
UBDD Library Enhancements
(and other random stuff)

Jared Davis and Sol Swords

Centaur Technology

November 5, 2008

Page 1 (Centaur Technology) UBDD Library Enhancements November 5, 2008 1 / 83

Outline

1 Introduction to UBDDs

2 New, generally useful stuff
Opportunistic laziness
Rulesets
Make-flag
Generalization clause processor

3 Reasoning about UBDDs
Pick-a-point proofs
A subset-oriented approach
A witness-oriented approach

4 Future directions

Page 2 (Centaur Technology) UBDD Library Enhancements November 5, 2008 2 / 83

Introduction to UBDDs

Representations of Boolean functions

Page 3 (Centaur Technology) UBDD Library Enhancements November 5, 2008 3 / 83

Introduction to UBDDs

Interpreting representations of Boolean functions

In most representations, meanings are given by environments mapping
variables to values

(eval T env) = T

(eval NIL env) = NIL

(eval var env) = (lookup var env)

(eval ‘(and ,a ,b) env) = (and (eval a env) (eval b env))

(eval ‘(or ,a ,b) env) = (or (eval a env) (eval b env))

(eval ‘(not ,a) env) = (not (eval a env))

Page 4 (Centaur Technology) UBDD Library Enhancements November 5, 2008 4 / 83

Introduction to UBDDs

Interpreting UBDDs

For UBDDs, meanings are given by list of values telling us to go left or
right as we descend

(eval-ubdd T vals) = T

(eval-ubdd NIL vals) = NIL

(eval-ubdd ‘(,a . ,b) T::vals) = (eval-ubdd a vals)

(eval-ubdd ‘(,a . ,b) NIL::vals) = (eval-ubdd b vals)

Page 5 (Centaur Technology) UBDD Library Enhancements November 5, 2008 5 / 83

Introduction to UBDDs

Canonicity

For UBDDs, the following statements are equivalent

x = y

∀ vals : (eval-ubdd x vals) = (eval-ubdd y vals)

Many Boolean-function representations do not have this property

(not a) vs. (not (not (not a)))

Efficiency characteristics

Expensive to construct

Cheap to compare (pointer equality)

Page 6 (Centaur Technology) UBDD Library Enhancements November 5, 2008 6 / 83

Introduction to UBDDs

(defun normp (x)
(if (atom x)

(booleanp x)
(and (normp (car x))

(normp (cdr x))
(if (atom (car x))

(not (equal (car x) (cdr x)))
t))))

(defun q-not (x)
(if (atom x)

(if x nil t)
(hons (q-not (car x))

(q-not (cdr x)))))

Page 7 (Centaur Technology) UBDD Library Enhancements November 5, 2008 8 / 83

Introduction to UBDDs

(defun q-ite (x y z)
(cond ((null x) z)

((atom x) y)
(t
(let ((y (if (hons-equal x y) t y))

(z (if (hons-equal x z) nil z)))
(cond ((hons-equal y z)

y)
((and (eq y t) (eq z nil))
x)
((and (eq y nil) (eq z t))
(q-not x))
(t
(qcons
(q-ite (car x) (qcar y) (qcar z))
(q-ite (cdr x) (qcdr y) (qcdr z)))))))))

Page 8 (Centaur Technology) UBDD Library Enhancements November 5, 2008 10 / 83

Introduction to UBDDs

(defun q-and (x y)
(cond ((atom x)

(if x
(if (atom y)

(if y t nil)
y)

nil))
((atom y)
(if y x nil))
((hons-equal x y)
x)
(t
(qcons (q-and (car x) (car y))

(q-and (cdr x) (cdr y))))))

Page 9 (Centaur Technology) UBDD Library Enhancements November 5, 2008 12 / 83

New, generally useful stuff

Outline

1 Introduction to UBDDs

2 New, generally useful stuff
Opportunistic laziness
Rulesets
Make-flag
Generalization clause processor

3 Reasoning about UBDDs
Pick-a-point proofs
A subset-oriented approach
A witness-oriented approach

4 Future directions

Page 10 (Centaur Technology) UBDD Library Enhancements November 5, 2008 13 / 83

New, generally useful stuff Opportunistic laziness

Opportunistic laziness

Sometimes the result of a function call may be apparent even without
evaluating all of its arguments

