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ABSTRACT
Current general-purpose memory allocators do not provide suffi-
cient speed or flexibility for modern high-performance applications.
Highly-tuned general purpose allocators have per-operation costs
around one hundred cycles, while the cost of an operation in a cus-
tom memory allocator can be just a handful of cycles. To achieve
high performance, programmers often write custom memory allo-
cators from scratch – a difficult and error-prone process.

In this paper, we present a flexible and efficient infrastructure
for building memory allocators that is based on C++ templates and
inheritance. This novel approach allows programmers to build cus-
tom and general-purpose allocators as “heap layers” that can be
composed without incurring any additional runtime overhead or ad-
ditional programming cost. We show that this infrastructure simpli-
fies allocator construction and results in allocators that either match
or improve the performance of heavily-tuned allocators written in
C, including the Kingsley allocator and the GNU obstack library.
We further show this infrastructure can be used to rapidly build a
general-purpose allocator that has performance comparable to the
Lea allocator, one of the best uniprocessor allocators available. We
thus demonstrate a clean, easy-to-use allocator interface that seam-
lessly combines the power and efficiency of any number of general
and custom allocators within a single application.

1. Introduction
Many general-purpose memory allocators implemented for C and
C++ provide good runtime and low fragmentation for a wide range
of applications [15, 17]. However, using specialized memory al-
locators that take advantage of application-specific behavior can
dramatically improve application performance [4, 13, 26]. Hand-
coded custom allocators are widely used: three of the twelve inte-
ger benchmarks included in SPEC2000 (parser, gcc, and vpr
[22]) and several server applications, including the Apache web
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server [1] and Microsoft’s SQL Server [10], use one or more cus-
tom allocators.

Custom allocators can take advantage of certain allocation pat-
terns with extremely low-cost operations. For example, a program-
mer can use a region allocator to allocate a number of small objects
with a known lifetime and then free them all at once [11, 19, 23].
This customized allocator returns individual objects from a range
of memory (i.e., a region), and then deallocates the entire region.
The per-operation cost for a region-based allocator is only a hand-
ful of cycles (advancing a pointer and bounds-checking), whereas
for highly-tuned, general-purpose allocators, the per-operation cost
is around one hundred cycles [11]. Other custom allocators can
yield similar advantages over general-purpose allocators. Figure 1
shows the estimated impact of the custom allocator used in the
SPEC benchmark 197.parser, running on its test input. Re-
placing its custom allocator by the system allocator increases its
runtime by over 60%.1
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Figure 1: The impact of custom allocation on performance for
197.parser.

To attain high performance, programmers often write their own
ad hoc custom allocators as macros or monolithic functions in or-
der to avoid function call overhead. This approach to improving
application performance is enshrined among the best practices of
D
We estimated this cost by measuring the time spent in allocation

using 197.parser’s custom allocator and computing a conser-
vative estimate of allocation time with the system allocator (which
cannot directly be substituted because of the semantics of the cus-
tom allocator). This and the other programs in this paper were com-
piled with Visual C++ 6.0 and run under Windows 2000 on a 366
MHz Pentium II system.



skilled computer programmers [8, 18]. Unfortunately, this kind of
code is brittle and hard to maintain or reuse, and as the application
evolves, it can be difficult to adapt the memory allocator as needs
change (e.g., to a multithreaded environment). In addition, writ-
ing these allocators is both error-prone and difficult. Good memory
allocators are complicated pieces of software that require a sub-
stantial engineering effort. Because of this complexity, combining
a custom and general-purpose allocator to allow them to share free
memory, for example, is currently almost impossible.

In this paper, we present a flexible and efficient infrastructure for
building custom and general-purpose allocators called heap layers.
This infrastructure is based on a combination of C++ templates and
inheritance called mixins [7]. Mixins are classes whose superclass
may be changed. Using mixins allows the programmer to code al-
locators as composable layers that a compiler can implement with
efficient code. Unlike previous approaches, we show that this tech-
nique allows programmers to write highly modular and reusable
code with no abstraction penalty. We describe a number of high-
performance custom allocators that we built by mixing and match-
ing heap layers. We show that these allocators match or improve
performance when compared with their hand-tuned, monolithic C
counterparts on a selection of C and C++ programs.

We further demonstrate that this infrastructure can be used effec-
tively to build high-performance, general-purpose allocators. We
evaluate two general-purpose allocators we developed using heap
layers over a period of three weeks, and compare their performance
with the Kingsley allocator, one of the fastest general-purpose al-
locators, and the Lea allocator, an allocator that is both fast and
memory-efficient. While the current heap layers allocator does not
achieve the fragmentation and performance of the Lea allocator,
the Lea allocator is highly tuned and has undergone many revisions
over a period of more than seven years [17].

The remainder of this paper is organized as follows. We discuss
related work in Section 2. In Section 3, we describe how we use
mixins to build heap layers and demonstrate how we can mix and
match a few simple heap layers to build and combine allocators.
We briefly discuss our experimental methodology in Section 4. In
Section 5, we show how we implement some real-world custom
allocators using heap layers and present performance results. Sec-
tion 6 then describes two general-purpose allocators built with heap
layers and compares their runtime and memory consumption to the
Kingsley and Lea allocators. We describe some of the software
engineering benefits of heap layers in Section 7, and in Section 8,
we show how heap layers provide a convenient infrastructure for
memory allocation experiments. We conclude in Section 9 with a
discussion of future directions.

2. Related Work
In this section, we describe related work in memory allocation and
memory management infrastructures. We discuss two representa-
tive general-purpose memory allocators and describe related work
in custom memory allocation. We then compare heap layers to pre-
vious infrastructures for building memory managers.

