
PART 1 VHDL Modeling and simulation

0pt0.6pt

ALLIANCE TUTORIAL 1

ALLIANCE TUTORIAL
Pierre & Marie Curie University

2001 - 2004

PART 1
Simulation

Frederic AK Kai-shing LAM
Modified by LJ

PART 1 VHDL Modeling and simulation

The purpose of this tutorial is to provide a quick turn of some ALLIANCE tools,
developed at the LIP6 laboratory of Pierre and Marie Curie University.

The tutorial is composed of 3 main parts independent from each other:

• VHDL modeling and simulation
• Logical synthesis
• Place and route

Before going further you must ensure that all the environment variables are properly
set (source alcenv.sh or alcenv.csh file) and that the Alliance tools are available when
invoking them at the shell prompt.

All the tools used in this tutorial are documented at least with a manual page.

ALLIANCE TUTORIAL 3

PART 1 VHDL Modeling and simulation

Contents

1 Behavioral VHDL
1.1 Introduction
1.2 Behavioral Description
1.3 Stimuli format
1.4 Simulation
1.5 Simulation with Delay

2 Structural VHDL
2.1 Introduction
2.2 Stimuli Generation
2.3 Structural View
2.4 Structural view and validation of each block
2.5 Simulation and validation of the addaccu on 2 hierarchical levels

ALLIANCE TUTORIAL 4

PART 1 VHDL Modeling and simulation

PART 1 :
VHDL modeling and simulation

All the files used in this part are located in the
/usr/share/doc/alliance-doc-5.0/tutorial/simulation/src directory.
This directory contains two subdirectories and one Makefile :

• The Makefile allows you to validate automatically the entire simulation part

• addaccu_beh = the behavioral description (Register Transfert Level)

– Makefile to validate automatically the entire behavioral description

– addaccu.vbe is the behavioral description of addaccu

– patterns.pat is the simulation patterns for addaccu

– addaccu_dly.vbe is the behavioral description of addaccu with delay

– patterns_dly.pat is the simulation patterns for addaccu with delay

– addaccu4.vhdl is the behavioral description of addaccu using standard VHDL
subset

• addaccu_struct = the structural view

– Makefile to validate automatically the entire structural view

– pat_new.c is the vectors generation file

– addaccu.vbe is the behavioral description of addaccu

– mux.vbe is the behavioral description of multiplexer

– accu.vbe is the behavioral description of accumulator

– alu.vbe is the behavioral description of adder

– addaccu.vst is the structural view of addaccu

– mux.vst is the structural view of multiplexer

– accu.vst is the structural view of accumulator

– alu.vst is the structural view of adder

The ALLIANCE tools used are :

• vasy : VHDL analyzer and convertor.
• asimut : VHDL Compiler and Simulator.
• genpat : Procedural generator of stimuli.

You can obtain the detailed informations on an any ALLIANCE tool by typing the
command :

> man <tool name>

To validate the behavioral and the structural description you can :

• run the UNIX commands in the order indicated by this tutorial.

ALLIANCE TUTORIAL 5

PART 1 VHDL Modeling and simulation

• validate automatically the entire behavioral (or structural) description using the
command :

> make

If you want to start again this validation from the beginning, you just have to type :

> make clean
> make

ALLIANCE TUTORIAL 6

PART 1 VHDL Modeling and simulation

1 Behavioral VHDL

1.1 Introduction

The goal of this part is to write then to simulate the behavior of a very small circuit : An
accumulating adder which we will call addaccu.

The description of the behavior of addaccu will be made in Behavioral VHDL (DATAFLOW).

1.2 Behavioral Description

The behavioral description of a circuit consists on a set of boolean functions calculating
the outputs according to the inputs with the use of possible internal signals ; in our case,
a signal which connects the output of the accumulator to the entry of the multiplexer
(reg_out), another which connects the output of the multiplexer to the entry of the
adder (mux_out) and finally a signal for carry (carry).

At first, you must write the file of behavioral description of addaccu. This description
must be of type : without delay (without After clause).

This file will have the extension ".vbe" which is the usual extension to indicate a
VHDL behavioral file (Vhdl BEhaviour description). This description will have three
distinct parts:

• Block 1 : The 4 bits adder.
• Block 2 : The 4 bits multiplexer.
• Block 3 : The 4 bits accumulator.

The circuit has the following interface:

• a 4 bits input bus a.
• a 4 bits input bus b.
• a 4 bits output bus S.
• a clock input signal ck.
• a control input signal sel.
• two alimentation inputs signals VDD and VSS.

a

b

ck

sel s

reg_out

mux_out

4

4

4

4

4

Figure 1: accumulating adder

ALLIANCE TUTORIAL 7

PART 1 VHDL Modeling and simulation

1. mux is a 4 bits multiplexer 1 among 2
mux truth table :
sel = 0 => mux_out = a
sel = 1 => mux_out = reg_out

2. alu is a 4 bits adder
s = b + mux_out

3. accu is a register (flip-flop)
ck = 0 => reg_out = reg_out
ck = 1 => reg_out = reg_out
ck : 0->1 => reg_out = s

Then you must validate your description while compiling with ASIMUT.

