
A Verilog Translator in ACL2

Jared Davis

Centaur Technology

February 18, 2009

Page 1 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 1 / 57

Introduction

Introduction

Previously — a preprocessor, lexer, and parser for Verilog 2005, mostly in
logic mode with verified guards

Simplicity over performance (1.5 mins., 10 GB memory)

Elaborate well-formedness checks, unit testing

Today — a translator to convert the resulting parse tree into E modules

Think Verilog Simplifier + Paren Transposer

We stay in Verilog as long as possible, rewriting modules into
occurrence-based, register-transfer level descriptions

We want to produce a conservative approximation of the input
modules w.r.t. the semantics of Verilog

Page 2 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 2 / 57

Introduction

Page 3 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 3 / 57

Introduction

Outline

1 Introduction

2 Verilog semantics

3 Parse trees

4 Translator stages

5 Writing modules

6 Usage

Page 4 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 4 / 57

Verilog semantics

Verilog semantics — modules

Modules are the basic building blocks of Verilog designs

They have an interface of input and output ports

They may contain gates, registers, and instances of other modules

Page 5 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 5 / 57

Verilog semantics

Verilog semantics — bits

We consider only register-transfer level stuff (not transistor-level stuff)

Bits (on wires, in registers) can have four values

0 — logical false (low)

1 — logical true (high)

X — an unknown value

Z — a high-impedance value (undriven)

Gate semantics are described in terms of these values with truth tables

buf not
input output

0 0
1 1
X X
Z X

input output
0 1
1 0
X X
Z X

Page 6 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 6 / 57

Verilog semantics

Verilog semantics — vectors

A wire/register can have a range, making it a vector of bits

wire [3:0] w;

Such vectors can be interpreted in various ways

Unsigned n-bit integers

Signed n-bit integers

“Real” numbers

Strings, times, and realtimes

We deal almost exclusively with unsigned integers

4’b 0011, 4’d 10, 8’h FF, 2’b XX

Page 7 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 7 / 57

Verilog semantics

Verilog semantics — expressions

Expressions can be used to concisely describe collections of gates

assign w = ∼(a & b) ˆ (c + 4’b0010) ;

A complex set of rules are used to determine how wide each operation is

Does c + 4’b0010, above, produce a carry?

The semantics are described w.r.t. the 4-valued logic

a & b ands its arguments, bitwise, using the truth table for and

a + b produces X if any bit of either argument is X or Z

a ? b : c combines b and c bit-by-bit when a is X or Z

Page 8 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 8 / 57

Verilog semantics

Verilog semantics — simulations

Verilog is simultaneously

A language for describing circuits, and
A language for simulating circuits over time

module test () ;
reg a, b;
wire o;
and (o, a, b);

initial
begin

a <= 0 ;
b <= 1 ;
$display("at time 0, o is %b", o);
#1
$display("at time 1, o is %b", o);

end
endmodule

Updates happen and the time moves forwardPage 9 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 10 / 57

Verilog semantics

Conservative approximation

Spec: every simplified module M ′ should conservatively approximate the
input module, M

Roughly, and too ambitiously,

M ′ should have the same ports and internal state as M

M ′ should have an instance of S′ whenever M has an instance of S.

For every port and internal value, Mp, at every time t of every
simulation s, M ′

p bit-approximates Mp,

Where “bit-approximates” means M ′
p = Mp or M ′

p is X

The approximation must be close enough to facilitate verification (i.e., all
X’s is not useful)

Page 10 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 11 / 57

Verilog semantics

The clock assumption

Certain ports are known to be clocks.

We assume there is enough time to update all other signals before any
clock changes.

This is a huge assumption that rules out many Verilog simulations

Page 11 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 12 / 57

Verilog semantics

Verilog constructs that break conservativity

Some Verilog constructs are broken w.r.t. conservativity

if treats X/Z as false

=== and !== treat X,Z as knowns

user-defined primitives may implement any X/Z behavior they like

We would eventually like to move away from using these constructs.

