
FreeFEM User Manual
A language for the finite element method

Olivier Pironneau1

Christophe Prud’homme 2

Revised: 10/20/01

1pironneau@ann.jussieu.fr; Laboratoire d’analyse numérique; Université
Pierre et Marie Curie; 75005 Paris France

2prudhomm@mit.edu Mechanical Engineering Department; Massachussetts Insti-
tute Of Technology; 77, Mass Ave Room 3-264; 02139 Cambridge USA

Copyright (c) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001 Christophe
Prud’homme and Olivier Pironneau.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1 or any
later version published by the Free Software Foundation; with no Invariant
Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy
of the license is included in the section entitled ”GNU Free Documentation
License”.

1

Contents

1 Introduction 4
1.1 Conventions . 4
1.2 Software and Documentation 5

2 Installation 6
2.0.1 Configure script . 6

3 The Gory Details 8
3.1 Programs . 8
3.2 List of reserved words . 9
3.3 Building a mesh . 10

3.3.1 Triangulations . 10
3.3.2 Border(), buildmesh(), polygon() 10
3.3.3 Geometric variables, inner and region bdy, normal . . 12
3.3.4 Regions . 13

3.4 Functions . 13
3.4.1 Functions and scalars 13
3.4.2 Building functions . 15
3.4.3 Value of a function at one point 15
3.4.4 Special functions:dx(), dy(), convect() 16

3.5 Global operators . 17
3.6 Integrals . 17
3.7 Solving an equation . 19

3.7.1 Onbdy() . 19
3.7.2 Pde() . 19
3.7.3 Solve() . 20
3.7.4 2-Systems . 21
3.7.5 Boundary conditions at corners 22
3.7.6 Weak formulation . 22

2

3.8 Results . 24
3.8.1 plot, savemesh, save, load, loadmesh 24
3.8.2 Saveall() . 26

3.9 Other features . 28
3.9.1 Iter . 28
3.9.2 Complex numbers . 28
3.9.3 Scal() . 29
3.9.4 Wait, nowait, changewait 29
3.9.5 One Dimensional Plots 29
3.9.6 Precise . 30
3.9.7 Exec(), user(), how to link an external function to Gfem 30

3.10 Language internals . 31

4 Examples 33
4.1 Triangulations examples . 33
4.2 Scalar examples . 34
4.3 Complex number example . 38
4.4 2-system example . 38

5 GNU Free Documentation License 40
5.1 Applicability and Definitions 41
5.2 Verbatim Copying . 42
5.3 Copying in Quantity . 42
5.4 Modifications . 43
5.5 Combining Documents . 45
5.6 Collections of Documents . 46
5.7 Aggregation With Independent Works 46
5.8 Translation . 46
5.9 Termination . 47
5.10 Future Revisions of This License 47

3

Chapter 1

Introduction

FreeFEM is an implementation of the Gfem language dedicated to the
finite element method. It provides you a way to solve Partial Differential
Equations (PDE) simply. Although you can solve quite complicated prob-
lems can be solved also.

In this manual we are going to describe the FreeFEM package:

• Compilation step

• How to use the language

• A quick presentation of how it is done

1.1 Conventions

• A triangulation, T, is a set of triangles covering a domain refered
later as Ω

• Each vertex has a number iv, a region reference number region, and
a boundary reference number ib which is zero for internal points.

• An array-function is an array of values on the vertices of T. It rep-
resents a piecewise linear continuous (or discontinuous if precise is
used) function on Ω.

• In an integrated environment Gfem has the notion of Project: files
shown on the desktop as documents with an icon like a triangulated
rectangle (on the Macintosh).

• A project contains a program, the last triangulation created and one
array function, namely the last function displayed.

4

1.2 Software and Documentation

FreeFEM is available on Internet. Check the following http site:

kfem.sourceforge.net

The tarball uses the following naming convetion: freefem-x.x.x.tar.gz
Others documentations are available on the FreeFEM Web site. These

might provide further enlightment on the software.

AUTHORS The authors are, in alphabetical order:

• Dominique Bernardi <??>

• Frederic Hecht <Frederic.Hecht@inria.fr>

• Castro J. Manollo <castro@gamba.cie.uma.es>

• Pascal Parole <pascal@area-mundi.fr>

• Olivier Pironneau <pironneau@ann.jussieu.fr>

• Christophe Prud’homme <prudhomm@users.sourceforge.net>

If you are interested in FreeFEM have a look at the web site kfem.sourceforge.net.
You can subscribe to various mailing lists and get the latest stuff from the
FreeFEM world.

5

Chapter 2

Installation

The installation steps differs with the operating system. FreeFEM supports
two kinds systems :

• Windows/Cygwin1 environment

• Linux/Unix systems

Both systems follows the POSIX standard. It is strongly recommended to
use the configure script. It is much easier and should be platform inde-
pendent, you don’t have to know anything about your system. Everything
is done for you. However one suggests the use of make for the GNU Project:
it is the best make utility and will work without problems with freefem.
This utility is available at several ftp sites in France or in the USA.

• prep.mit.ai.edu

• ftp.lip6.fr

2.0.1 Configure script

type:

configure
make
make install #if you want to install the software on a site

The binary freefem will be in the directory src.
1http://www.cygwin.com

6

We use autoconf and automake in conjunction in order to be as general
as possible. These tools are not required to use or compile freeFEM but if
you want to change the code you will need these.

These tools are available on the GNU ftp site: ftp://prep.ai.mit.edu.
You can get them in France at ftp://ftp.ibp.fr/pub/gnu.

Type:

configure
make
make install #if you want to install the software on a site

Debugging By default freefem is compiled with the -O2 flags for optimiza-
tion. If you want to debug the library, then USE the following configure
option --enable-debug. That is to say, type

configure --enable-debug

at the configure step of the installation.

7

Chapter 3

The Gory Details

3.1 Programs

Gfem is a small language which generally follows the syntax of the language
Pascal. See the list below for the reserved words of this language.

The reserved word begin can be replaced by { and end by }.
C programmers: caution the syntax is ”...};” while most C constructs

use ” ...;}”
Example 1: Triangulates a circle and plot f = x ∗ y

1 border(1,0,6.28,20)
2 begin
3 x:=cos(t);
4 y:=sin(t);
5 end;
6 buildmesh(200);
7 f=x*y; plot(f);

Example 2: on the circle solve the Dirichlet problem
-∆(u) = x ∗ y with u = 0 on ∂Ω

1 border(1,0,6.28,20)
2 begin
3 x:=cos(t);
4 y:=sin(t);
5 end;
6 buildmesh(200);

8

7 solve(u) begin
8 onbdy(1) u =0;
9 pde(u) -laplace(u) = x*y ;

10 end;
11 plot(u);

3.2 List of reserved words

Keywords Explanations
begin, { Begin a new block
end, } End a block
if, then, else, or, and,iter Conditionnals and Loops
x,y,t,ib,iv,region,nx,ny Mesh variables
log, exp, sqrt, abs, min, max
sin, asin, tan, atan, cos, acos Mathematical Functions
cosh, sinh, tanh
I, Re, Im Complex Numbers
complex Enter Complex Number Mode
buildmesh, savemesh, loadmesh, adaptmesh Mesh related Functions

build, save , load and mesh adaptation
one, scal, dx, dy, dxx, dyy, dxy, dyx, convect Mathematical operators

can be called wherever you want
solve Enter Solver Mode
pde, id, dnu laplace, div onbdy Solver Functions
plot, plot3d graphical functions: plot isolines in 2D

and Elevated Surface in 3D
save, load, saveall Saving and Loading Functions

Change the Wait State: if wait
wait, nowait, changewait then the user must click in

the window to continue
precise, halt, include, evalfct, exec, user Miscellaneous Functions

Table 3.1: Gfem Keywords

9

3.3 Building a mesh

3.3.1 Triangulations

To create a triangulation you must either

• Open a project

• Read an old triangulation stored in text format

• Execute a program which contains the keyword buildmesh

• Create one by hand drawing the boundary of Ω and activate the menu
Triangulate (Macintosh only).

