

by Emery Berger
emery@cs.umass.edu

www.cs.mass.edu/~emery
Hoard home page: www.hoard.org

Copyright (c) 1998 - 2003, Emery Berger and The University of Texas at Austin.

TABLE OF CONTENTS

Introduction..3

Why Hoard?..3
Contention...3
False Sharing...3
Blowup..3

How Do I Use Hoard?...4
Who’s Using Hoard?..4

Building Hoard...5
Generic Builds..5
Windows Builds...5

Using Hoard..6
UNIX..6

Solaris...6
Linux..6

Windows...7
Using libhoard..7
Using Detours..7

License Information...8
More Information..8
Feedback & Discussion...9

Mailing lists...9

hoard: (v.) To amass and put away (anything valuable)
 for preservation, security, or future use;

 to treasure up: esp. money or wealth.
 (Oxford English Dictionary)

Introduction

The Hoard memory allocator is a fast, scalable, and memory-efficient
memory allocator for shared-memory multiprocessors. It runs on a
variety of platforms, including Linux, Solaris, and Windows.

Why Hoard?
Contention

Multithreaded programs often do not scale because the heap is a
bottleneck. When multiple threads simultaneously allocate or
deallocate memory from the allocator, the allocator will serialize them.
Programs making intensive use of the allocator actually slow down as
the number of processors increases. Your program may be allocation-
intensive without you realizing it, for instance, if your program makes
many calls to the C++ Standard Template Library (STL).

False Sharing

The allocator can cause other problems for multithreaded code. First, it
can lead to false sharing in your application: threads on different CPUs
can end up with memory in the same cache line, or chunk of memory.
Accessing shared cache lines can be hundreds of times slower than
accessing unshared cache lines.

Blowup

Multithreaded programs can also lead the allocator to blowup memory
consumption. This effect can multiply the amount of memory needed
to run your application by the number of CPUs on your machine: four
CPUs could mean that you need four times as much memory.

Hoard is a fast allocator that solves all of these problems.

How Do I Use Hoard?

Hoard is a drop-in replacement for malloc(), etc. In general, you just
link it in or set just one environment variable. You do not have to
change your source code in any way. See the section “Windows Builds”
below for more information for particular platforms.

Who’s Using Hoard?
Users of Hoard include AOL, British Telecom, Crystal Decisions,
Entrust, Novell, Coyote Systems (for their BEMEngine product),
OpenWave Systems (for their Typhoon & Twister servers), and
Reuters. Open source projects using Hoard include Ardour, the
Bayonne GNU telephony server and the GNU Common C++ system.

Building Hoard

You can use the available pre-built binaries or build Hoard yourself.
Hoard is written to work on Windows and any variant of UNIX that
supports threads, and should compile out of the box. Rather than
using Makefiles or configure scripts, Hoard includes custom scripts that
all start with the prefix compile.

Linux & Solaris Builds

You can compile Hoard out of the box for Linux and Solaris using the
GNU compilers only.

./compile-hoard

Windows Builds

There are now two alternative ways of using Hoard with Windows. The
first approach builds a DLL, libhoard.dll and its associated library
libhoard.lib.

.\compile-dll

The second approach relies on Microsoft Research’s Detours
(http://research.microsoft.com/sn/detours). With Detours, you can
take advantage of Hoard without having to relink your applications.
Install Detours into C:\detours, and then build the Hoard detours
library:

.\compile-detours

Using Hoard

UNIX

In UNIX, you can use the LD_PRELOAD variable to use Hoard instead of

the system allocator for any program not linked with the –static
option (that's most programs). Below are settings for Linux and
Solaris.

Solaris

setenv LD_PRELOAD \
"/path/to/libhoard.so:/usr/lib/libthread.so \
:/usr/lib/librt.so:/usr/lib/libCrun.so.1"

Note: For some security-sensitive applications, Solaris requires
you place libraries used in LD_PRELOAD into the /usr/lib/secure
directory. In that event, after copying these libraries into
/usr/lib/secure, set LD_PRELOAD as below:

setenv LD_PRELOAD "libhoard.so:libthread.so"

Linux

setenv LD_PRELOAD "/path/to/libhoard.so:/usr/lib/libdl.so"

A Debian package for Hoard is available at packages.debian.org/libhoard.

Windows

You can now use Hoard in two ways on Windows.

Using libhoard
When you build Hoard under Windows, you will get two files:
libhoard.dll and libhoard.lib. Put the following into your source
code as the very first lines:

#if defined(USE_HOARD) && defined(_WIN32)
#pragma comment(lib, "libhoard.lib")
#endif

The best approach is to put this stanza into the first part of a header
file included by all of your code. The pragma ensures that Hoard loads
before any other library (you will need libhoard.lib in your path).
When you execute your program, as long as libhoard.dll is in your
path, your program will run with Hoard instead of the system allocator.

Note that you must compile your program with the /MD flag, as in:

cl /MD /G6 /Ox /DUSE_HOARD=1 myprogram.cpp

Hoard will not work if you use another switch (like /MT) to
compile your program.

Using Detours
By using Detours, you can take advantage of Hoard’s benefits without
relinking your Windows application (as long as it is dynamically linked
to the C runtime libraries). With this approach, Hoard performs
memory allocation operations for small objects (< 8K) in your
application. Larger objects will continue to be managed via the
Windows allocator: the original allocation instructions will be executed
(i.e., they are not bypassed).

You will need to use one of two of the Detours tools (setdll.exe or
withdll.exe) in conjunction with this version of Hoard. To temporarily
use Hoard as your allocator, use withdll:

withdll –d:hoarddetours.dll myprogram.exe

If you want your program to use Hoard without having to invoke
withdll every time, you can use setdll to add it to your
executable:

setdll –d:hoarddetours.dll myprogram.exe myprogram.exe

You can always remove Hoard from your executable by using the
–r option of setdll.

License Information

The use and distribution of Hoard is governed by the GNU General
Public License as published by the Free Software Foundation,
http://www.fsf.org: see the included file COPYING for more details.
Commercial licenses are also available; you may contact me
(emery@cs.umass.edu) for more information.