2.1 General-Purpose Allocation

The literature on general-purpose memory allocators is extensive
[26]. Here we describe two memory allocators, the Kingsley allo-
cator used in BSD 4.2 [26] and the Lea allocator [17]. In Section 6,
we describe the implementation of these two allocators in heap lay-
ers. We chose to implement these allocators because they are in
widespread use and are on opposite ends of the spectrum between
maximizing speed and minimizing memory consumption.

The Kingsley allocator is a power-of-two segregated fits alloca-
tor: all allocation requests are rounded up to the next power of two.

This rounding can lead to severe internal fragmentation (wasted
space inside allocated objects), because in the worst case, it allo-
cates twice as much memory as requested. Once an object is allo-
cated for a given size, it can never be reused for another size: the
allocator performs no splitting (breaking large objects into smaller
ones) or coalescing (combining adjacent free objects). This algo-
rithm is well known to be among the fastest memory allocators
although it is among the worst in terms of fragmentation [15].

The Lea allocator is an approximate best-fit allocator that pro-
vides both high speed and low memory consumption. It forms the
basis of the memory allocator included in the GNU C library [12].
The current version (2.7.0) is a hybrid allocator with different be-
havior based on object size. Small objects (less than 64 bytes) are
allocated using exact-size quicklists (one linked list of freed objects
for each multiple of 8 bytes). Requests for a medium-sized object
(less than 128K) and certain other events trigger the Lea allocator
to coalesce all of the objects in these quicklists in the hope that
this reclaimed space can be reused for the medium-sized object.
For medium-sized objects, the Lea allocator performs immediate
coalescing and spliting and approximates best-fit. Large objects
are allocated and freed using mmap. The Lea allocator is the best
overall allocator (in terms of the combination of speed and memory
usage) of which we are aware [15].

2.2 Special-Purpose Allocation

Most research on special-purpose (custom) allocation has focused
on profile-based optimization of general-purpose allocation. Grun-
wald and Zorn’s CustoMalloc builds memory allocators from allo-
cation traces, optimizing the allocator based on the range of object
sizes and their frequency of usage [13]. Other profile-based allo-
cators use lifetime information to improve performance and refer-
ence information to improve locality [4, 20]. Regions, described in
Section 1, have received recent attention as a method for improving
locality [23]. Aiken and Gay have developed safe regions which de-
lay region deletion when live objects are present [11]. Techniques
for building other application-specific custom allocators have re-
ceived extensive attention in the popular press [8, 18].

2.3 Memory Management Infrastructures

We know of only two previous infrastructures for building memory
managers: vmalloc, by Vo, and CMM, by Attardi, Flagella, and
Iglio. We describe the key differences between their systems and
ours, focusing on the performance and flexibility advantages that
heap layers provide.

The most successful customizable memory manager of which
we are aware is the vmalloc allocator [25]. Vmalloc lets the pro-
grammer define multiple regions (distinct heaps) with different dis-
ciplines for each. The programmer performs customization by sup-
plying user-defined functions and structs that manage memory.
By chaining these together, vmalloc does provide the possibility of
composing heaps. Unlike heap layers, each abstraction layer pays
the penalty of a function call. This approach often prevents many
useful optimizations, in particular method inlining. The vmalloc
infrastructure limits the programmer to a small set of functions for
memory allocation and deallocation; a programmer cannot add new
functionality or new methods as we describe in Section 6.1. Unlike
heap layers, vmalloc does not provide a way to delete heaps and
reclaim all of their memory in one step. These limitations dramati-
cally reduce vmalloc’s usefulness as an extensible infrastructure.

Attardi, Flagella, and Iglio created an extensive C++-based sys-
tem called the Customizable Memory Management (CMM) frame-
work [2, 3]. Unlike our work, the primary focus of the CMM
framework is garbage collection. The only non-garbage collected
heaps provided by the framework are a single “traditional man-



ual allocation discipline” heap (whose policy the authors do not
specify) called UncollectedHeap and a zone allocator called Tem-
pHeap. A programmer can create separate regions by subclassing
the abstract class CmmHeap, which uses virtual methods to obtain
and reclaim memory. For every memory allocation, deallocation,
and crossing of an abstraction boundary, the programmer must thus
pay the cost of one virtual method call, while in heap layers, there is
no such penalty. As in vmalloc, this approach often prevents com-
piler optimizations across method boundaries. The virtual method
approach also limits flexibility. In CMM, subclasses cannot imple-
ment functions not already provided by virtual methods in the base
heap. Also, since class hierarchies are fixed, it is not possible to
have one class (such as FreelistHeap, described in Section 3.1) with
two different parent heaps in different contexts. In contrast, the
mixin-based approach taken by heap layers allows both inheritance
and reparenting, making heap layers more flexible and reusable.

The goal of heap layers is to provide the performance of existing
custom and general-purpose allocators in a flexible, reusable frame-
work that provides a foundation for programmers to build new allo-
cators. We implement customized and general-purpose allocators
using heap layers, demonstrating their flexibility and competitive
performance.

3. Heap Layers
While programmers often write memory allocators as monolithic
pieces of code, they tend to think of them as consisting of separate
pieces. Most general-purpose allocators treat objects of different
sizes differently. The Lea allocator uses one algorithm for small
objects, another for medium-sized objects, and yet another for large
objects. Conceptually at least, these heaps consist of a number of
separate heaps that are combined in a hierarchy to form one big
heap.

The standard way to build components like these in C++ uses
virtual method calls at each abstraction boundary. The overhead
caused by virtual method dispatch is significant when compared
with the cost of memory allocation. This implementation style also
greatly limits the opportunities for optimization since the compiler
often cannot optimize across method boundaries. Building a class
hierarchy through inheritance also fixes the relationships between
classes in a single inheritance structure, making reuse difficult.