For now, we don’t permit UDP’s, and unsoundly

Replace if as the ternary operator, ?:

Treat === and !== as == and !=

Page 12 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 13 / 57

Parse trees

Parse Trees

Our parser produces a vl-modulelist-p object, which is a list of
vl-module-p’s. Each of which has

Name, ports

Parameter declarations

Port, register, variable, event, and wire declarations

Gate instances (occurrences)

Submodule instances (occurrences)

Continuous assignments

Always and initial statements

Most of these are compound structures. Defaggregate, deflist.

Page 13 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 14 / 57

Parse trees

Basic module utilities

We develop a number of utilities for working with modules

Accessor projections (defprojection)

Modalists, module lookups

Modnamespaces, item lookups

Top-level/missing modules

Dependent/necessary modules

Dependency-order sorting

Pruning modules w.r.t. a keep-list

Fun stuff. Logic mode, various theorems. Lots of MBE. Lots of Osets.
Could prove lots more.

Page 14 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 15 / 57

Parse trees

Reasonableness

A module is reasonable if it is semantically well-formed and does not
contain “weird stuff” we do not handle

Ports should have names and no complex expressions

Port declarations should be unsigned, typeless, non-inout

Compatible ports and port declarations, no duplicates

Compatible port declaration and wire declarations

No weird wire/reg types, multidimensional arrays, signed values

No variables, event declarations

Only simple gates (no transistors)

Unique namespace

Most Centaur stuff is reasonable. We can generate reports of unreasonable
modules.

Page 15 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 16 / 57

Translator stages

Translator stages

The translator is written as a bunch of Verilog source transformations.

Modulo certain extensions (e.g., size info on exprs)

Preamble.

Read in the entire chip, as it is on disk (1.5 mins)

Identify and throw away any portion of the chip which is unreasonable
(reporting upon what has been done) (< 1 minute)

Optionally limit scope to particular modules for better translation
speed.

Page 16 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 17 / 57

Translator stages

Unparameterization

module plus(...) ;
parameter width = 4 ;
parameter strength = 10 ;
wire [width-1:0] w;
...;

endmodule

Our first pass eliminates parameters (by expanding their uses)

plus$width=10$strength=13

multi-pass to resolve “width - 1” (very cautious)

We about double the total number of modules

We eliminate top-level modules with params left

Result: parameter-free modules

Page 17 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 19 / 57

Translator stages

Safe-mode

Unparameterization, and our later steps, produce new list of modules.

In safe-mode, we perform all kinds of well-formedness checks before and
after each stage. After unparameterization,

Do we still have a valid vl-modulelist-p

Do the modules have unique names (identify name conflicts)

Is the module list complete

Is every module still reasonable

Are all modules parameter-free (completeness of unparam)

Much like theorems, but no proof burden – just execution time.

Page 18 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 20 / 57

Translator stages

Filling in wires

Two kinds of implicit wires

Port implicit – “input [3:0] a” without also “wire [3:0] a”

Other, undeclared names are implicitly one-bit wires (yuck)

Our next pass just adds appropriate wire declarations for all the implicit
wires.

We can do all the same well-formedness checks from before.
Should add an “every name is declared” check

Page 19 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 22 / 57

Translator stages

Resolving argument lists

The ports of a module are named

module adder(out, data_a, data_b);

Instances can refer to ports by position or name

adder a1(out1, data_a1, data_b1);
adder a2(.out(out2), .data_a(data_a2), .data_b(data_b2));

Argument list resolution involves

Ensuring the actuals are compatible with the formals

Canonicalize all instances to use the positional style

Marking each argument as an input or output

Page 20 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 24 / 57

Translator stages

Resolving constant expressions

We often have expressions in places we want constants.

Declarations; wire [6 - 1 : 0] w;

Bit selects; assign msb = w[6 - 1];

Part selects; assign x = w[6 - 1 : 3];

We now evaluate these expressions, e.g., to 5.

Spec is vague w.r.t. widths, signedness, etc.

We only permit unsized integer literals (32-bit signed)

We only allow overflow-free +, -, and *

Additional well-formedness checks.