> asimut -b -c <file name>

• file name is the file name of your behavioral description without extension (ad-
daccu).

• -b option to indicate that the description is purely behavioral.
• -c option to compile without simulating.

If you do not wish to use the environment variables positioned by default, other
environment variables can be used by ASIMUT.

> MBK_WORK_LIB = .
> MBK_CATA_LIB = .
> MBK_CATAL_NAME = CATAL
> MBK_IN_LO = VST

under Bash :

> export var = value

under standard Bourne Shell :

> var = value
> export var

under C Shell :

> setenv var value

The meaning of these variables is to be discovered in the man of ASIMUT tool.

ALLIANCE TUTORIAL 8

PART 1 VHDL Modeling and simulation

1.3 Description with Standard VHDL subset

Alliance tools use a very particular and restricted VHDL subset (vbe and vst file format).
If you want to describe the behavior of your circuit (at Register Transfert Level) with

a more common VHDL subset you can use VASY to automatically convert your VHDL
descriptions in Alliance subset.

The file addaccu4.vhdl is a description of the addaccu circuit, using classical VHDL
subset (with process statements, IEEE 1164 VHDL types, aritmetic operators etc ...)

You can convert this description to the .vbe file format using VASY :

> vasy -Vao addaccu4.vhdl

You can then compile and simulate the generated file addaccu4.vbe using asimut
exactly as it has been done with the addaccu.vbe file.

1.4 Stimuli of test

Once the behavioral description compiled successfully (without any error), to validate
your description you must write a file of nonexhaustive but intelligent vectors of test.

Therefore you must write a file patterns.pat which contains a dozen vectors of test.
These vectors of test make it possible to check that the adder makes the additions well
with or without carry propagation , that the multiplexer gives the good operand to the
input of the adder following the value of sel signal and finally, that the accumulator
correctly memorizes the output value of the adder.

In order not to have signals overlapping temporally (phenomenon of " glitch "), you
will use a clock with very high period (tck = 100ns) compared to the propagation times.
The clock must respect the following rate: 1 low state of 50 ns, then 1 high state of 50
ns, etc...

If the PAT syntax does not appear to you obvious, have a look to the man giving the
patterns files format : PAT format.

> man 5 pat

The 5 refers here to the class of handbooks for files formats.

• man 1 : User Commands.
• man 2,3 : Libraries.
• man 5 : Files format.
• man 7 : Environment variables.

1.5 Simulation

Now you only have to simulate your addaccu with your vectors of tests, without any
delay in order to check very quickly that the results on the outputs are well those which
you wait.

> asimut -b addaccu patterns result_vbe

ALLIANCE TUTORIAL 9

PART 1 VHDL Modeling and simulation

• addaccu : file name of the behavioral description (addaccu.vbe).
• pattern : file name of the vectors (pattern.pat).
• result_vbe : file name of the patterns result (result_vbe.pat).
• -b : option to indicate a purely behavioral description.

The file of resulting vectors must be seriously analyzed to check the results of simu-
lation. It is possible to use the graphical pattern viewer xpat to analyze the results of
the simulation.

1.6 Delays

The behavioral description written previously includes only zero-delay concurrent as-
signements. It is however possible to specify propagation times by using AFTER clauses,
because the operations in a real circuit are not done instantaneously. For more details,
do refer to the man for VBE files format.

You must modify your behavioral description to add delays :

• For the adder : 4 ns.
• For the multiplexer : 2 ns.
• For the accumulator : 3 ns.

The installation of the delay for the accumulator requires an intermediate signal reg
because you cannot put delay on a signal of register type. In the test vectors file, it
is necessary to put the option spy on the signals with delays so that we can see these
delays. In the contrary case, these signals are sampled only at the times of the clock-
edge.

Then you must validate this modified behavioral description while simulating with
asimut .

> asimut -b addaccu_dly patterns_dly result_dly

The results obtained (result_dly.pat) must be different from those obtained without
AFTER clauses (result_vbe.pat). To understand why, it is necessary to deeply analyze
the temporal behavior of your circuit. The step of 50 ns used for the test vectors does
not really make possible to observe the true temporal behavior of your circuit. You
can spy on all the transitions from an internal signal or an output by specifying this
characteristic while declaring in the file of test vectors (option spy , for more details,
consult the man for patterns files format).

ALLIANCE TUTORIAL 10

PART 1 VHDL Modeling and simulation

2 Structural VHDL

2.1 Introduction

The goal of this part is to write then to simulate in a hierarchical way the structural
view of the circuit presented in first part of this Tutorial. The circuit will be describe in
two levels of hierarchy :

• The first level will write the circuit like the instanciation of three blocks.
• The second level will write each of the three blocks in term of elementary gates of

the standard library.