To address these concerns, we use mixins to build our heap lay-
ers. Mixins are classes whose superclass may be changed (they
may be reparented) [7]. The C++ implementation of mixins (first
described by VanHilst and Notkin [24]) consists of a templated
class that subclasses its template argument:

template <class Super>
class Mixin : public Super {};

Mixins overcome the limitation of a single class hierarchy, enabling
the reuse of classes in different hierarchies. For instance, we can
use
�

in two different hierarchies,
�����

and
�����

(where
the arrow means “inherits from”), by defining

�
as a mixin and

composing the classes as follows:

class Composition1 : public A<B> {};
class Composition2 : public A<C> {};

A heap layer is a mixin that provides a malloc and free method
and that follows certain coding guidelines. The malloc func-
tion returns a memory block of the specified size, and the free
function deallocates the block. As long as the heap layer follows
the guidelines we describe below, programmers can easily com-
pose heap layers to build heaps. One layer can obtain memory
from its parent by calling SuperHeap::malloc() and can re-
turn it with SuperHeap::free(). Heap layers also implement

thin wrappers around system-provided memory allocation func-
tions like malloc, sbrk, or mmap. We term these thin-wrapper
layers top heaps, because they appear at the top of any hierarchy of
heap layers.

We require that heap layers adhere to the following coding guide-
lines in order to ensure composability. First, malloc must cor-
rectly handle NULLs returned by SuperHeap::malloc() to
allow an out-of-memory condition to propagate through a series of
layers or to be handled by an exception-handling layer. Second, the
layer’s destructor must free any memory that is held by the layer.
This action allows heaps composed of heap layers to be deleted in
their entirety in one step.

3.1 Example: Composing a Per-Class Allocator

One common way of improving memory allocation performance is
to allocate all objects from a highly-used class from a per-class pool
of memory. Because all such objects are the same size, memory can
be managed by a simple singly-linked freelist [16]. Programmers
often implement these per-class allocators in C++ by overloading
the new and delete operators for the class.

Below we show how we can combine two simple heap layers
to implement per-class pools without changing the source code for
the original class. We first define a utility class called PerClassHeap
that allows a programmer to adapt a class to use any heap layer as
its allocator:

template <class Object, class SuperHeap>
class PerClassHeap : public Object {
public:

inline void * operator new (size_t sz) {
return getHeap().malloc (sz);

}
inline void operator delete (void * ptr) {
getHeap().free (ptr);

}
private:

static SuperHeap& getHeap (void) {
static SuperHeap theHeap;
return theHeap;

}
};

We build on the above with a very simple heap layer called Free-
listHeap. This layer implements a linked list of free objects of the
same size. malloc removes one object from the freelist if one is
available, and free places memory on the freelist for later reuse.
This approach is a common idiom in allocators because it provides
very fast allocates and frees. However, it is limited to handling only
one size of object. The code for FreelistHeap appears in Figure 2
without the error checking included in the actual code to guarantee
that all objects are the same size.

We can now combine PerClassHeap and FreelistHeap with malloc-
Heap (a thin layer over the system-supplied malloc and free) to
make a subclass of Foo that uses per-class pools.

class FasterFoo :
public

PerClassHeap<Foo, FreelistHeap<mallocHeap> >{};

3.2 A Library of Heap Layers

We have built a comprehensive library of heap layers that allows
programmers to build a range of memory allocators with minimal
effort by composing these ready-made layers. Figure 1 lists a num-
ber of these layers, which we group into the following categories:

Top heaps. A “top heap” is a heap layer that provides memory di-
rectly from the system and at least one appears at the top



template <class SuperHeap>
class FreelistHeap : public SuperHeap {
public:

FreelistHeap (void)
: myFreeList (NULL)

{}
˜FreelistHeap (void) {

// Delete everything on the freelist.
void * ptr = myFreeList;
while (ptr != NULL) {
void * oldptr = ptr;
ptr = (void *) ((freeObject *) ptr)->next;
SuperHeap::free (oldptr);

}
}
inline void * malloc (size_t sz) {

// Check the freelist first.
void * ptr = myFreeList;
if (ptr == NULL) {
ptr = SuperHeap::malloc (sz);

} else {
myFreeList = myFreeList->next;

}
return ptr;

}
inline void free (void * ptr) {

// Add this object to the freelist.
((freeObject *) ptr)->next = myFreeList;
myFreeList = (freeObject *) ptr;

}
private:

class freeObject {
public:

freeObject * next;
};
freeObject * myFreeList;

};

Figure 2: The implementation of FreelistHeap.

of any hierarchy of heap layers. These thin wrappers over
system-based memory allocators include mallocHeap, mmap-
Heap (virtual memory), and sbrkHeap (built using sbrk()
for UNIX systems and an sbrk() emulation for Windows).

Building-block heaps. Programmers can use these simple heaps
in combination with other heaps described below to imple-
ment more complex heaps. We provide an adapter called
AdaptHeap that lets us embed a dictionary data structure
inside freed objects so we can implement variants of Free-
listHeap, including DLList, a FIFO-ordered, doubly-linked
freelist that allows constant-time removal of objects from
anywhere in the freelist. This heap supports efficient co-
alescing of adjacent objects belonging to different freelists
into one object.

Combining heaps. These heaps combine a number of heaps to
form one new heap. These include two segregated-fits layers,
SegHeap and StrictSegHeap (described in Section 6.1), and
HybridHeap, a heap that uses one heap for objects smaller
than a given size and another for larger objects.