In integrated environments, once created, triangulations can be dis-
played, stored on disk in Gfem format or in text format or even a zoom of
its graphic display can be stored in Postscript format (to include it in a TeX
file for example).

Gfem stores for each vertex its number and boundary identification
number and for each triangle its number and region identification number.
Edges number are not stored, but can be recovered by program if needed.

3.3.2 Border(), buildmesh(), polygon()

Use it to triangulate domain defined by its boundary. The syntax is

1 border(ib,t_min,t_max,nb_t)
2 begin
3 ...x:=f(t);
4 ...y:=g(t)...
5 end;
6 buildmesh(nb_max);

where each line with border could be replaced by a line with polygon

1 polygon(ib,’file_name’[,nb_t]);

where f,g are generic functions and the [...] denotes an optional addition.
The boundary is given in parametric form. The name of the parameter
must be t and the two coordinates must be x and y . When the parameter
goes from t_min to t_max the boundary must be scanned so as to have
Ω on its left, meaning counter clockwise if it is the outer boundary and

10

clockwise if it is the boundary of a hole. Boundaries must be closed but
they may be entered by parts, each part with one instruction border , and
have inner dividing curves; nb_t points are put on the boundary with values
t = tmin + i ∗ (tmax − tmin)/(nbt − 1) where i takes integer values from 0 to
nb_t-1 .

The triangulation is created by a Delaunay-Voronoi method with nb_max
vertices at most. The size of the triangles is monitored by the size of the near-
est boundary edge. Therefore local refinement can be achieved by adding
inner artificial boundaries.

Triangulation may have boundaries with several connected components.
Each connected component is numbered by the integer ib .

Inner boundaries (i.e. boundaries having the domain on both sides) can
be useful either to separate regions or to monitor the triangulation by forcing
vertices and edges in it. They must be oriented so that they leave Ω on their
right if they are closed. If they do not carry any boundary conditions they
should be given identification number ib=0 .

The usual if... then ... else statement can be used with the com-
pound statement: begin...end . This allows piecewise parametric defini-
tions of complicated or polygonal boundaries.

The boundary identification number ib can be overwritten.For example:

1 border(2,0,4,41) begin
2 if(t<=1)then { x:=t; y:=0 };
3 if((t>1)and(t<2))then { x:=1; y:=t-1; ib=1 };
4 if((t>=2)and(t<=3))then { x:=3-t; y:=1 };
5 if(t>3)then { x:=0; y:=4-t }
6 end;
7 buildmesh(400);

Recall that begin and { is the same and so is end and }. Here one side
of the unit square has ib=1. The 3 other sides have ib=2.

The keyword polygon causes a sequence of boundary points to be read
from the file file_name which must be in the same directory as the program.
All points must be in sequential order and describing part of the boundary
counter clockwise; the last one should be equal to the first one for a closed
curve.

The format is

1 x[0] y[0]
2 x[1] y[1]

11

3

each being separated by a tab or a carriage return. The last parameter nb_t
is optional; it means that each segment will be divided into nb_t1+ equal
segments (i.e. nb_t points are added on each segments).

For example

1 polygon(1,’mypoints.dta’,2);
2 buildmesh(100);

with the file mypoints.dta containing

1 0. 0.
2 1. 0.
3 1. 1.
4 0. 1.
5 0. 0.

triangulates the unit square with 4 points on each side and gives ib=1 to its
boundary. Note that polygon(1,’mypoints.dta’) is like polygon(1,’mypoints.dta’,0).

buildmesh and domain decomposition

There is a problem with buildmesh when doing domain decomposition: by
default Gfem swap the diagonals at the corners of the domain if the triangle
has two boundary edges. This will lead to bad domain decomposition at the
sub-domain interfaces.

To solve this, there is a new flag for buildmesh which is optional:

buildmesh(<max number of vertices>, <flag>)
where <flag> =

{
= 0 classic way: do diagonal swaping
= 1 domain decomposition: no diagonal swaping

3.3.3 Geometric variables, inner and region bdy, normal

• x,y refers to the coordinates in the domain

• ib refers to the boundary identification number; it is zero inside the
domain.

12

• nx and ny refer to the x-y components of the normal on the boundary
vertices; it is zero on all inner vertices.

• region refers to the domain identification number which is itself based
on an internal number, ngt, assigned to each triangle by the triangu-
lation constructor.

Inner boundaries which divide the domain into several simply connected
components are useful to define piecewise discontinuous functions such as
dielectric constants, Young modulus...

Inner boundaries may meet other boundaries only at their vertices. Such
inner boundaries will split the domain in several sub-domains.

3.3.4 Regions

A sub-domain is a piece of the domain which is simply connected and de-
limited by boundaries.

Each sub-domain has a region number assigned to it. This is done by
Gfem, not by the user. Every time border is called, an internal number
ngt is incremented by 1. Then when the key word border is invoked the
last edge of this portion of boundary assigns this number to the triangle
which lies on its left. Finally all triangles which are in this subdomain are
reassigned this number.

At the end of the triangulation process, each triangle has a well defined
number ngt. The number region is a piecewise linear continuous interpo-
lation at the vertices of ngt. To be exact, the value of region at a vertex
(x0, y0) is the value of ngt at (x0, y0 − 10−6), except if precise is set in
which case region is equal to ngt.

3.4 Functions

3.4.1 Functions and scalars

Functions are either read or created.

• Functions can be read from a file if its values at the vertices of the
triangulation are stored in text format. (Open a .dta example with a
text editor to see the format).

• Functions can be created by executing a program. An instruction like
f=x*y really means that f(x, y) = x ∗ y

13

for all x and y. Here x and y refer to the coordinates in the domain
represented by the triangulation.

• Functions can be created with other previously defined functions such
as in g=sin(x*y); f=exp(g); .

• Four other variables can be used besides x, y, iv, t : nx, ny, ib, region.

