It may be used in a future
library documentation procedures, so you should use it in any library files your write.

1See the command summary (see page 12).

112



Chapter 20

Paths, F iles and L ibraries

This chapter coversMmA filenames, extensions and a variety of commands and/or directives which effect
the way in which files are read and processed.

But, first a few comments on the location of theMmA Python modules.

The Python language (which was used to writeMmA ) has a very useful feature: it can include other files
and refer to functions and data defined in these files. A large number of these files or modules are included
in every Python distribution. The programMmA consists of a short “main” program and several “module”
files. Without these additional modulesMmA will not work.

The only sticky problem in a program intended for a wider audience is where to place these modules.
We’ve decided that they should be in one of three locations:

� /usr/local/share/mma/modules

� /usr/share/mma/modules

� ./modules

If, when initializing itself,MmA cannot find one of the above directories, it will terminate with an error
message.

20.1 File Extensions

For most files the use of a the filename extension “.mma” is optional. However, we suggest that most files
(with the exceptions listed below) have the extension present. It makes it much easier to identifyMmA song
and library files and to do selective processing on these files.

In processing an input song fileMmA can encounter several different types of input files. For allfiles, the
initial search is done by adding the filename extension “.mma” to filename (unless it is already present),
then a search for the file as given is done.

For files included with theUsedirective, the directory set withsetLibPathis first checked, followed by the
current directory.

For files included with theIncludedirective, the directory set withsetIncPathis first checked, followed by
the current directory.

Following is a summary of the different files supported:

113



20.2 Eof Paths, F iles and L ibraries

Song Files The input file specified on the command line should always be named with the “.mma” exten-
sion. WhenMmA searches for the file it will automatically add the extensionif the file name specified
does not exist and doesn’t have the extension.

Library Files Library files really shouldall be named with the extension.MmA will find non-extension
names when used in aUseor Includedirective. However, it will not process these files when creating
indexes with the “-g” command line option—these index files are used by theGroovecommands to
automatically find and include libraries.

RC Files As noted in the RC-File discussion (see page 118)MmA will automatically include a variety of
“RC” files. You can use the extension on these files, but commonusage suggests that these files are
probably better without.

MMAstart and MMAend MmA will automatically include a file at the beginning or end of processing
(see page 118). Typically these files are namedMMAstartandMMAend. Common usage is tonot
use the extension if the file is in the current directory; use the file if it is in an “includes” directory.

One further point to remember is that filenames specified on the command line are subject to wildcard
expansion via the shell you are using.

20.2 Eof

Normally, a file is processed until its end. However, you can short-circuit this behavior with theEof
directive. IfMmA finds a line starting withEof no further processing will be done on that file . . . it’s just as
if the real end of file was encountered. Anything on the same line, after theEof is also discarded.

You may find this handy if you want to test process only a part ofa file, or if you making large edits to a
library file. It is often used to quit when using theLabelandGotodirectives to simulate constructs like
D.C. al Coda, etc.

20.3 LibPath

The search for library files can be set with the LibPath variable. To setLibPath :

SetLibPath PATH

You can have only one path in theSetLibPathdirective.

WhenMmA starts up it sets the library path to the first valid directoryin the list:

� /usr/local/share/mma/lib

� /usr/share/mma/lib

� ./lib

114



20.4 OutPath Paths, F iles and L ibraries

The last choice lets you runMmA directly from the distribution directory.

You are free to change this to any other location in a RCFile (see page 118).

The LibPath is used by the routine which auto-loads grooves from the library, and theUsedirective. The
-g command line option is used to maintain the library database (see page 13).

You can include a leading “˜/ ” in the path. In this case the path will be expanded to a complete pathname.

20.4 OutPath

MIDI file generation is to an automatically generated filename (see page 12). If theOutPath variable is
set, that value will be prepended to the output filename. To set the value:

SetOutPath PATH

Just make sure that “PATH” is a simple pathname withno spaces in it. The variable is case sensitive
(assuming that your operating system supports case sensitive filenames). This is a common directive in a
RC file (see page 118). By default, it has no value.

You can disable theOutPath variable by not using an argument in theSetOutPathdirective.

The PATH used in this command is processed though the Pythonos.path.expanduser()library routine, so
it is permissible to include a leading “˜” in the name (which expands, on Unix and Linux systems, to the
name of the user’s home directory).

If the name set by this command begins with a “.”, “/” or “/” it is prepended to the complete filename
specified on the command line. For example, if you have the input filenametest.mma and the output path
is ˜/mids —the output file will be/home/bob/mids/test.mid .

If the name doesn’t start with the special characters noted in the preceeding paragraph the contents of
the path will be inserted before the filename portion of the input filename. Again, an example: the input
filename ismma/rock/crying and the output path is “midi”—the output file will bemma/rock/midi/
crying.mid .

20.5 Include

Other files with sequence, pattern or music data can be included at any point in your input file. There is
no limit to the level of includes.

Include Filename

A search for the file is done in theIncPath directory (see below) and the current directory. The “.mma”
filename extension is optional.