Ranges resolved (all constant indices)

Selects in bounds (all constant indices in range)

Page 21 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 25 / 57

Translator stages

Shifting ranges

Two ways to represent a six-bit vector:

wire [7:2] a; // a[7], ..., a[2]

wire [5:0] a; // a[5], ..., a[0]

We now shift all ranges over so that their rhs is 0.
We must simultaneously shift bit/part-selects.

WF checks: ranges/selects resolved, selects bound, ranges simple

Page 22 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 26 / 57

Translator stages

Operator rewriting

We can make synthesis easier by rewriting away various operators.

a ? b : c → (|a) ? b : c a < b → ˆ(a >= b)
a ? z : c → ∼(|a) ? c : z a > b → ˆ(b >= a)

a <= b → b >= a
a && b → (|a) & (|b)
a || b → (|a) | (|b) a == b → &(a ∼ˆ b)
!a → ∼(|a) a != b → |(a ˆ b)

∼& (a) → ∼(&a)
∼| (a) → ∼(|a)
∼ˆ (a) → ∼(ˆa)

Soundness — Reading the spec, testing with Cadence

Page 23 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 27 / 57

Translator stages

Sign computation

Each expression in our parse tree has a sign field

nil, :vl-signed, or :vl-unsigned.

Our parser sets them all to nil

Rules for leaves

Signed constants, e.g., 19, 3’bs 011, . . .

Unsigned constants, e.g., 3’b 011, 4’h A, . . .

Wire/port/register names, taken from declarations

Strings, reals, etc., are left undecided

Rules for operators

Selects, concatenates, compares are always unsigned

Funcalls, syscalls, hierarchial id’s, mintypmaxes are left undecided

“All other operators” unsigned unless all args are signed

Page 24 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 28 / 57

Translator stages

Width computation

Each expression in our parse tree also has a width field

nil — not yet decided

:vl-not-applicable — for non-integer expressions (strings, reals)

:vl-integer-size — implementation dependent, 32+ bits

naturals — fixed-width integers, zero included for multiconcats

This is complicated.
Also, the spec is very poorly written, or I am horribly stupid.

Widths are computed in two stages.

First, we self-size each expression; bottom-up

Next, we context-size expressions; top-down

Page 25 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 29 / 57

Translator stages

An example

assign w = (14 + 3) >> 1;

Widths determine the value of w.

17 in binary is 10001.

If the addition is 4-bit, 0001 >> 1 = 0

If the addition is 5-bit, 10001 >> 1 = 1000 = 8.

The answer depends upon the size of w.

If w is four or fewer bits, the answer is 0.

If w is five or more bits, the answer is 8.

Computing widths, then, is important even for something as simple as
constant folding.

Page 26 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 31 / 57

Translator stages

Self-determined sizes

Expression Self size
Unsized constants ”Same as integer”
Sized constants As given
Wires As declared
i [+ - * / % & | ˆ ˆ∼ ∼ˆ] j max{ L(i), L(j) }
[+ - ∼] i L(i)
i [=== !== == != > >= < <=] j 1 bit
i [&& ||] j 1 bit
[& ∼& | ∼| ˆ ∼ˆ ˆ∼ !] i 1 bit
i [>> << ** >>> <<<] j L(i)
i ? j : k max { L(j),L(k) }
{i, ..., j} L(i)+. . .+L(j)
{i {j, ..., k}} i*(L(j)+. . .+L(k))

Page 27 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 32 / 57

Translator stages

Dealing with implementation-dependent sizes

We implement a 32-bit semantics, but

work with symbolic integer sizes for as long as possible, and

warn about implementation-defined widths

MaxW(a : N, b : N) = max(a, b)
MaxW(intsize, intsize) = intsize

MaxW(a : N, intsize) =

{
intsize if a < 32
warn, a otherwise

MaxW(,) = warn, nil

SumW(a : N, b : N) = a + b

SumW(,) = warn, nil

Page 28 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 33 / 57

Translator stages

Fixing to 32-bits

Since our self-sizing computation puts symbolic :vl-integer-size
widths on some expressions, we now fix all of these to be 32 bits.

Additional well-formedness check: all expressions have a natural-numbered
width

Page 29 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 34 / 57

Translator stages

Context sizing algorithm

CtxSize(x,w) : expr× posp option → expr

Assumptions.

x is an expression which has its self-sizes already determined

All of the self-sizes in x are naturals

x is purenat, “everything is unsigned,” so all extensions are
zero-extensions.