Most usual functions can be used:

1 max, min, abs, atan, sqrt,
2 cos, sin, tan, acos, asin, one,
3 cosh, sinh, tanh, log, exp

one(xy¡0)+ for instance means 1 if xy¡0+ and 0 otherwise.
Operators:

1 and, or, < , <=, < , >=, ==, +, -, *, /, ^
2 x^2 means x*x

Functions created by a program are displayed only if the key word plot()
or plot3d() is used (here plot(f)).

Derivatives of functions can be created by the keywords dx() and dy()
.

Unless precise is set, they are interpolated so the results is also contin-
uous piecewise linear (or discontinuous when precise is set). Similarly the
convection operator convect(f,u1,u2,dt) defines a new function which is
approximately

f(x− u1(x, y)dt, y − u2(x, y)dt)

Scalars are also helpful to create functions. Since no data array is at-
tached to a scalar the symbol := is useful to create them, as in

1 a:= (1+sqrt(5))/2;
2 f= x*cos(a*pi*y);

Here f is a function, a is a scalar and pi is a (predefined) a scalar.
It is possible to evaluate a function at a point as in a:=f(1,0) Here the

value of a will be 1 because f(1,0) means f at x=1 and y=0 .

14

3.4.2 Building functions

There are 6 predefined functions: x,y,ib,region, nx, ny .

• The coordinate x is horizontal and y is vertical.

• ib =
{

0 inside Ω
> 0 on ∂Ω

On ∂Ω it is equal to the boundary identification number.

The usual if... then ... else statement can be used with an im-
portant restriction on the logical expression which must return a scalar
value:

1 if(logical expression) then
2 {
3 statement;
4;
5 statement;
6 }
7 else
8 {
9

10 };

The logical expression controls the if by its return being 0 or ¿0, it is
evaluated only once (i.e. with x, y being the coordinates of the first vertex,
if there are functions inside the logical expression). Auxiliary variables can
be used.

In order to minimize the memory the symbol := tells the compiler not
to allocate a data array to this variable. Thus v=sin(a*pi*x); generates
an array for v but no array is assigned to a in the statement a:=2 .

3.4.3 Value of a function at one point

If f has been defined earlier then it is possible to write a:=f(1.2,3.1);
Then a has the value of f at x=1.2 and y=3.1 .

It is also allowed to do

1 x1:=1.2;
2 y1:=1.6;
3 a:=f(x1,2*y1);
4 save(’a.dta’,a);

15

Remark: Recall that ,a being a scalar, its value is appended to the file
a.dta.

3.4.4 Special functions:dx(), dy(), convect()

dx(f) is the partial derivative of f with respect to x ; the result is piecewise
constant when precise is set and interpolated with mass lumping as a the
piecewise linear function when precise is not set.

Note that dx() is a non local operator so statements like f=dx(f) would
give the wrong answer because the new value for f is place before the end
of the use of the old one.

The Finite Element Method does not handle convection terms properly
when they dominate the viscous terms: upwinding is necessary; convect
provides a tool for Lagrangian upwinding. By g=convect(f,u,v,dt) Gfem
construct an approximation of

f(x− u1(x, y)dt, y − u2(x, y)dt)

Recall that when

∂f

∂t
+u

∂f

∂x
+v

∂f

∂y
= limdt→0

f(x, y, t)− f(x− u(x, y)dt, y − v(x, y)dt, t− dt)
dt

Thus to solve

∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
− div(µgradf) = g,

in a much more stable way that if the operator dx(.) and dy(.) were
use, the following scheme can be used:

1 iter(n) begin
2 id(f)/dt - laplace(f)*mu =g + convect(oldf,u,v,dt)/dt;
3 oldf = f
4 end;

Remark: Note that convect is a nonlocal operator. The statement f
= convect(f,u,v,dt) would give an incorrect result because it modifies f
at some vertex where the old value is still needed later. It is necessary to do

1 g=convect(f,u,v,dt);
2 f=g;

16

3.5 Global operators

It is important to understand the difference between a global operator such
as dx() and a local operator such as sin() .

To compute dx(f) at vertex q we need f at all neighbors of q. Therefore
evaluation of dx(2*f) require the computation of 2*f at all neighbor vertices
of q before applying dx() ; but in which memory would the result be stored?
Therefore Gfem does not allow this and forces the user to declare a function
g =2*f before evaluation of dx(g) ; Hence in

1 g = 2*f;
2 h = dx(g) * dy(f);

the equal sign forces the evaluation of g at all vertices, then when the
second equal signs forces the evaluation of the expression on the right of h
at all vertices , everything is ready for it.

Global operators are

1 dx(), dy(), convect(), intt[], int()[]

Example of forbidden expressions:

1 intt[f+g], dx(dy(g)), dx(sin(f)), convect(2*u...)

3.6 Integrals

• effect:

intt returns a complex or real number, an integral with respect to
x,y int returns a complex or real number, an integral on a curve

• syntax:

intt[f] or intt(n1)[f] or intt(n1,n2)[f] or intt(n1,n2,n3)[f]
int(n1)[f] or int(n1,n2)[f] or int(n1,n2,n3)[f]

where n1,n2,n3 are boundary or subdomain identification numbers
and where f is an array function.

1 border(1)... end; /* a border has number 1 */
2 ... buildmesh(...);
3

17

4 f = 2 * x;
5

6 /*
7 * nx,ny are the components of the boundary normal
8 */
9 g = f * (nx + ny);

10

11 /*
12 * can’t do r:= int[2*x]
13 */
14 r:= int[f];
15 s:=int(1)[g];
16

17 /*
18 * this is the only way to display the result
19 */
20 save(’r.dta’,r);
21 save(’s.dta’,s);

• Restrictions:

int and intt are global operators, so the values of the integrands are
needed at all vertices at once, therefore you can’t put an expression
for the integrand, it must be a function.

Be careful to check that the region number are correct when you use
intt(n)[f] .

Unfortunately freefem does not store the edges numbers. Hence there
are ambiguities at vertices which are at the intersections of 2 bound-
aries. The following convention is used: int(n)[g] computes the inte-
gral of g on all segments of the boundary (both ends have id boundary
number !=0) with one vertex boundary id number = n. (Remember
that you can control the boundary id number of the boundary ends
by the order in which you place the corresponding border call or by
an extra argument in border)

18

3.7 Solving an equation

3.7.1 Onbdy()

Its purpose is to define a boundary condition for a Partial Differential Equa-
tion (PDE).

The general syntax is

1 onbdy(ib1, ib2,...) id(u)+<expression>*dnu(u) = g
2 onbdy(ib1, ib2,...) u = g

where ib’s are boundary identification numbers, <expression> is a generic
expression and g a generic function.

The term id(u) may be absent as in -dnu(u)=g . dnu(u) represents the
conormal of the PDE, i.e.

±~∇u.n

when the PDE operator is

a ∗ u− ~∇.(±~∇u)

3.7.2 Pde()

The syntax for pde is

1 pde(u) [+-] op1(u)[*/]exp1 [+-] op2(u)[*/]exp2...=exp3

It defines a partial differential equation with non constant coefficients
where op is one of the operator:

• id()

• dx()

• dy()

• laplace()

• dxx()

• dxy()

• dyx()

• dyy()

19

and where [*/] means either a * or a / and similarly for ±. Note that the
expressions are necessarily AFTER the operator while in practice they are
between the 2 differentiations for laplace...dyy . Thus laplace(u)*(x+y)
means

∇.((x + y)∇u)
.Similarly dxy(u)*f means
∂f ∂u

∂y

∂x .