The use of this command should be quite rare in user files. We use it extensively in our library files to
include standard patterns.

115



20.6 IncPath Paths, F iles and L ibraries

20.6 IncPath

The search for include files can be set with theIncPath variable. To setIncPath:

SetIncPath PATH

You can have only one path in theSetIncPathdirective.

WhenMmA initializes it sets the include path to first found directoryin:

� /usr/local/share/mma/includes

� /usr/share/mma/includes

� ./includes

The last location lets you runMmA from the distribution directory.

If this value is not appropriate for your system, you are freeto change it in a RC File. You can include a
leading “̃ / ” in the path. In this case the path will be expanded to a complete pathname.

20.7 Use

Similar to Include, but a bit more useful. TheUsecommand is used to include library files and their
predefined grooves.

Compared toInclude, Usehas important features:

� The search for the file is done in the paths specified by the LibPath variable,

� The current state of the program is saved before the library file is read and restored when the opera-
tion is complete.

Let’s examine each feature in a bit more detail.

When aUsedirective is issued, eg:

use stdlib/swing

MmA first attempts to locate the file “stdlib/swing” in the directory specified byLibPath or the current
directory. As mentioned above,MmA automatically added the “.mma” extension to the file and checks for
the non-extension filename if that can’t be found.

If things aren’t working out quite right, check to see if the filename is correct. Problems you can encounter
include:

� Search order: you might be expecting the file in the current directory to be used, but the same
filename exists in theLibPath, in which case that file is used.

� Not using extensions: Remember that fileswith the extension added are first checked.

116



20.8 MmaStart Paths, F iles and L ibraries

� Case: The filename iscase sensitive. The files “Swing” and “swing” are not the same. Since most
things inMmA are case insensitive, this can be an easy mistake to make.

� The file is in a subdirectory of theLibPath. In a standard distribution the actual library files are in
/usr/local/share/mma/lib/stdlib , but the libpath is set to/usr/local/share/mma/lib . In
this case you must name the file to be used asstdlib/rhumbanot rhumba.

As mentioned above, the current state of the compiler is saved during aUse. MmA accomplishes this by
issuing a slightly modifiedDefGrooveandGroovecommand before and after the reading of the file. Please
note thatIncludedoesn’t do this. But, don’t let this feature fool you—since the effects of defining grooves
are cumulative youreally shouldhaveSeqClearstatements at the top of all your library files. If you don’t
you’ll end up with unwanted tracks in the grooves you are defining.

In most cases you will not need to use theUse directive in your music files. If you have properly
installedMmA and keep the MMADIR files up-to-date by using the command:

mma -g

grooves from library files will be automatically found and loaded. Internally, theUsedirective is used, so
existing states are saved.

If you are developing new or alternate library files you will find theUsedirective handy.

20.8 MmaStart

If you wish to process a certain file or files before your main input file, set theMmaStartfilename in an
RCFile. For example, we have a number of files in a directory which we wish certainPansettings. In that
directory, we have a filemmarc which contains the following command:

MmaStart setpan

The actual filesetpan has the following directives:

Bass Pan 0
Bass1 Pan 0
Bass2 Pan 0
Walk Pan 0
Walk1 Pan 0
Walk2 Pan 0

So, before each file in that directory is processed, thePan for the bass and walking bass voices are set to
the left channel.

If the file specified by aMmaStartdirective does not exist a warning message will be printed (this is not
an error).

Also useful is the ability to include a generic file with all the MIDI files you create. For example, we like
to have a MIDI reset at the start of our files, so we have the following in ourmmarc file:

117



20.9 MmaEnd Paths, F iles and L ibraries

MMAstart reset

This includes the filereset.mma located in the “includes” directory (see page 116).

Because it is not uncommon to have multiplemmarc files, each with a differentMMAstartdirective, the
files are appended to the existing list. Each file will be processed in the order it is declared. You can have
multiple filenames on aMMAstart line.

20.9 MmaEnd

Just the opposite ofMmaStart, this command specifies a file to be included at the end of a maininput file.
See our comments above for more details.

To continue our example, in ourmmarc file we have:

MmaEnd nopan

and in the filenopan we have:

Bass Pan 64
Bass1 Pan 64
Bass2 Pan 64
Walk Pan 64
Walk1 Pan 64
Walk2 Pan 64

If the file specified by aMmaEnddirective does not exist a warning message will be printed (this is not an
error).

Because it is not uncommon to have multiplemmarc files, each with a differentMMAenddirective, the
files are appended to the existing list. Each file will be processed in the order it is declared. You can have
multiple filenames on aMMAendline.

20.10 RC Files

WhenMmA starts it checks for initialization files. Only the first found file is processed.

The following files are checked (in order):

1. mmarc

2. ˜/.mmarc

3. /usr/local/etc/mmarc

4. /etc/mmarc

118



20.11 L ibrary F iles Paths, F iles and L ibraries

All found files will be processed.

Note that the second file is an “invisible” file due to the leading “.” in the filename.