Utility layers. Utility layers include ANSIWrapper, which provides
ANSI-C compliant behavior for malloc and free to al-
low a heap layer to replace the system-supplied allocator.
A number of layers supply multithreaded support, includ-
ing LockedHeap, which code-locks a heap for thread safety
(acquires a lock, performs a malloc or free, and then
releases the lock), and ThreadHeap and PHOThreadHeap,

A Library of Heap Layers
Top Heaps

mallocHeap A thin layer over malloc
mmapHeap A thin layer over the virtual memory manager
sbrkHeap A thin layer over sbrk (contiguous memory)

Building-Block Heaps
AdaptHeap Adapts data structures for use as a heap
BoundedFreelistHeap A freelist with a bound on length
ChunkHeap Manages memory in chunks of a given size
CoalesceHeap Performs coalescing and splitting
FreelistHeap A freelist (caches freed objects)

Combining Heaps
HybridHeap Uses one heap for small objects

and another for large objects
SegHeap A general segregated fits allocator
StrictSegHeap A strict segregated fits allocator

Utility Layers
ANSIWrapper Provides ANSI-malloc compliance
DebugHeap Checks for a variety of allocation errors
LockedHeap Code-locks a heap for thread safety
PerClassHeap Use a heap as a per-class allocator
PHOThreadHeap A private heaps with ownership allocator [6]
ProfileHeap Collects and outputs fragmentation statistics
ThreadHeap A pure private heaps allocator [6]
ThrowExceptionHeap Throws an exception when the parent heap

is out of memory
TraceHeap Outputs a trace of allocations
UniqueHeap A heap type that refers to one heap object

Object Representation
CoalesceableHeap Provides support for coalescing
SizeHeap Records object sizes in a header

Special-Purpose Heaps
ObstackHeap A heap optimized

for stack-like behavior and fast resizing
ZoneHeap A zone (“region”) allocator
XallocHeap A heap optimized for stack-like behavior

General-Purpose Heaps
KingsleyHeap Fast but high fragmentation
LeaHeap Not quite as fast but low fragmentation

Table 1: A library of heap layers, divided by category.

which implement finer-grained multithreaded support. Error
handling is provided by ThrowExceptionHeap, which throws
an exception when its superheap is out of memory. We also
provide heap debugging support with DebugHeap, which tests
for multiple frees and other common memory management
errors.

Object representation. SizeHeap maintains object size in a header
just preceding the object. CoalesceableHeap does the same
but also records whether each object is free in the header of
the next object in order to facilitate coalescing.

Special-purpose heaps. We implemented a number of heaps opti-
mized for managing objects with known lifetimes, including
two heaps for stack-like behavior (ObstackHeap and Xal-
locHeap, described in Sections 5.1 and 5.2) and a region-
based allocator (ZoneHeap).

General-purpose heaps. We also implement two heap layers use-
ful for general-purpose memory allocation: KingsleyHeap
and LeaHeap, described in Sections 6.1 and 6.2.



4. Experimental Methodology
We wrote these heap layers in C++ and implemented them as a
series of include files. We then used these heap layers to replace
a number of custom and general-purpose allocators. For C++ pro-
grams, we used these heap layers directly (e.g., kHeap.free(p)).
When replacing custom allocators in C programs, we wrapped the
heap layers with a C API. When replacing the general-purpose al-
locators, we redefined malloc and free and the C++ operators
new and delete to refer to the desired allocator. Programs were
compiled with Visual C++ 6.0 and run on a 366 MHz Pentium II
system with 128MB of RAM and a 256K L2 cache, under Win-
dows 2000 build 2195. All runtimes are the average of three runs;
variation was minimal.

5. Building Special-Purpose Allocators
In this section, we investigate the performance implications of build-
ing custom allocators using heap layers. Specifically, we evaluate
the performance of two applications (197.parser and 176.gcc
from the SPEC2000 benchmark suite) that make extensive use of
custom allocators. We compare the performance of the original
carefully-tuned allocators against versions of the allocators that we
wrote with heap layers.2

5.1 197.parser

The 197.parser benchmark is a natural-language parser for En-
glish written by Sleator and Temperley. It uses a custom alloca-
tor the authors call xalloc which is optimized for stack-like behav-
ior. This allocator uses a fixed-size region of memory (in this case,
30MB) and always allocates after the last block that is still in use
by bumping a pointer. Freeing a block marks it as free, and if it is
the last block, the allocator resets the pointer back to the new last
block in use. Xalloc can free the entire heap quickly by setting the
pointer to the start of the memory region. This allocator is a good
example of appropriate use of a custom allocator. As in most cus-
tom allocation strategies, it is not appropriate for general-purpose
memory allocation. For instance, if an application never frees the
last block in use, this algorithm would exhibit unbounded memory
consumption.

We replaced xalloc with a new heap layer, XallocHeap. This
layer, which we layer on top of MmapHeap, is the same as the orig-
inal allocator, except that we replaced a number of macros by inline
static functions. We did not replace the general-purpose allocator
which uses the Windows 2000 heap. We ran 197.parser against
the SPEC test input to measure the overhead that heap layers added.
Figure 3 presents these results. We were quite surprised to find that
using layers actually slightly reduced runtime (by just over 1%),
although this reduction is barely visible in the graph. The source of
this small improvement is due to the increased opportunity for code
reorganization that layers provide. When using layers, the compiler
can schedule code with much greater flexibility. Since each layer is
a direct procedure call, the compiler can decide what pieces of the
layered code are most appropriate to inline at each point in the pro-
gram. The monolithic implementations of xalloc/xfree in the
original can only be inlined in their entirety. Table 2 shows that the
executable sizes for the original benchmark are the smallest when
the allocation functions are not declared inline and the largest when
they are inlined, while the version with XallocHeap lies in between
(the compiler inlined the allocation functions with XallocHeap re-
gardless of our use of inline). Inspecting the assembly output
reveals that the compiler made more fine-grained decisions on what�

We did not include 175.vpr, the other benchmark in SPEC2000
that uses custom allocators, because its custom memory allocation
API exposes too much internal allocator state to allow us to cleanly
replace the allocator.