3.7.3 Solve()

The syntax for a single unknown function u solution of a PDE is

1 solve(u)
2 begin
3 onbdy()...;
4 onbdy()...;
5 ...;
6 pde(u)...
7 end;

For 2-systems and the use of solve(u,v), see the section 2-Systems . It
defines a PDE and its boundary conditions. It will be solved by the Finite
Element Method of degree 1 on triangles and a Gauss factorization.

Once the matrix is built and factorized solve may be called again by
solve(u,-1)...; then the matrix is not rebuilt nor factorized and only a
solution of the linear system is performed by an up and a down sweep in
the Gauss algorithm only. This saves a lot of CPU time whenever possible.
Several matrices can be stored and used simultaneously, in which case the
sequence is

1 solve(u,i)...;
2 ...
3 solve(u,-i)...;

where i is a scalar variable (not an array function).
However matrices must be constructed in the natural order: i=1 first

then i=2.... after they can be re-used in any order. One can also re-use
an old matrix with a new definition, as in

1 solve(u,i)...;
2 ...

20

3 solve(u,i)...;
4 solve(u,\pm i)...;

Notice that solve(u) is equivalent to solve(u,1) .
Remark: 2-Systems have their own matrices, so they do not count in

the previous ordering.

3.7.4 2-Systems

Before going to systems make sure that your 2 pde’s are indeed coupled and
that no simple iteration loop will solve it, because 2-systems are significantly
more computer intensive than scalar equations.

Systems with 2 unknowns can be solved by

1 solve(u,v)
2 begin
3 onbdy(..) ...dnu(u)...=.../* defines a bdy condition for u */
4 onbdy(..) u =... /* defines a bdy conditions for v */
5 pde(u) ... /* defines PDE for u */
6 onbdy(..)<v=... or ...dnu(v)...> /* defines bdy conditions for v */
7 pde(v) ... /* defines PDE for u */
8 end;

The syntax for solve is the same as for scalar PDEs; so solve(u,v,1) is
ok for instance. The equations above can be in any orders; several onbdy()
can be used in case of multiple boundaries...

The syntax for onbdy is the same as in the scalar case; either Dirichlet
or mixed-Neumann, but the later can have more than one id() and only
one dnu() .

Dirichlet is treated as if it was mixed Neumann with a small coefficient.
For instance u=2 is replaced by dnu(u)+1.e10*u=2.e10 , with quadrature
at the vertices.

Conditions coupling u,v are allowed for mixed Neumann only, such as
id(u)+id(v)+dnu(v)=1. (As said later this is an equation for v).

In solve(u,v,i) begin .. end; when i>0 the linear system is built
factorized and solved. When i<0 , it is only solved; this is useful when only
the right hand side in the boundary conditions or in the equations have
change. When i<0, i refers to a linear system i>0 of SAME TYPE, so
that scalar systems and 2-systems have their own count.

Remark: saveall(’filename’,u,v) works also.

21

The syntax for pde() is the same as for the scalar case. Deciding which
equation is an equation for u or v is important in the resolution of the linear
system (which is done by Gauss block factorization) because some block
may not be definite matrices if the equations are not well chosen.

• A boundary condition like onbdy(...) ... dnu(u) ... = ...; is
a boundary condition associated to u, even if it contains id(v) .

• Obviously a boundary condition like onbdy(...) u...=...; is also
associated with u (the syntax forbids any v -operator in this case).

• If u is the array function in a pde(u) then what follows is the PDE
associated to u .

3.7.5 Boundary conditions at corners

Corners where boundary conditions change from Neumann to Dirichlet are
ambiguous because Dirichlet conditions are assigned to vertices while Neu-
mann conditions should be assigned to boundary edges; yet Gfem does not
give access to edge numbers. Understanding how these are implemented
helps overcome the difficulty.

All boundary conditions are converted to mixed Fourier/Robin condi-
tions:

1 id(u) a + dnu(u) b = c;

For Dirichlet conditions a is set to 1.0e12 and c is multiplied by the
same; for Neumann a=0 . Thus Neumann condition is present even when
there is Dirichlet but the later overrules the former because of the large
penalty number. Functions a,b,c are piecewise linear continuous, or dis-
continuous if precise is set.

In case of Dirichlet-Neumann corner (with Dirichlet on one side and
Neumann on the other) it is usually better to put a Dirichlet logic at the
corner. But if fine precision is needed then the option precise can guarantee
that the integral on the edge near the corner on the Neumann side is properly
taken into account because then the corner has a Dirichlet value and a
Neumann value by the fact that functions are discontinuous.

3.7.6 Weak formulation

The new keyword varsolve allows the user to enter PDEs in weak form.
Syntax:

22

1 varsolve(<unknown function list>;<test function list>
2 ,<<int>>) <<instruction>> : <expression>>;

where

• <unknown function list> and

• <test function list> are one or two function names separated by
a comma.

• <int> is a positive or negative integer

• instruction is one instruction or more if they are enclosed within begin
end or {}

• <expression> is an expression returning a real or complex number

We have used the notation << >> whenever the entities can be omitted.
Examples

1 varsolve(u;w) /* Dirichlet problem -laplace(u) =x*y */
2 begin
3 onbdy(1) u = 0;
4 f = dx(u)*dx(w) + dy(u)*dy(w)
5 g = x*y;
6 end : intt[f] - intt[g,w];
7

8 varsolve(u;w,-1) /* same with prefactorized matrix */
9 begin

10 onbdy(1) u = 0;
11 f = dx(u)*dx(w) + dy(u)*dy(w)
12 g = x*y;
13 end : intt[f] - intt[g,w];
14

15 varsolve(u;w) /* Neuman problem u-laplace(u) = x*y */
16 begin
17 f = dx(u)*dx(w) + dy(u)*dy(w) -x*y;
18 g = x;
19 end : intt[f] + int[u,w] - int(1)[g,w];
20

21 varsolve(u,v;w,s) /* Lame’s equations */

23

22 begin
23 onbdy(1) u=0;
24 onbdy(1) v=0;
25 e11 = dx(u);
26 e22 = dy(v);
27 e12 = 0.5*(dx(v)+dy(u));
28 e21 = e12;
29 dive = e11 + e22;
30 s11w=2*(lambda*dive+2*mu*e11)*dx(w);
31 s22s=2*(lambda*dive+2*mu+e22)*dy(s);
32 s12s = 2*mu*e12*(dy(w)+dx(s));
33 s21w = s12s;
34 a = s11w+s22s+s12s+s21w +0.1*s;
35 end : intt[a];

How does it works The interpreter evaluates the expression after the
”:” for each triangle and for each 3 vertices; if there is an instruction prior
the ”:” it is also evaluated similarly. Each evaluation is done with one of
the unknown and one of the test functions being 1 at one vertices and zero
at the 2 others. This will give an element of the contribution of the triangle
to the linear system of the problem. The right hand side is constructed by
having all unknowns equal to zero and one test function equal to one at
one vertex. whenever integrals appear they are computed on the current
triangle only.