By default, no rc files are installed.

The rc file is processed as aMmA input file. As such, it can contain anything a normal input filecan,
including music commands. However, we suggest you limit thecontents of your RC files to things like:

SetOutPath
SetLibPath
MMAStart
MMAEnd

A useful setup is to have your source files in one directory andMIDI files saved into a different directory.
Having the filemmarc in the directory with the source files permits settingOutPath to the MIDI path.

20.11 Library Files

Included in this distribution are a number of predefined patterns, sequences and grooves. They are in
different files in the “lib” directory.

The library files should be self-documenting. A list of standard file and the grooves they define is included
in the separate document, supplied in this distribution as “mma-lib.ps”.

119



Chapter 21

Creating E ffects

It’s really quite amazing how easy and effective it is to create different patterns, sequences and special
effects. As we develop the program we try lots of silly things. . . this chapter is an attempt to display and
preserve some of them.

The examples don’t show any music to apply the patterns or sequences to. We assume that if you’ve gotten
this far in the manual you’ll know that you should have something like:

1 C
2 G
3 G
4 C

as a simple test piece to apply tests to.

21.1 Overlapping Notes

We’ve mentioned earlier that you should create patterns so that notes don’t overlap. However, here’s an
interesting effect which relies on ignoring that advice:

Begin Scale
define S1 1 1+1+1+1 90
define S32 S1 * 32
Sequence S32
ScaleType
Direction Both
Voice Accordion
Octave 5

End

We define “S1” with a note length of 4 whole notes (1+1+1+1) so that when we multiply it for S32 we
end up with a pattern of 32 8th notes. Of course, the notes overlap. Running this up and down a chromatic
scale is “interesting.” You might want to play with this a bitand try changing “S1” to:

define S1 1 1 90

to see what the effect is of the notes overlapping.

120



21.2 Jungle B irds Creating E ffects

21.2 Jungle Birds

Here’s another use forScales. We decided that some jungle sounds would be perfect as an introduction to
“Yellow Bird”.

groove Rhumba
Begin Scale

define S1 1 1 90
define S32 S1 * 32
Sequence S32
ScaleType Chromatic
Direction Random
Voice BirdTweet
Octave 5 6 4 5
RVolume 30
Rtime 2 3 4 5
Volume pp pp ppp ppp

End
DefGroove BirdRumba

The above is an extract from theMmA score. The entire song is included in the “songs” directory of this
distribution.

A neat trick is to create the bird sound track and then add it tothe existing Rhumba groove. Then we
define a new groove. Now we can select either the library “rhumba” or our enhanced “BirdRhumba” with
a simpleGroovedirective.

121



Chapter 22

Frequency A sked Questions

This chapter will serve as a container for questions asked bysome enthusiasticMmA users. It may make
some sense in the future to distribute this information as a separate file.

22.1 AABA Song Forms

How can one define parts as part ”A”, part ”B” . . . and arrange them at the end of the file? An option to
repeat a “solo” section a number of times would be nice as well.

UsingMmA variables and some simple looping, one might try something like:

Groove Swing
// Set the music into a
// series of macros
mset A

Print Section A
C
G

endmset
mset B

print Section B
Dm
Em

endmset
mset Solo

Print Solo Section $Count
Am / B7 Cdim

endmset
// Use the macros for an
// "A, A, B, Solo * 8, A"
// form
$A
$A
$B
set Count 1
label a

$solo
inc COUNT
if le $count 8

goto A
endif

$A

Note that the “Print” lines are used for debugging purposes.We have mixed the case of the variable names
just to illustrate the fact that “Solo” is the same as “SOLO” which is the same as “solo”.

Now, if you don’t like things that look like old BASIC programcode, you could just as easily duplicate
the above with:

122



22.2 W here’s the GUI? Frequency A sked Questions

Groove Swing
repeat

repeat
Print Section A
C
G
If Def count

eof
Endif
Endrepeat
Print Section B

Dm
Em
Set Count 1
Repeat

Print Solo $Count
Am
Inc Count

Repeatending 7
Repeatend

Repeatend

The choice is up to you.

22.2 Where’s the GUI?

I really think thatMmA is a cool program. But, it needs aGUI. Are you planning on writing one? Will you
help me if I start to write one?

Well, we appreciate the fact that you likeMmA . We like it too.

We’ve actually started to write a number ofGUIs forMmA . But, nothing seemed to be much more useful
than the existing text interface. So, we figured that it just wasn’t worth the bother.

Now, we are not against graphical programming interfaces. We just don’t see it in this case.

But, we may well be wrong. If you think it’d be better with aGUI . . . well, this is open source and you are
more than welcome to write one. If you do, we’d suggest that you make your program a front-end which
lets a user compile standardMmA files. If you find that more error reporting, etc. is required to interact
properly with your code, let us know and we’ll probably be quite willing to make those kind of changes.

22.3 Where’s the manual index?

We agree that this manual needs an index. We just don’t have the time to go though and do all the necessary
work. Is there a volunteer?