197.parser variant Executable size
original 211,286
original (inlined) 266,342
XallocHeap 249,958
XallocHeap (inlined) 249,958

Table 2: Executable sizes for variants of 197.parser.
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Figure 3: Runtime comparison of the original 197.parser
custom allocator and xallocHeap.

code to inline and thus achieved a better trade-off between program
size and optimization opportunities to yield improved performance.

5.2 176.gcc

Gcc uses obstacks, a well-known custom memory allocation library
[26]. Obstacks also are designed to take advantage of stack-like be-
havior, but in a more radical way than xalloc. Obstacks consist of
a number of large memory “chunks” that are linked together. Al-
location of a block bumps a pointer in the current chunk, and if
there is not enough room in a given chunk, the obstack allocator
obtains a new chunk from the system. Freeing an object deallo-
cates all memory allocated after that object. Obstacks also support
a grow() operation. The programmer can increase the size of
the current block, and if this block becomes too large for the cur-
rent chunk, the obstack allocator copies the current object to a new,
larger chunk.

Gcc uses obstacks in a variety of phases during compilation. The
parsing phase in particular uses obstacks extensively. In this phase,
gcc uses the obstack grow operation for symbol allocation in order
to avoid a fixed limit on symbol size. When entering each lexi-
cal scope, the parser allocates objects on obstacks. When leaving
scope, it frees all of the objects allocated within that scope by free-
ing the first object it allocated.

Obstacks have been heavily optimized over a number of years
and make extensive use of macros. We implemented ObstackHeap
in heap layers and provided C-based wrapper functions that im-
plement the obstack API. This effort required about one week and
consists of 280 lines of code (around 100 are to implement the API
wrappers). By contrast, the GNU obstack library consists of around
480 lines of code and was refined over a period of at least six years.

We ran gcc on one of the reference inputs (scilab.i) and compared
two versions of the original gcc with two versions of gcc with Ob-
stackHeap: the original macro-based code, the original with func-
tion calls instead of macros, the ObstackHeap version layered on
top of mallocHeap, and an ObstackHeap version that uses a Free-
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(a) Complete execution of gcc.
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(b) gcc’s parse phase only.

Figure 4: Runtime comparison of gcc with the original obstack and ObstackHeap.

Memory-Intensive Benchmarks
Benchmark Description Input
cfrac factors numbers a 36-digit number
espresso optimizer for PLAs test2
lindsay hypercube simulator script.mine
LRUsim a locality analyzer an 800MB trace
Perl Perl interpreter perfect.in
roboop Robotics simulator included benchmark

Table 3: Memory-intensive benchmarks used in this paper.

listHeap to optimize allocation and freeing of the default chunk size
and mallocHeap for larger chunks:

class ObstackType :
public ObstackHeap<4096,

HybridHeap<4096 + 8, // Obstack overhead
FreelistHeap<mallocHeap>,
mallocHeap> {};

As with 197.parser, we did not replace the general-purpose al-
locator. Figure 4(a) shows the total execution time for each of these
cases, while Figure 4(b) shows only the parse phase. Layering Ob-
stackHeap on top of FreelistHeap results in an 8% improvement
over the original in the parse phase, although its improvement over
the original for the full execution of gcc is minimal (just over 1%).
This result provides further evidence that custom allocators com-
posed quickly with heap layers can perform comparably to care-
fully tuned hand-written allocators.

6. Building General-Purpose Allocators
In this section, we consider the performance implications of build-
ing general-purpose allocators using heap layers. Specifically, we
compare the performance of the Kingsley and Lea allocators [17]
to allocators with very similar architectures created by composing
heap layers. Our goal is to understand whether the performance
costs of heap layers prevent the approach from being viable for
building general-purpose allocators. We map the designs of these
allocators to heap layers and then compare the runtime and memory
consumption of the original allocators to our heap layer implemen-
tations, KingsleyHeap and LeaHeap.

To evaluate allocator runtime performance and fragmentation,
we use a number of memory-intensive programs, most of which

were described by Zorn and Wilson [14, 15] and shown in Ta-
ble 3: cfrac factors arbitrary-length integers, espresso is an opti-
mizer for programmable logic arrays, lindsay is a hypercube simu-
lator, LRUsim analyzes locality in reference traces, perl is the Perl
interpreter included in SPEC2000 (253.perlbmk), and roboop
is a robotics simulator. As Table 4 shows, these programs exer-
cise memory allocator performance in both speed and memory effi-
ciency. This table also includes the number of objects allocated and
their average size. The programs’ footprints range from just 16K
(for roboop) to over 1.5MB (for LRUsim). For all of the programs
except lindsay and LRUsim, the ratio of total memory allocated to
the maximum amount of memory in use is large. The programs’
rates of memory allocation and deallocation (memory operations
per second) range from under one hundred to almost two million
per second. Except for LRUsim, memory operations account for a
significant portion of the runtime of these programs.

6.1 The Kingsley Allocator

We first show how we can build KingsleyHeap, a complete general-
purpose allocator using the FreelistHeap layer described in Sec-
tion 3.1 composed with one new heap layer. We show that Kingsley-
Heap, built using heap layers, performs as well as the Kingsley al-
locator.