What is w?

A positive number, “the size of the context”, or

Nil, meaning there is no context (port arguments??, concats, . . .)

Page 30 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 35 / 57

Translator stages

Context-determined operands

First, we recursively context-determine any context-determined operands

Operator Context-determined?
i [+ - * / % & | ˆ ˆ∼ ∼ˆ] j Yes
[+ - ∼] i Yes
i [=== !== == != > >= < <=] j W.r.t. each other
i [&& ||] j No
[& ∼& | ∼| ˆ ∼ˆ ˆ∼ !] i No
i [>> << ** >>> <<<] j Only i
i ? j : k Only j and k
{i, ..., j} No
{i {j, ..., k}} No

Claim. CtxSize(x,w)ctxsize = max{nfix(w), xselfsize}

Page 31 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 36 / 57

Translator stages

Context sizing algorithm

Claim (repeated). CtxSize(x,w)ctxsize = max{nfix(w), xselfsize}

For constants and wires, context-sizing is zero-extension (since we require
everything to be unsigned)

For operators like a + b, after a and b have been context-sized, they have
the same width. This width becomes the width for the whole expression.

For operators like concatenation, we just need to zero-extend if we don’t
have enough bits.

For operators like a == b, let a′ = CtxSize(a, bselfsize), and let
b′ = CtxSize(b, aselfsize). These have equal widths, and so we can
compare them bitwise. Finally, the one-bit result can be zero-extended to
the width of the external context.

Page 32 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 37 / 57

Translator stages

Expression splitting

We now create temporary wires for subexpressions so that no assignment
has more than a single operator.

Similarly, we split up complex expressions used as inputs (not outputs) to
module instantiations.

assign w = (a + b) - c; mymod inst(a + b, ...);
---> --->
wire [width:0] temp; wire [width:0] temp2;
assign temp = a + b; assign temp = a + b;
assign w = temp - c; mymod inst(temp, ...);

I should make a well-formedness check but haven’t, yet. I can check
idempotency, at least.

Page 33 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 39 / 57

Translator stages

Making truncation explicit

Cases for assign lhs = rhs;

lhs width = rhs width (fine)

lhs width > rhs width (impossible — ctxsize)

lhs width < rhs width (implicit truncation!)

We now correct for this, so all assignments agree on width.

wire [rhswidth - 1:0] temp;
assign temp = rhs;
assign lhs = temp[lhswidth-1:0];

Page 34 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 41 / 57

Translator stages

Final expression optimizations

Oprewrite, split, and trunc often introduce needless expressions. It’s pretty
easy to just remove them with an additional transformation.

|a → a when a is one-bit
a[0] → a when a is one-bit
a[0:0] → a when a is one-bit
a[n:n] → a[n]

Things like this are nice. Easy to write test code for Cadence to check
that the transformations are sound.

Page 35 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 43 / 57

Translator stages

Occforming

We now get rid of assignments altogether by replacing them with module
occurrences.

assign w = a + b;
--->

VL_13_BIT_PLUS gensym(w, a, b);

This involves

writing module definitions (e.g., defining VL 13 BIT PLUS), and

replacing assignments with module instances.

We can, e.g., exhaustively test VL 4 BIT PLUS with Cadence.

Page 36 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 45 / 57

Translator stages

Eliminating instance arrays

Especially in parameterized modules, instance arrays are sometimes used

wire [13:0] o;
wire a;
wire [13:0] b;
and foo [13:0] (w, a, b); // 13 and-gates

We transform this into

and foo0 (w[0], a, b[0]);
...
and foo13 (w[13], a, b[13]);

The rules for slicing up wires are not too bad.

Page 37 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 47 / 57

Translator stages

Latches and flops

Latches and flops are described with always-blocks

always @ (posedge clk) // a basic flop
place <= val;

always @ (foo or bar) // a basic latch
if (clk)

place <= foo & bar;

Difficult because statements can be very complicated

We have a plan to handle simple cases automatically

But for right now we do it by hand

Page 38 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 49 / 57

Writing modules

Writing modules

Our parser returns two values

A list of the parsed modules, and

A comment map – alist of locations to strings

Each main module item (wire declarations, assignments, etc.) also is
tagged with its location.