123



Appendix A

Symbols and Constants

This appendix is a reference to the chords thatMmA recognizes and name/value tables for drum and instru-
ment names. The tables have been auto-generated byMmA using the -D options.

A.1 Chord Names

MmA recognizes standard cord names as listed below. The names are case sensitive and must be entered in
uppercase letters as shown:

A

A♯

A♭

B

B♯

B♭

C

C♯

C♭

D

D♯

D♭

E

E♯

E♭

F

F♯

F♭

G

G♯

G♭

Please note that in your input files you must use a lowercase “b” or an “&” to represent a♭ and a “#” for a
♯.

The following types of chords are recognized (these are casesensitive and must be in the mixed upper and
lowercase shown):

+ See “aug”
11 9th chord plus 11th.
11♭9 9th chord plus flat 11th.
13 Dominant 7th (including 5th) plus 13th.
6 Major tiad with added 6th.
7 Dominant 7th.
7♯11 See “9♯11”
7♯5 7th, sharp 5.
7♯5♯9 Dominant 7th with sharp 5th and sharp 9th.

124



A.1 Chord Names Symbols and Constants

7♯5♭9 Dominant 7th with sharp 5th and flat 9th.
7♯9 Dominant 7th with sharp 9th.
7♯9♯11 Dominant 7th plus sharp 9th and sharp 11th.
7+ See “aug7”
7+5 See “7♯5”
7+9 See “7♯9”
7-5 See “7♭5”
7-9 See “7♭9”
7♭5 7th, flat 5.
7♭5♯9 Dominant 7th with flat 5th and sharp 9th.
7♭5♭9 Dominant 7th with flat 5th and flat 9th.
7♭9 Dominant 7th with flat 9th.
7sus 7th with suspended 4th, dominant 7th with 3rd raised half tone.
7sus2 A sus2 with dominant 7th added.
7sus4 See “sus4”
9 Dominant 7th plus 9th.
9♯11 Dominant 7th plus 9th and sharp 11th.
9♯5 Dominant 7th plus 9th with sharp 5th.
9♭5 Dominant 7th plus 9th with flat 5th.
M Major triad. This is the default and is used in the absense of any other chord type

specification.
M13 Major 7th (including 5th) plus 13th.
M7 Major 7th.
M7♯11 Major 7th plus 9th and sharp 11th.
M7♭5 Major 7th with a flatted 5th.
M9 Major 7th plus 9th.
aug Augmented triad.
aug7 An augmented chord (raised 5th) with a dominant 7th.
aug7♭9 Augmented 7th with flat 5th and sharp 9th.
dim Diminished.MmA assumes a diminished 7th.
dim7 See “dim”
m Minor triad.
m♯5 Major triad with augmented 5th.
m(maj7) See “mM7”
m(sus9) Minor triad plus 9th (no 7th).
m+5 See “m♯5”
m+7 See “mM7”
m11 9th with minor 3rd, plus 11th.
m6 Minor 6th.
m7 Minor 7th.
m7-5 See “m7♭5”
m7♭5 Minor 7th, flat 5 (aka 1/2 diminished).
m7♭9 Minor 7th with added flat 9th.
m9 Minor triad plus 7th and 9th.
m9♭5 Minor triad, flat 5, plus 7th and 9th.

125



A.1 Chord Names Symbols and Constants

mM7 Minor Triad plus Major 7th. You will also see this printed as “m(maj7)”, “m+7”,
“min(maj7)” and “min♯7” (which MmA accepts); as well as theMmA invalid forms:
“-(∆7)”, and “min♮7”.

maj7 See “M7”
m♭5 Minor triad with flat 5th.
min♯7 See “mM7”
min(maj7) See “mM7”
sus See “sus4”
sus2 Suspended 2nd, major triad with major 2nd above root substituted for 3rd.
sus4 Suspended 4th, major triad with 3rd raised half tone.
sus9 Dominant 7th plus 9th, omit 7th.

In modern pop charts the “M” in a major 7th chord (and other major chords) is often represented by a “∆”.
When entering these chords, just replace the “∆” with an “M”. For example, change “G∆7” to “GM7”.

Modern pop charts sometimes use “slash” chords in the form “Am/E”. MmA is not capable of correctly
interpreting this notation. If you encounter it just leave the “slash” part off and all should work fine. See
your favorite music theory book or teacher for an explanation!

A chord name without a type is interpreted as a major chord (ortriad). For example, the chord “C” is
identical to “CM”.