The Kingsley allocator needs to know the sizes of allocated ob-
jects so it can place them on the appropriate free list. An object’s
size is often kept in metadata just before the object itself, but it can
be represented in other ways. We can abstract away object repre-
sentation by relying on a getSize() method that must be imple-
mented by a superheap. SizeHeap is a layer that records object size
in a header immediately preceding the object.

template <class SuperHeap>
class SizeHeap : public SuperHeap {
public:

inline void * malloc (size_t sz) {
// Add room for a size field.
freeObject * ptr = (freeObject *)

SuperHeap::malloc (sz + sizeof(freeObject));
// Store the requested size.
ptr->sz = sz;
return (void *) (ptr + 1);

}
inline void free (void * ptr) {
SuperHeap::free ((freeObject *) ptr - 1);



Memory-Intensive Benchmark Statistics
Benchmark Objects Total memory Max in use Average size Memory ops Memory ops/sec
cfrac 10,890,166 222,745,704 176,960 20.45 21,780,289 1,207,862
espresso 4,477,737 1,130,107,232 389,152 252.38 8,955,367 218,276
lindsay 108,862 7,418,120 1,510,840 68.14 217,678 72,300
LRUsim 39,139 1,592,992 1,581,552 40.70 78,181 94
perl 8,548,435 162,451,960 293,928 19.00 17,091,308 257,809
roboop 9,268,221 332,058,248 16,376 35.83 18,536,397 1,701,786

Table 4: Statistics for the memory-intensive benchmarks used in this paper. We divide by runtime with the Lea allocator to obtain
memory operations per second.

}
inline static size_t getSize (void * ptr) {
return ((freeObject *) ptr - 1)->sz;

}
private:

union freeObject {
size_t sz;
double _dummy; // for alignment.

};
};

StrictSegHeap provides a general interface for implementing strict
segregated fits allocation. Segregated fits allocators divide objects
into a number of size classes, which are ranges of object sizes.
Memory requests for a given size are satisfied directly from the
“bin” corresponding to the requested size class. The heap returns
deallocated memory to the appropriate bin. StrictSegHeap’s argu-
ments include the number of bins, a function that maps object size
to size class and size class to maximum size, the heap type for each
bin, and the parent heap (for bigger objects). The implementation
of StrictSegHeap is 32 lines of C++ code. The class definition ap-
pears in Figure 5.

We now build KingsleyHeap using these layers. First, we imple-
ment the helper functions that support power-of-two size classes:

inline int pow2getSizeClass (size_t sz) {
int c = 0;
sz = sz - 1;
while (sz > 7) {
sz >>= 1;
c++;

}
return c;

}
inline size_t pow2getClassMaxsize (int i) {

return 1 << (i+3);
}

By combining these heap layers, we can now define KingsleyHeap.
We implement KingsleyHeap as a StrictSegHeap with 29 bins and
power-of-two size classes (supporting an object size of up to

��� �����
bytes). Each size class is implemented using a FreelistHeap that
gets memory from SbrkHeap (a thin layer over sbrk()).

class KingsleyHeap :
public StrictSegHeap<29, pow2getSizeClass,

pow2getClassMaxSize,
SizeHeap<FreelistHeap<SbrkHeap> >,
SizeHeap<FreelistHeap<SbrkHeap> > > {};

A C++ programmer now uses this heap by declaring it as an object
and directly using the malloc and free calls.

KingsleyHeap kHeap;
char * ch = (char *) kHeap.malloc (20);
kHeap.free (ch);

template <int NumBins,
int (*getSizeClass) (size_t),
size_t (*getClassMaxSize) (int),
class LittleHeap,
class BigHeap>

class StrictSegHeap : public BigHeap {
public:

inline void * malloc (size_t sz) {
void * ptr;
int sizeClass = getSizeClass (sz);
if (sizeClass >= NumBins) {
// This request was for a "big" object.
ptr = BigHeap::malloc (sz);

} else {
size_t ssz = getClassMaxSize(sizeClass);
ptr = myLittleHeap[sizeClass].malloc (ssz);

}
return ptr;

}
inline void free (void * ptr) {

size_t objectSize = getSize(ptr);
int objectSizeClass
= getSizeClass (objectSize);

if (objectSizeClass >= NumBins) {
BigHeap::free (ptr);

} else {
while (getClassMaxSize(objectSizeClass)

> objectSize) {
objectSizeClass--;

}
myLittleHeap[objectSizeClass].free (ptr);

}
}

private:
LittleHeap myLittleHeap[NumBins];

};

Figure 5: The implementation of StrictSegHeap.

6.2 The Lea Allocator

Version 2.7.0 of the Lea allocator is a hybrid allocator with different
behavior for different object sizes. For small objects ( ���
	 bytes),
the allocator uses quick lists; for large objects ( � � �
��

bytes),
it uses virtual memory (mmap), and for medium-sized objects, it
performs approximate best-fit allocation [17]. The strategies it em-
ploys are somewhat intricate but it is possible to decompose these
into a hierarchy of layers.

Figure 7 shows the heap layers representation of LeaHeap, which
is closely modeled after the Lea allocator. The shaded area repre-
sents LeaHeap, while the Sbrk and Mmap heaps depicted at the top
are parameters. At the bottom of the diagram, object requests are
managed by a SelectMmapHeap, which routes large size requests
to be eventually handled by the Mmap parameter. Smaller requests
are routed to ThresholdHeap, which both routes size requests to
a small and medium heap and in certain instances (e.g., when a
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Figure 6: Runtime and space comparison of the original Kingsley and Lea allocators and their heap layers counterparts.
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Figure 7: A diagram of LeaHeap’s architecture.

sufficiently large object is requested), frees all of the objects held
in the small heap. We implemented coalescing and splitting using
two layers. CoalesceHeap performs splitting and coalescing, while
CoalesceableHeap provides object headers and methods that sup-
port coalescing. SegHeap is a more general version of StrictSeg-
Heap described in Section 6.1 that searches through all of its heaps
for available memory. Not shown in the picture are AdaptHeap
and DLList. AdaptHeap lets us embed a dictionary data structure
within freed objects, and for LeaHeap, we use DLList, which im-
plements a FIFO doubly-linked list. While LeaHeap is not a com-
plete implementation of the Lea allocator (which includes other
heuristics to further reduce fragmentation), it is a faithful model
that implements most of its important features, including the hier-
archy described here.