Note that varsolve takes longer than solve because derivatives like
dx(u) are evaluated 9 times instead of once.

3.8 Results

3.8.1 plot, savemesh, save, load, loadmesh

Within a program the keyword plot(u) will display u .
Instruction save(’filename’,u) will save the data array u on disk. If

u is a scalar variable then the (single) value of u is appended to the file (this
is useful for time dependent problems or any problem with iteration loop.).

Instruction savemesh(’filename’) will save the triangulation on disk.
Similarly for reading data with load(’filename’,u) and loadmesh(’filename’).
The file must be in the default directory, else it won’t be found. The file

format is best seen by opening them with a text editor. For a data array f
it is:

24

1 ns
2 f[0]
3
4 f[ns-1]

(ns is the number of vertices)
If f is a constant, its single value is appended to the end of the file; this

is useful for time dependent problems or any problem with iteration loop.
If precise is set still the function stored by save is interpolated on the

vertices as the P 1 continuous function given by mass lumping (see above).
For triangulations the file format is (nt = number of triangles):

1 ns nt
2 q[0].x q[0].y ib[i]
3 ...
4 q[n-1].x q[n-1].y ib[n-1]
5 me[0][0] me[0][1] me[0][2] ngt[0]
6 ...
7 me[n-1][0] me[n-1][1] me[n-1][2] ngt[n-1]

Remark: Gfem uses the Fortran standard for me[][] and numbers the
vertices starting from number 1 instead of 0 as in the C-standard. Thus in
C-programs one must use me[][]-1 .

Remark: Other formats are also recognized by freefem via their file name
extensions for our own internal use we have defined .amdba and .am_fmt.
You can do the same if your format is not ours.

1 loadmesh(’mesh.amdba’); /* amdba format (Dassault aviation) */
2 loadmesh(’mesh.am_fmt’); /* am_fmt format of MODULEF */

Remark: There is an optional arguments for the functions load, save,
loadmesh, savemesh. This is the 2nd or 3rd argument of these functions.
Here are the prototypes:

1 save(<filename>, <function name>
2 [,<variable counter: integer or converted to integer>])
3 load(<filename>, <function name>

25

4 [,<variable counter: integer or converted to integer>])
5 savemesh(<filename>[,<variable counter:
6 integer or converted to integer>])
7 loadmesh(<filename>[,<variable counter:
8 integer or converted to integer>])

As an example see nsstepad.pde which use this feature to save the mesh
and the solution at each adaptation of the mesh. This special feature allows
you to save or load a generic filename with a counter, the final filename is
built like this ’<generic filename>-<counter>’.

3.8.2 Saveall()

The purpose is to solve all the data for a PDE or a 2-system with only one
instruction. It is meant for those who want to write their own solvers.

The syntax is:

1 saveall(’file_name’, var_name1,...)

The syntax is exactly the same as that of solve(,) except that the first
parameter is the file name. The other parameters are used only to indicate
to the interpreter which is/are the unknown function.

The file format for the scalar equation (laplace is decomposed on nuxx,
nuyy)

1 u=p if Dirichlet
2 c u+dnu(u)=g if Neumann
3 b u-dx(nuxx dx(u))-dx(nuxy dy(u))-dy(nuyx dx))-dy(nuyy dy(u))
4 + a1 dx(u) + a2 dy(u) =f

is that each line has all the values for x,y being a vertex: f, g, p, b, c,
a1, a2, nuxx, nuxy, nuyx, nuyy.

The actual routine is in C++

1 int saveparam(fcts *param, triangulation* t, char *filename, int N)
2 {
3 int k, ns = t->np;
4 ofstream file(filename);
5 file<<ns<<" "<<N<<endl;
6 for(k=0; k<ns; k++)

26

7 {
8 file << (param)->f[k]<<" " ; file<<" ";
9 file << (param)->g[k]<<" " ; file<<" ";

10 file << (param)->p[k]<<" " ; file<<" ";
11 file << (param)->b[k]<<" " ; file<<" ";
12 file << (param)->c[k]<<" " ; file<<" ";
13 file << (param)->a1[k]<<" " ; file<<" ";
14 file << (param)->a2[k]<<" " ; file<<" ";
15 file << (param)->nuxx[k]<<" " ; file<<" ";
16 file << (param)->nuxy[k]<<" " ; file<<" ";
17 file << (param)->nuyx[k]<<" " ; file<<" ";
18 file << (param)->nuyy[k]<<" " ; file<<" ";
19 file << endl;
20 }
21 }

The same function is used for complex coefficients, by overloading the oper-
ator ¡¡:

1 friend ostream& operator<<(ostream& os, const complex& a)
2 {
3 os<<a.re<<" " << a.im<<" ";
4 return os;
5 }

For 2-systems also the same is used with

1 ostream& operator<<(ostream& os, cvect& a)
2 {
3 for(int i=0; i<N;i++)
4 os<<a[i]<<" ";
5 return os;
6 }
7 ostream& operator<<(ostream& os, cmat& a)
8 {
9 for(int i=0; i<N;i++)

10 for(int j=0; j<N;j++)
11 os<<a(i,j)<<" ";
12 return os;
13 }

27

where N=2 .
A Dirichlet condition is applied whenever p[k](?). (Dirichlet conditions

with value 0 are changed to value 1e-10)

3.9 Other features

Gfem supports other interesting features:

3.9.1 Iter

The syntax is:

1 iter(j){....}

where j refers to the number of loops; j can be the result of an expression
(as in iter(i*k)).

Imbedded loops are not allowed. You can use iter with the adaptation
features of Gfem.

3.9.2 Complex numbers

Gfem can handle complex coefficients with 4 dedicated keywords:

• complex : to tell Gfem that complex number will be used. When it
is used it must be located at the beginning of the program before any
function declarations, otherwise the results will be incorrect. It can
appear more than once in the program but only the first occurrence
counts.

• I: for sqrt(-1) .

• Re : for the real part.

• Im : for the imaginary part.

There is purposely no conjug function but barz=Re(z)-I*Im(z) will do.
By default all graphics display the real part. To display the imaginary

part do plot(Im(f)).
The functions implemented for complex numbers are:

• cos

• sin

28

• zx where z is complex and x is a float

The linear systems for the PDE are solved by a Gauss complex LU
factorization.

WARNING: failure to declare complex in the program implies all com-
putation will be done in real, even if I is used.

3.9.3 Scal()

The instruction a:=scal(f,g); does

a =
∫

Ω
f(x, y)g(x, y)dxdy

where Ω is the triangulated domain.

3.9.4 Wait, nowait, changewait

Whenever there is a plot command, Gfem stops to let the user see the
result. By using nowait no stop will be made;

• wait turns back the stop option on.

• changewait toggles the option from on to off or off to on.

Remark under X11: If you click the right button in the window, the
next time the solver will give the hand to the plotter the program will stop.