126



A.2 M IDI Voices Symbols and Constants

A.2 MIDI Voices

When setting a voice for a track (ie Bass Voice NN), you can specify the patch to use with a symbolic
constant. Any combination of upper and lower case is permitted. The following are the names with the
equivalent voice numbers:

A.2.1 Voices, Alphabetically

5thSawWave 86
Accordion 21
AcousticBass 32
AgogoBells 113
AltoSax 65
Applause/Noise 126
Atmosphere 99
BagPipe 109
Bandoneon 23
Banjo 105
BaritoneSax 67
Bass&Lead 87
Bassoon 70
BirdTweet 123
BottleBlow 76
BowedGlass 92
BrassSection 61
BreathNoise 121
Brightness 100
Celesta 8
Cello 42
Charang 84
ChifferLead 83
ChoirAahs 52
ChurchOrgan 19
Clarinet 71
Clavinet 7
CleanGuitar 27
ContraBass 43
Crystal 98
DistortonGuitar 30
EPiano 5
EchoDrops 102

EnglishHorn 69
Fantasia 88
Fiddle 110
FingeredBass 33
Flute 73
FrenchHorn 60
FretlessBass 35
Glockenspiel 9
Goblins 101
GuitarFretNoise 120
GuitarHarmonics 31
GunShot 127
HaloPad 94
Harmonica 22
HarpsiChord 6
HelicopterBlade 125
Honky-TonkPiano 3
IceRain 96
JazzGuitar 26
Kalimba 108
Koto 107
Marimba 12
MelodicTom1 117
MetalPad 93
MusicBox 10
MutedGuitar 28
MutedTrumpet 59
NylonGuitar 24
Oboe 68
Ocarina 79
OrchestraHit 55
OrchestralHarp 46
Organ1 16

Organ2 17
Organ3 18
OverDriveGuitar 29
PanFlute 75
Piano1 0
Piano2 1
Piano3 2
Piccolo 72
PickedBass 34
PizzicatoString 45
PolySynth 90
Recorder 74
ReedOrgan 20
ReverseCymbal 119
RhodesPiano 4
Santur 15
SawWave 81
SeaShore 122
Shakuhachi 77
Shamisen 106
Shanai 111
Sitar 104
SlapBass1 36
SlapBass2 37
SlowStrings 49
SoloVoice 85
SopranoSax 64
SoundTrack 97
SpaceVoice 91
SquareWave 80
StarTheme 103
SteelDrums 114
SteelGuitar 25

127



A.2 M IDI Voices Symbols and Constants

Strings 48
SweepPad 95
SynCalliope 82
SynthBass1 38
SynthBass2 39
SynthBrass1 62
SynthBrass2 63
SynthDrum 118
SynthStrings1 50
SynthStrings2 51

SynthVox 54
TaikoDrum 116
TelephoneRing 124
TenorSax 66
Timpani 47
TinkleBell 112
TremoloStrings 44
Trombone 57
Trumpet 56
Tuba 58

TubularBells 14
Vibraphone 11
Viola 41
Violin 40
VoiceOohs 53
WarmPad 89
Whistle 78
WoodBlock 115
Xylophone 13

A.2.2 Voices, By MIDI Value

0 Piano1
1 Piano2
2 Piano3
3 Honky-TonkPiano
4 RhodesPiano
5 EPiano
6 HarpsiChord
7 Clavinet
8 Celesta
9 Glockenspiel
10 MusicBox
11 Vibraphone
12 Marimba
13 Xylophone
14 TubularBells
15 Santur
16 Organ1
17 Organ2
18 Organ3
19 ChurchOrgan
20 ReedOrgan
21 Accordion
22 Harmonica
23 Bandoneon
24 NylonGuitar
25 SteelGuitar
26 JazzGuitar
27 CleanGuitar

28 MutedGuitar
29 OverDriveGuitar
30 DistortonGuitar
31 GuitarHarmonics
32 AcousticBass
33 FingeredBass
34 PickedBass
35 FretlessBass
36 SlapBass1
37 SlapBass2
38 SynthBass1
39 SynthBass2
40 Violin
41 Viola
42 Cello
43 ContraBass
44 TremoloStrings
45 PizzicatoString
46 OrchestralHarp
47 Timpani
48 Strings
49 SlowStrings
50 SynthStrings1
51 SynthStrings2
52 ChoirAahs
53 VoiceOohs
54 SynthVox
55 OrchestraHit

56 Trumpet
57 Trombone
58 Tuba
59 MutedTrumpet
60 FrenchHorn
61 BrassSection
62 SynthBrass1
63 SynthBrass2
64 SopranoSax
65 AltoSax
66 TenorSax
67 BaritoneSax
68 Oboe
69 EnglishHorn
70 Bassoon
71 Clarinet
72 Piccolo
73 Flute
74 Recorder
75 PanFlute
76 BottleBlow
77 Shakuhachi
78 Whistle
79 Ocarina
80 SquareWave
81 SawWave
82 SynCalliope
83 ChifferLead

128



A.2 M IDI Voices Symbols and Constants

84 Charang
85 SoloVoice
86 5thSawWave
87 Bass&Lead
88 Fantasia
89 WarmPad
90 PolySynth
91 SpaceVoice
92 BowedGlass
93 MetalPad
94 HaloPad
95 SweepPad
96 IceRain
97 SoundTrack
98 Crystal