We built LeaHeap in a total of three weeks. We were able to
reuse a number of layers, including SbrkHeap, MmapHeap, and
SegHeap. The layers that implement coalescing (CoalesceHeap
and CoalesceableHeap) are especially useful and can be reused to
build other coalescing allocators, as we show in Section 8. The new

layers constitute around 500 lines of code, not counting comments
or white space, while the Lea allocator is over 2,000 lines of code.
LeaHeap is also more flexible than the original Lea allocator. For
instance, a programmer can use multiple instances of LeaHeaps to
manage distinct ranges of memory, something that is not possible
with the original. Similarly, we can make these heaps thread-safe
when needed by wrapping them with a LockedHeap layer. Be-
cause of this flexibility of heap layers, we can easily include both
a thread-safe and non-thread-safe version of the same allocator in
the same application.

6.3 Experimental Results

We ran the benchmarks in Table 3 with the Kingsley allocator,
KingsleyHeap, KingsleyHeap plus coalescing (which we discuss
in Section 8), the Lea allocator, and LeaHeap. In Figure 6(a) we
present a comparison of the runtimes of our benchmark applica-
tions normalized to the original Lea allocator (we present the data
used for this graph in Table 5). The average increase in runtime for
KingsleyHeap over the Kingsley allocator is just below 2%. For
the two extremely allocation-intensive benchmarks, cfrac and ro-
boop, the increase in runtime is just over 3%, demonstrating that
the overhead of heap layers has minimal impact. Despite being
cleanly decomposed into a number of layers, KingsleyHeap per-
forms nearly as well as the original hand-coded Kingsley allocator.
Runtime of LeaHeap is between

�)d �
% faster and 20% slower than

the Lea allocator (an average of 7% slower).
Figure 6(b) shows memory consumption for the same bench-

marks normalized to the Lea allocator (we present the data used
for this graph in Table 6). We define memory consumption as the
high-water mark of memory requested from the operating system.
For the Kingsley and Lea allocators, we used the amount reported
by these programs; for the heap layers allocators, we directly mea-
sured the amount requested by both SbrkHeap and MmapHeap.
KingsleyHeap’s memory consumption is between 54% less and
11% more (on average 5.5% less), while LeaHeap’s memory con-
sumption is between 44% less and 19% more (on average 2% less)
than the Lea allocator. The outlier is roboop, which has an ex-
tremely small footprint (just 16K) that exaggerates the memory ef-
ficiency of the heap layers allocators. Excluding roboop, the aver-
age increase in memory consumption for KingsleyHeap is 4% and
for LeaHeap is 6.5%.



Runtime for General-Purpose Allocators
Benchmark Kingsley KingsleyHeap KingsleyHeap + coal. Lea LeaHeap
cfrac 19.02 19.75 25.94 19.09 20.14
espresso 40.66 40.91 44.56 41.12 46.33
lindsay 3.05 3.04 3.16 3.01 3.03
LRUsim 836.67 827.10 826.44 831.98 828.36
perl 66.94 70.01 73.61 66.32 68.60
roboop 10.81 11.19 17.89 10.89 13.08

Table 5: Runtime (in seconds) for the general-purpose allocators described in this paper.

Memory Consumption for General-Purpose Allocators
Benchmark Kingsley KingsleyHeap KingsleyHeap + coal. Lea LeaHeap
cfrac 270,336 280,640 271,944 208,896 241,272
espresso 974,848 992,032 541,696 462,848 448,808
lindsay 2,158,592 2,120,752 1,510,688 1,515,520 1,506,720
LRUsim 2,555,904 2,832,272 1,887,512 1,585,152 1,887,440
perl 425,984 454,024 342,344 331,776 337,408
roboop 45,056 20,760 11,440 20,480 11,616

Table 6: Memory consumption (in bytes) for the general-purpose allocators described in this paper.

This investigation provides several insights. First, we have demon-
strated that the heap layers framework is sufficiently robust that
even quite sophisticated allocator implementations can be devel-
oped using it. Furthermore, we have shown that we can quickly (in
a matter of weeks) assemble an allocator that is structurally similar
to one of the best general-purpose allocators available. In addition,
while we have spent little time tuning our current implementation,
its performance and fragmentation are comparable to the original
allocator.

7. Software Engineering Benefits
Our experience with building and using heap layers has been quite
positive. Some of the software engineering advantages of using
mixins to build software layers (e.g., heap layers) have been dis-
cussed previously, especially focusing on ease of refinement [5, 9,
21]. We found that using heap layers as a means of stepwise refine-
ment greatly simplified allocator construction. We also found the
following additional benefits of using layers.

Because we can generally use any single layer to replace an allo-
cator, we are often able to test and debug layers in isolation, making
building allocators a much more reliable process. By adding and re-
moving layers, we can find buggy layers by process of elimination.
To further assist in layer debugging, we built a simple DebugHeap
layer (shown in Figure 8) that checks for a variety of memory al-
location errors, including invalid and multiple frees. During de-
velopment, we insert this layer between pairs of layers as a sanity
check. DebugHeap is also useful as a layer for finding errors in
client applications. By using it with our heap layers allocators, we
discovered a number of serious allocation errors (multiple frees)
in p2c, a program we had previously planned to use as a bench-
mark.

The additional error-checking that heap layers enable, combined
with compiler elimination of layer overhead, encourage the divi-
sion of allocators into many layers. When porting our first ver-
sion of the LeaHeap to Solaris, we found that one of our layers,
CoalesceSegHeap, contained a bug. This heap layer provided the
functionality of SegHeap as well as coalescing, splitting and adding
headers to allocated objects. By breaking out coalescing and header
management into different layers (CoalesceHeap and Coalesceable-
Heap) and interposing DebugHeap, we were able to find the bug
quickly. The new layers had the additional benefit of allowing us

to apply coalescing to other heaps, as we do in the next section.