(* (fib x) 0)

(difference nil (mergesort x))

(q-and nil (q-not x))

Matt has improved MBE to facilitate this

Defthm has improved awareness of MBE

Restrictions on nested MBEs have been loosened

Induction schemes may still have some issues

Page 11 (Centaur Technology) UBDD Library Enhancements November 5, 2008 15 / 83

New, generally useful stuff Opportunistic laziness

A simple example: q-ite

Avoid evaluating y or z when x evaluates to a constant

(defmacro q-ite (x y z)
‘(mbe :logic (q-ite-fn ,x ,y ,z)

:exec (let ((_x ,x))
(cond ((null _x) ,z)

((atom _x) ,y)
(t
(q-ite-fn _x ,y ,z)))))))

(add-macro-alias q-ite q-ite-fn)
(add-untranslate-pattern (q-ite-fn ?x ?y ?z)

(q-ite ?x ?y ?z))

Page 12 (Centaur Technology) UBDD Library Enhancements November 5, 2008 17 / 83

New, generally useful stuff Opportunistic laziness

Identifying additional opportunities

In (q-and x1 x2 . . . xn), when any xi = NIL then the answer is NIL

Which order should we use?

(q-and nil (q-not y))

(q-and (q-not x) y)

(q-and (q-not x) (q-not y))

Surely cheap

quoted constants, (“don’t need to be evaluated”)

variables, (“already evaluated”)

So we evaluate the surely-cheap arguments first

Page 13 (Centaur Technology) UBDD Library Enhancements November 5, 2008 18 / 83

New, generally useful stuff Rulesets

Rulesets

Rulesets are extensible deftheories

(include-book "tools/rulesets" :dir :system)

Defining and extending rulesets

(def-ruleset foo ’(car-cons cdr-cons))

(add-to-ruleset foo ’(default-car default-cdr))

Enabling and disabling rulesets

(in-theory (enable* (:ruleset foo)))

(in-theory (disable* append (:ruleset foo) reverse))

(in-theory (e/d* (reverse member) ((:ruleset foo))))

Page 14 (Centaur Technology) UBDD Library Enhancements November 5, 2008 20 / 83

New, generally useful stuff Rulesets

Ruleset fanciness

Rulesets can contain pointers to other rulesets

(def-ruleset foo ’(car-cons))

(def-ruleset bar ’(cdr-cons (:ruleset foo)))

These really are like pointers

(add-to-ruleset foo ’(append))

(in-theory (disable* (:ruleset bar))) ;; append is disabled

If you use your own package, it’s easy to make FOO::enable be an alias to
enable*, etc.

Page 15 (Centaur Technology) UBDD Library Enhancements November 5, 2008 22 / 83

New, generally useful stuff Make-flag

Make-flag

Make-flag generates a flag function for a mutual-recursion

Non-executable; multiple-values and stobjs are fine

Measure inferred from existing definitions

Efficient proof of equivalence theorem

Adds a macro for proving new theorems about these functions

Page 16 (Centaur Technology) UBDD Library Enhancements November 5, 2008 24 / 83

New, generally useful stuff Make-flag

Make-flag example

(include-book "tools/flag" :dir :system)

(FLAG::make-flag flag-pseudo-termp
pseudo-termp
:flag-var flag
:flag-mapping ((pseudo-termp . term)

(pseudo-term-listp . list))
:hints(({for the measure theorem}))
:defthm-macro-name defthm-pseudo-termp)

(defthm-pseudo-termp type-of-pseudo-termp
(term (booleanp (pseudo-termp x)))
(list (booleanp (pseudo-term-listp lst)))
:hints(("Goal" :induct (flag-pseudo-termp flag x lst))))

Page 17 (Centaur Technology) UBDD Library Enhancements November 5, 2008 26 / 83

New, generally useful stuff Generalization clause processor

Generalization clause processor

Simple-generalize-cp lets you specify how a clause should be generalized

(include-book "clause-processors/generalize" :dir :system)

(defstub foo (x) x)

(defstub bar (x) x)

(thm (equal (foo x) (bar y))

:hints(("Goal"

:clause-processor

(simple-generalize-cp clause ’(((bar y) . z))))))

We now apply the verified :CLAUSE-PROCESSOR function SIMPLE-GENERALIZE-

CP to produce one new subgoal.