99 Atmosphere
100 Brightness
101 Goblins
102 EchoDrops
103 StarTheme
104 Sitar
105 Banjo
106 Shamisen
107 Koto
108 Kalimba
109 BagPipe
110 Fiddle
111 Shanai
112 TinkleBell
113 AgogoBells

114 SteelDrums
115 WoodBlock
116 TaikoDrum
117 MelodicTom1
118 SynthDrum
119 ReverseCymbal
120 GuitarFretNoise
121 BreathNoise
122 SeaShore
123 BirdTweet
124 TelephoneRing
125 HelicopterBlade
126 Applause/Noise
127 GunShot

129



A.3 D rum Notes Symbols and Constants

A.3 Drum Notes

When defining a drum tone, you can specify the patch to use witha symbolic constant. Any combination
of upper and lower case is permitted. The following are the names with the equivalent note numbers:

A.3.1 Drum Notes, Alphabetically

Cabasa 69
Castanets 84
ChineseCymbal 52
Claves 75
ClosedHiHat 42
CowBell 56
CrashCymbal1 49
CrashCymbal2 57
HandClap 39
HighAgogo 67
HighBongo 60
HighQ 27
HighTimbale 65
HighTom1 50
HighTom2 48
HighWoodBlock 76
JingleBell 83
KickDrum1 36
KickDrum2 35
LongGuiro 74

LongLowWhistle 72
LowAgogo 68
LowBongo 61
LowConga 64
LowTimbale 66
LowTom1 43
LowTom2 41
LowWoodBlock 77
Maracas 70
MetronomeBell 34
MetronomeClick 33
MidTom1 47
MidTom2 45
MuteCuica 78
MuteHighConga 62
MuteSudro 85
MuteTriangle 80
OpenCuica 79
OpenHiHat 46
OpenHighConga 63

OpenSudro 86
OpenTriangle 81
PedalHiHat 44
RideBell 53
RideCymbal1 51
RideCymbal2 59
ScratchPull 30
ScratchPush 29
Shaker 82
ShortGuiro 73
ShortHiWhistle 71
SideKick 37
Slap 28
SnareDrum1 38
SnareDrum2 40
SplashCymbal 55
SquareClick 32
Sticks 31
Tambourine 54
VibraSlap 58

A.3.2 Drum Notes, by MIDI Value

27 HighQ
28 Slap
29 ScratchPush
30 ScratchPull
31 Sticks
32 SquareClick
33 MetronomeClick
34 MetronomeBell
35 KickDrum2
36 KickDrum1
37 SideKick

38 SnareDrum1
39 HandClap
40 SnareDrum2
41 LowTom2
42 ClosedHiHat
43 LowTom1
44 PedalHiHat
45 MidTom2
46 OpenHiHat
47 MidTom1
48 HighTom2

49 CrashCymbal1
50 HighTom1
51 RideCymbal1
52 ChineseCymbal
53 RideBell
54 Tambourine
55 SplashCymbal
56 CowBell
57 CrashCymbal2
58 VibraSlap
59 RideCymbal2

130



A.3 D rum Notes Symbols and Constants

60 HighBongo
61 LowBongo
62 MuteHighConga
63 OpenHighConga
64 LowConga
65 HighTimbale
66 LowTimbale
67 HighAgogo
68 LowAgogo

69 Cabasa
70 Maracas
71 ShortHiWhistle
72 LongLowWhistle
73 ShortGuiro
74 LongGuiro
75 Claves
76 HighWoodBlock
77 LowWoodBlock

78 MuteCuica
79 OpenCuica
80 MuteTriangle
81 OpenTriangle
82 Shaker
83 JingleBell
84 Castanets
85 MuteSudro
86 OpenSudro

131



A.4 M IDI Controllers Symbols and Constants

A.4 MIDI Controllers

When specifying a MIDI Controller in aMidiSeqor MidiVoicecommand you can use the absolute value
in (either as a decimal number or in hexadecimal by prefixing the value with a “0x”), or the symbolic
name in the following tables. The tables have been extractedfrom information athttp://www.midi.
org/about-midi/table3.shtml . Note that all the values in these tables are in hexadecimal notation.

Complete reference for this is not a part ofMmA . Please refer to a detailed text on MIDI or the manaul for
your synthesizer.

A.4.1 Controllers, Alphabetically

AllNotesOff 7b
AllSoundsOff 78
AttackTime 49
Balance 08
BalanceLSB 28
Bank 00
BankLSB 20
Breath 02
BreathLSB 22
Brightness 4a
Chorus 5d
Ctrl102 66
Ctrl103 67
Ctrl104 68
Ctrl105 69
Ctrl106 6a
Ctrl107 6b
Ctrl108 6c
Ctrl109 6d
Ctrl110 6e
Ctrl111 6f
Ctrl112 70
Ctrl113 71
Ctrl114 72
Ctrl115 73
Ctrl116 74
Ctrl117 75
Ctrl118 76
Ctrl119 77
Ctrl14 0e