3.9.5 One Dimensional Plots

This function is only available under integrated environments.
The last function defined by the keyword plot is displayed. It can be

visualized in several fashion, one of which being a one dimensional plot
along any segment defined by the mouse. Selection of this menu brings
causes Gfem to waits for the user input which should be the line segment on
which the function is to be displayed. Thus one should press the mouse
at the beginning point then drag the mouse and release the button
at the final point

It is safe to click in the window after to check that the function display
is correct. What is seen is a

t → f(x(t), y(t))

29

Plot where [x(t), y(t)]t is the segment drawn by the user and f is the last
function displayed in the plot window.

The abscissa is the distance with the beginning point.

3.9.6 Precise

This keyword warns Gfem that precise quadrature formula must be used.
Hence array-functions are discretized as piecewise linear discontinuous
functions on the triangulation. Then all integrals are computed with 3 inner
Gauss points slightly inside each triangle.

This option consumes more memory (3nt instead of ns per functions,
i.e. 9 times more approximately, but still it is nothing compared with the
memory that a matrix of the linear system of a PDE requires) because each
array-function is stored by 3 values on each triangles.

It is a good idea to use it in conjunction with convect and/or discon-
tinuous nonlinear terms.

3.9.7 Exec(), user(), how to link an external function to
Gfem

exec(’prog_name’) will launch the application prog_name . It is useful to
execute an external PDE solver for instance especially under Unix. It is
not implemented for Macintosh because there is no simple way to return to
MacGfem after progname has ended. The same can be achieved manually
by a suitable combination of saveall, wait and load and simultaneous
execution under multifinder.

user(what,f) calls the C++ function in a j-loop:

1 for (int j=0; j<nquad, j++)
2 creal gfemuser(creal what, creal* f, int j)

• creal is a scalar (float) or a complex number if complex has been
set; nquad=3*nt if precise is set and ns otherwise.

• what is intended for users who need several such functions. Then
all can be put in the super function user and selection is by an if
statement on what .

• Within gfemuser access to all global variables are of course possible:
the triangulation (ns,nt, me, q, ng,ngt, area...) ... refer to the
file fem.C for more details.

30

Remark: An example of such gfemuser function is in fem.C ; if you
wish to put your own you must compile and link it. Under Unix, it is easy.
Under the Macintosh system, either you use freefem, which is Gfem’s kernel,
or you must ask us a library version of MacGfem.

3.10 Language internals

• Like most interpreters it has a lexical and a syntaxic part. In the lexical
part the source is broken into tokens and recognized as symbols (see
the enum symbol in the source file lexical.h). For instance if the first
character is a digit then it is a number and the symbol type associated
is cste. This job is done by function nextsym.In addition it constructs
a table of constants and variables (which for convenience contains also
the reserved words of the language).

• The lexical analyzer is a function called by the syntax analyzer. Hence
the second is the main routine in the program except for a few initial-
ization; it’s name is instruction .The syntax analysis is driven by the
syntax rules because the language is LL(1). Thus there is C-function
for each non-terminal.

• The program does not generate an object code but a tree. For example,
parsing x * y would generate a tree with root * and two branches x
and y . Trees are C-struct with four pointers for the 4 branches (here
two would point to NULL) and a symbol for the operator. The C-
function which builds trees is called plante . In the end the program
is transformed into a full tree and to execute the program there is only
one thing to do: evaluate the operator at the root of the tree.

• The evaluation of the program is done by the C-function eval . It
looks at the root symbol and perform the corresponding operation.
Here it would do: return ”value pointed by L1”*”value pointed by L2”
if L1 and L2 where the addresses of the two branches.

• The art of the game is to associate a tree to each operation. For
example when the value of the variable x is required, this is also done
by a tree which has the operator ”oldvar” as root. The trickiest of all
is the compound instruction {...;....}; . Here { is considered as an
operator with one branch on the current instruction and one branch
on the next one. Similarly for the if...then... else instruction.

31

Suppose one wants to add an instruction to freefem, here is what must
be done:

• Make sure the syntax is LL(1) and does not conflict with the old one.

• Add reserved words to the table with installe . As there will be a
new Symbol, update the list of symbols (an enum structure). Add the
C-functions for the syntax analysis according to the diagrams. Modify
eval by adding to the switch the new case.

Here is the very simple structure we used for the nodes of the tree:

1 typedef struct noeud
2 {
3 Symbol symb;
4 creal value;
5 ident *name;
6 long junk;
7 char *path;
8 struct noeud *l1, *l2, *l3, *l4;
9 } noeud, *arbre;

32

Chapter 4

Examples

4.1 Triangulations examples

• A UNIT RING (INNER RADIUS IS 0.25)

1 twopi := 2*pi;
2 border(1,0,twopi,60) { x := cos(t); y := sin(t) };
3 border(2,0,twopi,20) { x := 0.25*cos(-t); y := 0.25*sin(-t) };
4 buildmesh(400);

• THE RECTANGLE [(0,0),(0,2),(2,1),(0,10)]

1 border(1,0,2,20) { x:= t; y:= 0 };
2 border(1,0,1,10) { x:= 1; y:= t };
3 border(1,0,2,20) { x:= 2-t; y:= 1 };
4 border(1,0,1,10) { x:= 0; y:= 1-t };

• A SQUARE WITH WELL IDENTIFIED SIDES AND CON-
TROL OF IB AT CORNERS

1 border(1,0,4,41)
2 {
3 if(t<=1) then { x:=t; y:=0 };
4 if((t>1)and(t<2)) then { x:=1; y:=t-1; ib:= 2 };
5 if((t>=2)and(t<=3)) then { x:=3-t; y:=1; ib:= 3 };
6 if(t>3) then { x:=0; y:=4-t; ib:= 4 }
7 };
8 buildmesh(400);

33

• MULTI-REGIONS CIRCLE

1 border(1,0,2,17) {x:= cos(pi*t); y:= sin(pi*t)};
2 border(0,-1,1,7) { x:= t; y:=0; };
3 border(0,0,1,4) { x:=0;y:=t };
4 buildmesh(300);
5 /* observe the value of "region" by using "show triangle numbers */

4.2 Scalar examples

• ELECTROSTATIC CONDENSOR

1 /* a circle of radius 5 centered at (0,0) */
2 border(1,0,2*pi,60) begin x := 5 * cos(t); y := 5 * sin(t) end ;
3 /* The rectangle on the right */
4 border(2,0,1,4) begin x:=1+t; y:=3 end ;
5 border(2,0,1,24) begin x:=2; y:=3-6*t end ;
6 border(2,0,1,4) begin x:=2-t; y:=-3 end ;
7 border(2,0,1,24) begin x:=1; y:=-3+6*t end ;
8 /* The rectangle on the left */
9 border(3,0,1,4) begin x:=-2+t; y:=3 end ;

10 border(3,0,1,24) begin x:=-1; y:=3-6*t end ;
11 border(3,0,1,4) begin x:=-1-t; y:=-3 end ;
12 border(3,0,1,24) begin x:=-2; y:=-3+6*t end ;
13 buildmesh(800);
14