And when we split, we keep that

We can write the translated verilog in “the same order”, with comments
preserved.

We also output various annotations, e.g., “port implicit”

Still needs some work to become more readable

Page 39 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 50 / 57

Writing modules

module iumularray (eph1, mcenclk_p, aopinb, bopinb, quadcfg, sgnd_mul, mpsum_a,

mpcar_a, vdd0, vbna, vss0, vbpa);

input vdd0 ;

input vbna ;

input vss0 ;

input vbpa ;

wire vdd0 ; // Port Implicit

wire vbna ; // Port Implicit

wire vss0 ; // Port Implicit

wire vbpa ; // Port Implicit

// auto-generated for well bias support

input eph1 ;

wire eph1 ; // Port Implicit

//clk

input mcenclk_p ;

wire mcenclk_p ; // Port Implicit

//inverted clock enable

input [31:0] aopinb ;

wire [31:0] aopinb ; // Port Implicit

// multiplicand operand (inverted)

input [31:0] bopinb ;

wire [31:0] bopinb ; // Port Implicit

// multiplier operand (inverted)

input [1:0] quadcfg ;

wire [1:0] quadcfg ; // Port Implicit

Page 40 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 52 / 57

Writing modules

/* For bopin[7 : 0] */

VL_8_BIT_BUF _gen_313 (_gen_24, bopin[7 : 0]) ;

VL_32_BIT_BUF _gen_495 (bop8ze, {_gen_22, _gen_23, _gen_24}) ;

//**

// CONTROL SIGNALS:

//

// quadcfg:

// case 00 : 32 x 32 => 64

// case 10 : 16 x 16 => 32

// case 11 : 8 x 8 => 16

//

// sgnd_mul:

// case 0 : unsigned

// case 1 : signed

//

//**

/* For ((| (((~ sgnd_mul) & quadcfg[1]) & quadcfg[0])) ? {aop8ze} : {aop}) */

wire [31:0] _gen_71 ;

/* For ((| ((sgnd_mul & quadcfg[1]) & quadcfg[0])) ? {aop8se} : ((| (((~ sgnd_m\

ul) & quadcfg[1]

) & quadcfg[0])) ? {aop8ze} : {aop})) */

wire [31:0] _gen_72 ;

/* For ((| (((~ sgnd_mul) & quadcfg[1]) & quadcfg[0])) ? {aop8ze} : {aop}) */

VL_32_BIT_MUX _gen_321 (_gen_71, _gen_68, _gen_69, _gen_70) ;

Page 41 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 54 / 57

Writing modules

Direct translation to E

A few additional transformations

Give names to any unnamed instances

Eliminate supply0 and supply1 wires

Split up n-ary gates, e.g., and(o, i1, i2, i3)

The main algorithm

Explode wires into a fast-alist, ensure no duplicates

Compute :I, :O, :C, and :CD for the module

Compute :I, :O, :U, :OP for each occurrence

Assemble the defm call, submit w/ make-event

Extract the resulting defm-raw calls and save them in a file

Only around 900 lines of Lisp with comments, various theorems
A better version would be more like the Verilog writer

Page 42 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 55 / 57

Usage

Usage model

translate.sh runs the translator against the current copy of the chip

Automatically run every night

Stores everything we need into “/n/fv2/translated/[today]”

Takes about 8 minutes (only doing certain modules)

refresh.sh builds an ACL2 image from the most recent translation

Run by each user when they choose to update, undoable

Copies today’s translation into “mine” directory

Builds acl2cn executable with E modules pre-loaded

None of the translator books need to be included

Takes about 4 minutes (only doing certain modules)

Actual Centaur proof-work is done with the acl2cn image.

Page 43 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 56 / 57

Usage

Page 44 (Centaur Technology) A Verilog Translator in ACL2 February 18, 2009 57 / 57

	Introduction
	Verilog semantics
	Parse trees
	Translator stages
	Writing modules
	Usage