Ctrl15 0f
Ctrl20 14
Ctrl21 15
Ctrl22 16
Ctrl23 17
Ctrl24 18
Ctrl25 19
Ctrl26 1a
Ctrl27 1b
Ctrl28 1c
Ctrl29 1d
Ctrl3 03
Ctrl30 1e
Ctrl31 1f
Ctrl35 23
Ctrl41 29
Ctrl46 2e
Ctrl47 2f
Ctrl52 34
Ctrl53 35
Ctrl54 36
Ctrl55 37
Ctrl56 38
Ctrl57 39
Ctrl58 3a
Ctrl59 3b
Ctrl60 3c
Ctrl61 3d
Ctrl62 3e
Ctrl63 3f

Ctrl79 4f
Ctrl85 55
Ctrl86 56
Ctrl87 57
Ctrl88 58
Ctrl89 59
Ctrl9 09
Ctrl90 5a
Data 06
DataDec 61
DataInc 60
DataLSB 26
DecayTime 4b
Detune 5e
Effect1 0c
Effect1LSB 2c
Effect2 0d
Effect2LSB 2d
Expression 0b
ExpressionLSB 2b
Foot 04
FootLSB 24
General1 10
General1LSB 30
General2 11
General2LSB 31
General3 12
General3LSB 32
General4 13
General4LSB 33

132



A.4 M IDI Controllers Symbols and Constants

General5 50
General6 51
General7 52
General8 53
Hold2 45
Legato 44
LocalCtrl 7a
Modulation 01
ModulationLSB 21
NonRegLSB 62
NonRegMSB 63
OmniOff 7c
OmniOn 7d

Pan 0a
PanLSB 2a
Phaser 5f
PolyOff 7e
PolyOn 7f
Portamento 05
Portamento 41
PortamentoCtrl 54
PortamentoLSB 25
RegParLSB 64
RegParMSB 65
ReleaseTime 48
ResetAll 79

Resonance 47
Reverb 5b
SoftPedal 43
Sostenuto 42
Sustain 40
Tremolo 5c
Variation 46
VibratoDelay 4e
VibratoDepth 4d
VibratoRate 4c
Volume 07
VolumeLSB 27

A.4.2 Controllers, by Value

00 Bank
01 Modulation
02 Breath
03 Ctrl3
04 Foot
05 Portamento
06 Data
07 Volume
08 Balance
09 Ctrl9
0a Pan
0b Expression
0c Effect1
0d Effect2
0e Ctrl14
0f Ctrl15
10 General1
11 General2
12 General3
13 General4
14 Ctrl20
15 Ctrl21
16 Ctrl22
17 Ctrl23
18 Ctrl24

19 Ctrl25
1a Ctrl26
1b Ctrl27
1c Ctrl28
1d Ctrl29
1e Ctrl30
1f Ctrl31
20 BankLSB
21 ModulationLSB
22 BreathLSB
23 Ctrl35
24 FootLSB
25 PortamentoLSB
26 DataLSB
27 VolumeLSB
28 BalanceLSB
29 Ctrl41
2a PanLSB
2b ExpressionLSB
2c Effect1LSB
2d Effect2LSB
2e Ctrl46
2f Ctrl47
30 General1LSB
31 General2LSB

32 General3LSB
33 General4LSB
34 Ctrl52
35 Ctrl53
36 Ctrl54
37 Ctrl55
38 Ctrl56
39 Ctrl57
3a Ctrl58
3b Ctrl59
3c Ctrl60
3d Ctrl61
3e Ctrl62
3f Ctrl63
40 Sustain
41 Portamento
42 Sostenuto
43 SoftPedal
44 Legato
45 Hold2
46 Variation
47 Resonance
48 ReleaseTime
49 AttackTime
4a Brightness

133



A.4 M IDI Controllers Symbols and Constants

4b DecayTime
4c VibratoRate
4d VibratoDepth
4e VibratoDelay
4f Ctrl79
50 General5
51 General6
52 General7
53 General8
54 PortamentoCtrl
55 Ctrl85
56 Ctrl86
57 Ctrl87
58 Ctrl88
59 Ctrl89
5a Ctrl90
5b Reverb
5c Tremolo

5d Chorus
5e Detune
5f Phaser
60 DataInc
61 DataDec
62 NonRegLSB
63 NonRegMSB
64 RegParLSB
65 RegParMSB
66 Ctrl102
67 Ctrl103
68 Ctrl104
69 Ctrl105
6a Ctrl106
6b Ctrl107
6c Ctrl108
6d Ctrl109
6e Ctrl110

6f Ctrl111
70 Ctrl112
71 Ctrl113
72 Ctrl114
73 Ctrl115
74 Ctrl116
75 Ctrl117
76 Ctrl118
77 Ctrl119
78 AllSoundsOff
79 ResetAll
7a LocalCtrl
7b AllNotesOff
7c OmniOff
7d OmniOn
7e PolyOff
7f PolyOn