8. Heap Layers as an Experimental Infrastructure
Because heap layers simplify the creation of memory allocators,
we can use them to perform a wide range of memory allocation
experiments that previously would have required a substantial pro-
gramming effort. In this section, we describe one such experiment
that demonstrates the use of heap layers as an experimental infra-
structure.

As Figures 6(a) and 6(b) demonstrate, the Kingsley allocator is
fast but suffers from excessive memory consumption. Wilson and
Johnstone attribute this effect to the Kingsley allocator’s lack of
coalescing or splitting that precludes reuse of objects for different-
sized requests [15]. A natural question is to what extent adding
coalescing remedies this problem and what impact it has on per-
formance. Using heap layers, we just add coalescing and splitting
with the layers we developed for LeaHeap.

We ran our benchmarks with this coalescing Kingsley heap and
report runtime and performance numbers in Figures 6(a) and 6(b)
as “KingsleyHeap + coal.” Coalescing has a dramatic effect on
memory consumption, bringing KingsleyHeap fairly close to the
Lea allocator. Coalescing decreases memory consumption by an
average of 50% (as little as 3% and as much as 80%). For most
of the programs, the added cost of coalescing has little impact, but
on the extremely allocation-intensive benchmarks (cfrac and ro-
boop), this cost is significant. This experiment demonstrates that
coalescing achieves effective memory utilization, even for an allo-
cator with high internal fragmentation. It also shows that the perfor-
mance impact of immediate coalescing is significant for allocation-
intensive programs, in contrast to the Lea allocator which defers
coalescing to certain circumstances, as described in Section 2.

9. Conclusion and Future Work
Dynamic memory management continues to be a critical part of
many important applications for which performance is crucial. Pro-
grammers, in an effort to avoid the overhead of general-purpose al-
location algorithms, write their own custom allocation implemen-
tations in an effort to increase performance further. Because both
general-purpose and special-purpose allocators are monolithic in
design, very little code reuse occurs between implementations of
either kind of allocator.



template <class SuperHeap>
class DebugHeap : public SuperHeap {
private:

// A freed object has a special (invalid) size.
enum { FREED = -1 };
// "Error messages", used in asserts.
enum { MALLOC_RETURNED_ALLOCATED_OBJECT = 0,

FREE_CALLED_ON_INVALID_OBJECT = 0,
FREE_CALLED_TWICE_ON_SAME_OBJECT = 0 };

public:
inline void * malloc (size_t sz) {

void * ptr = SuperHeap::malloc (sz);
if (ptr == NULL)
return NULL;

// Fill the space with a known value.
memset (ptr, ’A’, sz);
mapType::iterator i = allocated.find (ptr);
if (i == allocated.end()) {
allocated.insert (pair<void *, int>(ptr, sz));

} else {
if ((*i).second != FREED) {

assert (MALLOC_RETURNED_ALLOCATED_OBJECT);
} else {
(*i).second = sz;

}
}
return ptr;

}
inline void free (void * ptr) {

mapType::iterator i = allocated.find (ptr);
if (i == allocated.end()) {
assert (FREE_CALLED_ON_INVALID_OBJECT);
return;

}
if ((*i).second == FREED) {
assert (FREE_CALLED_TWICE_ON_SAME_OBJECT);
return;

}
// Fill the space with a known value.
memset (ptr, ’F’, (*i).second);
(*i).second = FREED;
SuperHeap::free (ptr);

}
private:

typedef map<void *, int> mapType;
// A map of tuples (obj address, size).
mapType allocated;

};

Figure 8: The implementation of DebugHeap.

In this paper, we describe a framework in which custom and gen-
eral purpose allocators can be effectively constructed from compos-
able, reusable parts. Our framework, heap layers, uses C++ tem-
plates and inheritance to allow high-performance allocators, both
general and special purpose, to be rapidly created. Even though
heap layers introduce many layers of abstraction into an imple-
mentation, building allocators using heap layers can actually match
or improve the performance of monolithic allocators. This non-
intuitive result occurs, as we show, because heap layers expand the
flexibility of compiler-directed inlining.

Based on our design, we have implemented a library of reusable
heap layers: layers specifically designed to combine heaps, lay-
ers that provide heap utilities such as locking and debugging, and
layers that support application-specific semantics such as region al-
location and stack-structured allocation. We also demonstrate how
these layers can be easily combined to create special and general
purpose allocators.

To evaluate the cost of building allocators using heap layers, we

present a performance comparison of two custom allocators found
in SPEC2000 programs (197.parser and 176.gcc) against an
equivalent implementation based on heap layers. In both cases,
we show that the use of heap layers improves performance slightly
over the original implementation. This demonstrates the surprising
result that the software engineering benefits described above have
no performance penalty for these programs. We also compare the
performance of a general-purpose allocator based on heap layers
against the performance of the Lea allocator, widely considered to
be among the best uniprocessor allocators available. While the allo-
cator based on heap layers currently requires more CPU time (7%
on average), we anticipate that this difference will shrink as we
spend more time tuning our implementation. Furthermore, because
our implementation is based on layers, we can immediately provide
an efficient scalable version of our allocator for multithreaded pro-
grams comparable to Hoard [6], whereas the Lea allocator requires
significant effort to rewrite for this case.

Our results suggest a number of additional research directions.
First, because heap layers are so easy to combine and compose,
they provide an excellent infrastructure for doing comparative per-
formance studies. Questions like the cache effect of size tags, or the
locality effects of internal or external fragmentation can be studied
easily using heap layers. Second, we anticipate growing our li-
brary of standard layers to increase the flexibility with which high-
performing allocators can be composed. At the same time, we be-
lieve that we can build better general-purpose allocators by using
heap layers. Finally, we are interested in expanding the applica-
tion of mixin technology beyond memory allocators. The potential
that C++ templates allow abstraction and composition at no per-
formance cost opens up a number of possibilities to redesign and
refactor other performance-critical infrastructures.
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