15 /* Boundary conditions and PDE */
16 solve(v)
17 begin
18 onbdy(1) v = 0;
19 onbdy(2) v = 1;
20 onbdy(3) v = -1;
21 pde(v) -laplace(v) =0;
22 end;
23 plot(v);

• HEAT CONDUCTION AND RADIATION

1 border(1,0,22,89)
2 begin

34

3 if(t<=10)then begin x:= t; y:=0 ; ib:=3 end;
4 if((t>10)and(t<11))then begin x:=10; y:=t-10; ib:=2 end;
5 if((t>=11)and(t<=21))then begin x:=21-t; y:=1; ib:=4 end;
6 if(t>21)then begin x:=0; y:=22-t end;
7 end;
8 buildmesh(800);
9

10 changewait;
11 t0 := 10; t1 := 100; te := 25; b=0.1; c = 5.0e-8;
12 w = (b + 2*c * (te+546)*(te+273)*(te+273));
13 solve(v,1)
14 begin
15 onbdy(1) v=t0; onbdy(2) v = t1; onbdy(3) dnu(v)=0;
16 onbdy(4) id(v) * w + dnu(v) = te * w;
17 pde(v) -laplace(v) * y =0;
18 end;
19 iter(10)
20 begin u=v;
21 w = (b + c * (u+te + 546)*((u+273)*(u+273) + (te+273)*(te+273)));
22 solve(v,-1) begin
23 onbdy(1) v=t0; onbdy(2) v = t1;
24 onbdy(3) dnu(v)=0; onbdy(4) id(v)*w + dnu(v)= te * w;
25 pde(v) -laplace(v) * y =0; plot(v);
26 end;
27 end

• HEAT: NON HOMOGENEOUS MATERIAL

1 r0 := 1.0; r1 := 2.0;
2 border(1,0,22,89)
3 begin
4 region :=1;
5 if(t<10)then begin x:= t; y:=0 ; ib:=3 end;
6 if((t>=10)and(t<=11))then begin x:=10; y:=r1*(t-10); ib:=2 end;
7 if((t>11)and(t<21))then begin x:=21-t; y:=r1; ib:=4 end;
8 if(t>=21)then begin x:=0; y:=r1*(22-t) end;
9 end;

10 border(0,0,10,41) begin x:= t; y:=r0 end;
11 buildmesh(800);
12

35

13 t0 = 10; t1 = 100; te := 25; kappa =0.01 + max(y-1,0)/(y-1.0001);
14 solve(v)
15 begin
16 onbdy(1) v=t0;
17 onbdy(2) v = t1;
18 onbdy(4) dnu(v)=0.2;
19 onbdy(3) dnu(v)=0;
20 pde(v) -laplace(v)*kappa*y +id(v)*kappa*y =0;
21 plot(v);
22 end;

• COMPRESSIBLE POTENTIAL FLOW

1 changewait;/* gamma = 1.4, outer circle radius is 5 */
2 mach1 := 1/sqrt(6); machinfty = 0.85*mach1;
3 rhoinfty=sqrt((1-machinfty^2)^5);
4 solve(phi) begin
5 onbdy(1) dnu(phi) = rhoinfty*machinfty*x/5; onbdy(2) dnu(phi) = 0;
6 pde(phi) id(phi)*0.0001-laplace(phi) = 0;
7 end;
8 u1 = dx(phi); u2 = dy(phi); rho=sqrt((1-(u1^2+ u2^2))^5); plot(phi);
9

10 iter(5)
11 begin
12 solve(phi)
13 onbdy(1) dnu(phi) =rhoinfty*machinfty*x/5; onbdy(2) dnu(phi) = 0;
14 pde(phi) id(phi)*0.0001-laplace(phi)*rhop=0;
15 end;
16 u1 = dx(phi); u2 = dy(phi); rho=sqrt((1-(u1^2+ u2^2))^5);
17 rhop = convect(rho,u1,u2,0.1); plot(rho)
18 end;
19 plot(sqrt((u1^2+u2^2))/mach1);

• NAVIER STOKES EQUATIONS

1 /* Poor but better than none algorithm*/
2 changewait;
3 border(1,0,1,6) begin x:=0; y:=1-t end;
4 border(2,0,1,15) begin x:=2*t; y:=0 end;
5 border(2,0,1,10) begin x:=2; y:=-t end;

36

6 border(2,0,1,20) begin x:=2+3*t; y:=-1 end;
7 border(2,0,1,35) begin x:=5+15*t; y:=-1 end;
8 border(3,0,1,10) begin x:=20; y:=-1+2*t end;
9 border(4,0,1,35) begin x:=5+15*(1-t); y:=1 end;

10 border(4,0,1,40) begin x:=5*(1-t);y:=1 end;
11 buildmesh(900);
12

13 nu = 0.002; dt := 0.4;
14

15 /* initial pressure */
16 solve(p,1)
17 onbdy(1)dnu(p) =-2*nu;
18 onbdy(3) p=0; onbdy(2,4) dnu(p) = 0;
19 pde(p) - laplace(p)= 0;
20 end;
21 /* initial horizontal velocity */
22 solve(u,2) begin
23 onbdy(1) u = y*(1-y);
24 onbdy(3) dnu(u) = 0; onbdy(2,4) u = 0;
25 pde(u) id(u)/dt-laplace(u)*nu = -min(y*y-y,0)/dt;
26 end;
27 /* initial vertical velocity */
28 solve(v,3)begin
29 onbdy(1,3)v = 0; onbdy(2,4) v = 0;
30 pde(v) id(v)/dt-laplace(v)*nu =0;
31 end;
32 un = u; vn = v;
33 iter(80)
34 begin f=convect(un,u,v,dt); g=convect(vn,u,v,dt);
35 /*Horizontal velocity*/
36 solve(u,-2) begin
37 onbdy(1) u = y*(1-y); onbdy(2,4) u = 0;
38 onbdy(3)dnu(u)=0;
39 pde(u) id(u)/dt-laplace(u)*nu = f/dt -dx(p);
40 end;
41 plot(u);
42 /* Vertical velocity */
43 solve(v,-3) begin
44 onbdy(1,2,3,4) v = 0;
45 pde(v) id(v)/dt-laplace(v)*nu = g/dt -dy(p);

37

46 end;
47 /* Pressure */
48 solve(p,-1) begin
49 onbdy(1)dnu(p) =-2*nu;
50 onbdy(3) p=0; onbdy(2,4) dnu(p) = 0;
51 pde(p) -laplace(p)= -(dx(f) + dy(g))/dt;
52 end;
53 un = u; vn = v;
54 end ;
55 save(’u.dta’,u); save(’v.dta’,v); save(’p.dta’,p); plot(u);

4.3 Complex number example

1 complex; nowait;
2 border(1,0,1,10) begin x:=t; y:=0; end;
3 border(1,0,1,10) begin x:=1; y:=t; end;
4 border(2,0,1,10) begin x:=1-t; y:=1; end;
5 border(1,0,1,10) begin x:=0; y:=1-t; end;
6 buildmesh(200);
7