134



Appendix B

Command Summary

Commands Requiring a Leading Track Specification

Accent . . . . . . . . . . . . . . 73
Articulate . . . . . . . . . . . 97
ChShare . . . . . . . . . . . . 87
Channel . . . . . . . . . . . . . 86
Compress . . . . . . . . . . . 61
Copy . . . . . . . . . . . . . . . . 98
Debug . . . . . . . . . . . . . . . 99
Define . . . . . . . . . . . . . . . 19
Delete . . . . . . . . . . . . . . 100
Direction . . . . . . . . . . . 100
DrumType . . . . . . . . . . 55
DupRoot . . . . . . . . . . . . 62
Duplicate . . . . . . . . . . 101

Groove . . . . . . . . . . . . . . 35
HarmonyOnly . . . . . . 102
Harmony . . . . . . . . . . 101
Invert . . . . . . . . . . . . . . . 62
Limit . . . . . . . . . . . . . . . 63
Lyric . . . . . . . . . . . . . . . . 45
MIDIClear . . . . . . . . . . 93
MIDISeq . . . . . . . . . . . . 90
MIDIVoice . . . . . . . . . . 92
Mallet . . . . . . . . . . . . . . . 56
Octave . . . . . . . . . . . . . 103
Off . . . . . . . . . . . . . . . . 103
On . . . . . . . . . . . . . . . . . 104

Pan . . . . . . . . . . . . . . . . . 95
Portamento . . . . . . . . . 96
Range . . . . . . . . . . . . . . . 63
Riffs . . . . . . . . . . . . . . . . 39
Riff . . . . . . . . . . . . . . . . . 38
ScaleType . . . . . . . . . . 106
Sequence. . . . . . . . . . . . 30
Strum . . . . . . . . . . . . . . 107
Tone . . . . . . . . . . . . . . . . 25
Unify . . . . . . . . . . . . . . 107
Voice . . . . . . . . . . . . . . . 108
Voicing . . . . . . . . . . . . . . 58

Commands With an Optional Leading Track Specification

ChannelVolume . . . . . 96
Cut . . . . . . . . . . . . . . . . . 69
RSkip . . . . . . . . . . . . . . 104
RTime . . . . . . . . . . . . . 105

RVolume . . . . . . . . . . . . 75
SeqClear . . . . . . . . . . . . 31
SeqNoRnd . . . . . . . . . . 33
SeqRnd . . . . . . . . . . . . . 32

Volume . . . . . . . . . . . . . 74

Non-track Commands

AdjustVolume . . . . . . . 74
Author . . . . . . . . . . . . . 112
AutoSoloTracks . . . . . 55
Bar Numbers . . . . . . . . 41
Bar Repeat . . . . . . . . . . 42
BeatAdjust . . . . . . . . . . 67
Begin . . . . . . . . . . . . . . 110
ChannelPref . . . . . . . . . 87
Comment . . . . . . . . . . . 98
Cresc . . . . . . . . . . . . . . . 74

Decresc . . . . . . . . . . . . . 74
Dec . . . . . . . . . . . . . . . . . 81
DefGroove . . . . . . . . . . 34
Doc . . . . . . . . . . . . . . . . 112
EndIf . . . . . . . . . . . . . . . 83
EndMset . . . . . . . . . . . . 80
EndRepeat . . . . . . . . . . 77
End . . . . . . . . . . . . . . . . 110
Eof . . . . . . . . . . . . . . . . 114
Fermata . . . . . . . . . . . . . 68

Goto . . . . . . . . . . . . . . . . 85
IfEnd . . . . . . . . . . . . . . . 83
If . . . . . . . . . . . . . . . . . . . 83
Include . . . . . . . . . . . . 115
Inc . . . . . . . . . . . . . . . . . . 81
KeySig . . . . . . . . . . . . . . 54
Label . . . . . . . . . . . . . . . 85
MIDI . . . . . . . . . . . . . . . 88
MidiFile . . . . . . . . . . . . . 89
MidiInc . . . . . . . . . . . . . 93

135



Command Summary

MmaEnd . . . . . . . . . . 118
MmaStart . . . . . . . . . . 117
MsetEnd . . . . . . . . . . . . 80
Mset . . . . . . . . . . . . . . . . 80
PrintActive . . . . . . . . . 104
Print . . . . . . . . . . . . . . . 104
RepeatEnding . . . . . . . 77
RepeatEnd . . . . . . . . . . 77

Repeat . . . . . . . . . . . . . . 77
SeqSize . . . . . . . . . . . . . 33
Seq . . . . . . . . . . . . . . . . 106
SetIncPath . . . . . . . . . 116
SetLibPath . . . . . . . . . 114
SetOutPath . . . . . . . . 115
Set . . . . . . . . . . . . . . . . . . 80
ShowVars . . . . . . . . . . . 80

Tempo . . . . . . . . . . . . . . 65
TimeSig . . . . . . . . . . . . . 66
Time . . . . . . . . . . . . . . . . 66
Transpose . . . . . . . . . . 107
UnSet . . . . . . . . . . . . . . . 80
Use . . . . . . . . . . . . . . . . 116
VoiceTr . . . . . . . . . . . . 109

136