Structural description of addaccu will be made in STRUCTURAL VHDL .
This part contains five distinct steps:

• step 1 : Generation of the complete set of vectors and validation of the addaccu.
• step 2 : VHDL structural description of the addaccu.
• step 3 : Simulation and validation of the structural addaccu on a hierarchical level.
• step 4 : structural description and validation of each block.
• step 5 : Simulation and validation of the structural addaccu on 2 hierarchical

levels.

2.2 Stimuli Generation

Normally, the behavioral description has been successfully compiled, and validated with
some hand made vectors. Now you must create a file of test vectors more consequent
(a hundred clock-edges).

However, the writing of the stimuli file directly is a tiresome work. The tool genpat
enables you to undertake this work in a procedural way. The language genpat is a
subset of " C " functions. For more informations on genpat and the functions of the
associated library do not hesitate to use the command:

> man genpat

Moreover, each basic function from genpat has its man, the functions are in capital
letters, as by example:

> man AFFECT

Here are some suggestions for your file of vectors generation :

• Write a function independent of the management of the clock. This clock will be
synchronized on 2 times: a low state of 50 ns followed by a high state of 50 ns.

• All the inputs of the circuit must be positioned in the first vector.
• Initialize the accumulating register with the function INIT.

Once your file pat_new.c is written you must compile it. The following commands
make it possible to compile the file of procedural description and to generate the file of
vectors pat_new.pat.

> genpat pat_new

ALLIANCE TUTORIAL 11

PART 1 VHDL Modeling and simulation

If no error has occurred, the file pat_new.pat is now created. You only have to
simulate your behavioral addaccu with this new set of vectors

> asimut -b -zerodelay addaccu pat_new res_new

The -zerodelay option states here that you wish a purely boolean simulation (without
considering the propagation times). You obtain then a file of vectors (res_new.pat)
result.

This file will be useful to you for the validation of the next stages

2.3 Structural View

The objective here is to realize a hierarchy on one level by making so that the structural
view of the accumulating adder addaccu.vst instancies the behavioral description of the
3 basic components, the adder alu.vbe, the multiplexer mux.vbe and the accumulator
accu.vbe.
Initially you must write the structural description file of addaccu. This file will have the
extension " vst " which is the usual extension to indicate a VHDL structural file (Vhdl
Structural view). This view will contain the instanciation of three independent blocks:

Block 1 : The 4 bits adder.
Block 2 : The 4 bits Multiplexer.
Block 3 : The 4 bits accumulator.

You must create a CATAL file containing the identifier of each block followed by the
attribute ’C’ indicating that it is a basic element of the hierarchy. This shows you the
importance of the CATAL file which forces the simulator asimut to use the behavioral
sight of the components which are listed. You have to set the environment variable
MBK_IN_LO:

> MBK_IN_LO = vst
> export MBK_IN_LO

The meaning of all the usable variables is to be discovered in the man of asimut
tool.

Lastly, validate your structural description while compiling with
asimut .

> asimut -c addaccu

Then simulate your circuit with the vectors file obtained previously (the res_new.pat
file obtained by simulation zero-delay of the behavioral description).

> asimut -zerodelay -nores addaccu res_new

The -nores option states here that you do not wait a result file. When you do not
have any more error of simulation you will have to create the structural view of each of
the 3 blocks.

ALLIANCE TUTORIAL 12

PART 1 VHDL Modeling and simulation

2.4 Structural view and validation of each block

Now you have to pass to a hierarchy on 2 levels. So it is necessary to write a structural
view .vst for each basic component of the accumulating adder and to test one by one
replacing the behavioral description of the basic components of the accumulating adder
by their structural views by modifying the CATAL file (by removing the component name
).

Each block (alu, accu, mux) must now be described like an interconnection of ele-
mentary gates. The gates which are to instanciate will be chosen among those available
in the library of standard cells SXLIB . For the functionality of the various cells and their
interface, the sxlib man is available. The behavioral description of each cell is present
in
$ALLIANCE_TOP/cells/sxlib .

You must set the environment variable MBK_CATA_LIB to be able to reach these
cells.

> MBK_CATA_LIB=\$ALLIANCE_TOP/cells/sxlib

> export MBK_CATA_LIB

For each block adopt following methodology to replace the behavioral description of
the block by its structural view:

• Write the structural view of the block (vst) .
• Compile this block (asimut -c <block_name>) to validate its syntax
• Remove its identifier from the CATAL file.
• Simulate circuit addaccu again:

> asimut -zerodelay -nores addaccu res_new

2.5 Simulation and validation of the addaccu on 2 hierarchical levels

Now you only have to simulate your addaccu described in a hierarchical way (in which
the basic elements are the library cells).

• Erase the CATAL file, which is not necessary any more, the library of cells standards
having its own catalogue.

• Simulate again the addaccu circuit

> asimut addaccu pat_new res_dly

Thus you will have replaced the behavioral description of the three blocks by their
structural view.

• You can again simulate the addaccu circuit in order to observe its temporal behavior
precisely (each cell of the standard library has a given propagation time). You will
use the spy option for the internal signals and the outputs.

> asimut addaccu pat_new res_dly

ALLIANCE TUTORIAL 13