8 solve(u) /* observe than Re(u) = Im(u) */
9 begin

10 onbdy(1,2) u=0;
11 pde(u) id(u)-laplace(u)=1+I ;
12 end;
13 v=Im(u);
14 plot(u);plot(v);plot(u-v);

4.4 2-system example

1 /* This is a 2-system example for which the solution is know
2 analytically, thus the precision of Gfem can be checked */
3 nowait;
4 ns:=40;
5 border(1,0,2*pi,2*ns) begin x:= 3*cos(t); y:= 2*sin(t); end;
6 border(2,0,2*pi,ns) begin x:= cos(-t); y:= sin(-t); end;
7 buildmesh(ns*ns);
8

38

9 ue= sin(x+y);
10 ve = ue;
11 p = ue;
12 nx = -x;
13 ny =- y;
14 dxue = cos(x+y);
15

16 c = 0.2;
17 a1 = y;
18 a2 =x;
19 nu = 1;
20 nu11 = 1;
21 nu22 = 2;
22 nu21 =0.3;
23 nu12 =0.4;
24 b=1;
25

26 dnuue=dxue*(nu*(nx+ny) +
27 (nu11 + nu12)*nx + (nu21+ nu22)*ny);
28 g = ue*c+dnuue;
29 f = b*ue+dxue*(a1+a2) +ue*(2*nu+nu11+nu12+nu21+nu22);
30

31 solve(u,v) begin
32 onbdy(1) u = p;
33 onbdy(1) v = p;
34 onbdy(2)
35 id(u)*c/2 + id(v)*c/2 + dnu(u) = g;
36 onbdy(2) id(v)*c + dnu(v) = g;
37 pde(u) id(u)*b + dx(u)*a1 + dy(u)*a2
38 -laplace(u)*nu - dxx(u)*nu11 -
39 dxy(u)*nu12 - dyx(u)*nu21 - dyy(u)*nu22 =f;
40

41 pde(v) id(v)*b/2+id(u)*b/2
42 + dx(v)*a1 + dy(v)*a2 -laplace(v)*nu
43 - dxx(v)*nu11 - dxy(v)*nu12 -
44 dyx(v)*nu21 - dyy(v)*nu22 =f;
45 end;
46

47 plot(abs(u-ue) + abs(v-ve));

39

Chapter 5

GNU Free Documentation
License

Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other written
document “free” in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for
free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published

40

as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

5.1 Applicability and Definitions

This License applies to any manual or other work that contains a notice
placed by the copyright holder saying it can be distributed under the terms
of this License. The “Document”, below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall
subject. (For example, if the Document is in part a textbook of mathematics,
a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
whose contents can be viewed and edited directly and straightforwardly
with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to a
variety of formats suitable for input to text formatters. A copy made in
an otherwise Transparent file format whose markup has been designed to
thwart or discourage subsequent modification by readers is not Transparent.
A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LATEX input format, SGML or XML

41

using a publicly available DTD, and standard-conforming simple HTML
designed for human modification. Opaque formats include PostScript, PDF,
proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML produced by some
word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not have
any title page as such, “Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the
text.

5.2 Verbatim Copying

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices,
and the license notice saying this License applies to the Document are re-
produced in all copies, and that you add no other conditions whatsoever to
those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

5.3 Copying in Quantity

If you publish printed copies of the Document numbering more than 100, and
the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover.
Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of
the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as
they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

42

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy a
publicly-accessible computer-network location containing a complete Trans-
parent copy of the Document, free of added material, which the general
network-using public has access to download anonymously at no charge us-
ing public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

5.4 Modifications

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the
role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must
do these things in the Modified Version:

• Use in the Title Page (and on the covers, if any) a title distinct from
that of the Document, and from those of previous versions (which
should, if there were any, be listed in the History section of the Docu-
ment). You may use the same title as a previous version if the original
publisher of that version gives permission.

• List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document
(all of its principal authors, if it has less than five).

• State on the Title page the name of the publisher of the Modified
Version, as the publisher.

43

• Preserve all the copyright notices of the Document.

• Add an appropriate copyright notice for your modifications adjacent
to the other copyright notices.

• Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of
this License, in the form shown in the Addendum below.

• Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

• Include an unaltered copy of this License.

• Preserve the section entitled “History”, and its title, and add to it an
item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section
entitled “History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in the
previous sentence.

• Preserve the network location, if any, given in the Document for pub-
lic access to a Transparent copy of the Document, and likewise the
network locations given in the Document for previous versions it was
based on. These may be placed in the “History” section. You may
omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the
version it refers to gives permission.

• In any section entitled “Acknowledgements” or “Dedications”, pre-
serve the section’s title, and preserve in the section all the substance
and tone of each of the contributor acknowledgements and/or dedica-
tions given therein.

• Preserve all the Invariant Sections of the Document, unaltered in their
text and in their titles. Section numbers or the equivalent are not
considered part of the section titles.

• Delete any section entitled “Endorsements”. Such a section may not
be included in the Modified Version.

• Do not retitle any existing section as “Endorsements” or to conflict in
title with any Invariant Section.

44

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections
as invariant. To do this, add their titles to the list of Invariant Sections in
the Modified Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties – for
example, statements of peer review or that the text has been approved by
an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and
a passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover Text
and one of Back-Cover Text may be added by (or through arrangements
made by) any one entity. If the Document already includes a cover text for
the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5.5 Combining Documents

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the
combined work.

In the combination, you must combine any sections entitled “History”

45

in the various original documents, forming one section entitled “History”;
likewise combine any sections entitled “Acknowledgements”, and any sec-
tions entitled “Dedications”. You must delete all sections entitled “En-
dorsements.”

5.6 Collections of Documents

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of
each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this License
into the extracted document, and follow this License in all other respects
regarding verbatim copying of that document.

5.7 Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, does not as a whole count as a Modified Version of the Document,
provided no compilation copyright is claimed for the compilation. Such a
compilation is called an “aggregate”, and this License does not apply to the
other self-contained works thus compiled with the Document, on account of
their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one quarter of the
entire aggregate, the Document’s Cover Texts may be placed on covers that
surround only the Document within the aggregate. Otherwise they must
appear on covers around the whole aggregate.

5.8 Translation

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant
Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections

46

in addition to the original versions of these Invariant Sections. You may in-
clude a translation of this License provided that you also include the original
English version of this License. In case of a disagreement between the trans-
lation and the original English version of this License, the original English
version will prevail.

5.9 Termination

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to copy,
modify, sublicense or distribute the Document is void, and will automatically
terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5.10 Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License
”or any later version” applies to it, you have the option of following the
terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation.
If the Document does not specify a version number of this License, you
may choose any version ever published (not as a draft) by the Free Software
Foundation.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to
copy, distribute and/or modify this document under the terms of

47

the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with the
Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being
LIST. A copy of the license is included in the section entitled
“GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections”
instead of saying which ones are invariant. If you have no Front-Cover
Texts, write “no Front-Cover Texts” instead of “Front-Cover Texts being
LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.

48

Bibliography

49