Goal’

(EQUAL (FOO X) Z).

Page 18 (Centaur Technology) UBDD Library Enhancements November 5, 2008 28 / 83

New, generally useful stuff Generalization clause processor

Supporting hint-directed generalization

Tools for generating fresh variables

(make-n-vars n root m avoid)

(term-vars x) and (term-vars-list x)

Examples:

ACL2 !>(make-n-vars 3 ’foo 0 ’(x y z foo0 foo1 foo2))
(FOO3 FOO4 FOO5)

ACL2 !>(term-vars ’(if x y z))
(X Y Z)

Page 19 (Centaur Technology) UBDD Library Enhancements November 5, 2008 30 / 83

Reasoning about UBDDs

Outline

1 Introduction to UBDDs

2 New, generally useful stuff
Opportunistic laziness
Rulesets
Make-flag
Generalization clause processor

3 Reasoning about UBDDs
Pick-a-point proofs
A subset-oriented approach
A witness-oriented approach

4 Future directions

Page 20 (Centaur Technology) UBDD Library Enhancements November 5, 2008 31 / 83

Reasoning about UBDDs Pick-a-point proofs

Reasoning about UBDDs

Why do we care?

No ACL2 reasoning is needed for equivalence checking

Build a UBDD for the circuit (execution)

Build a UBDD for the specification (execution)

Check if they are equal (execution)

But there are other, critical uses of UBDDs

Parameterization — partitions an input space into UBDDs

AIG conversion — builds a UBDD from an AIG

G System — represents symbolic objects as lists of UBDDs

Page 21 (Centaur Technology) UBDD Library Enhancements November 5, 2008 32 / 83

Reasoning about UBDDs Pick-a-point proofs

The direct approach

The “recursion and induction” approach does not work very well

Some problems

Finding workable induction schemes

Case-splits in UBDD construction (q-car, q-cdr, q-cons)

It also “feels wrong”

Structural, low-level view of Boolean functions

Not applicable to other representations (AIGs, ...)

Similar to the problem of reasoning about ordered sets

Page 22 (Centaur Technology) UBDD Library Enhancements November 5, 2008 34 / 83

Reasoning about UBDDs Pick-a-point proofs

(defthm q-and-equiv
(implies (and (normp x)

(normp y))
(equal (q-and x y)

(q-ite x y nil))))

ACL2 can do the proof directly (0.7s)

Merges induction schemes of normp and q-ite

*1/22 inductive subgoals

Many subsequent case splits

Page 23 (Centaur Technology) UBDD Library Enhancements November 5, 2008 36 / 83

Reasoning about UBDDs Pick-a-point proofs

(defun q-xor (x y)
(cond ((atom x)

(if x (q-not y) y))
((atom y)
(if y (q-not x) x))
((hons-equal x y)
nil)
(t
(qcons (q-xor (car x) (car y))

(q-xor (cdr x) (cdr y))))))

(defthm q-xor-equiv
(implies (and (normp x)

(normp y))
(equal (q-xor x y)

(q-ite x (q-not y) y))))

Page 24 (Centaur Technology) UBDD Library Enhancements November 5, 2008 38 / 83

Reasoning about UBDDs Pick-a-point proofs

Subgoal *1/7.97.164.8’
(IMPLIES (AND (CONSP X)

Y (CONSP Y)
(NOT (EQUAL X (Q-NOT Y)))
(NOT (EQUAL (Q-NOT Y) Y))
(EQUAL (Q-ITE (CAR X) (CAR (Q-NOT Y)) NIL)

T)
(NOT (EQUAL (Q-ITE (CDR X) (CDR (Q-NOT Y)) (CDR Y))

T))
(NOT (CAR Y))
(CDR Y)
(CONSP (CDR Y))
(EQUAL (Q-XOR (CDR X) (CDR Y))

(Q-ITE (CDR X) (Q-NOT (CDR Y)) (CDR Y)))
(NORMP (CAR X))
(NORMP (CDR X))
(CONSP (CAR X))
(NORMP (CDR Y))
(NOT (EQUAL (Q-NOT Y) T)))

(NOT (Q-NOT Y)))

Page 25 (Centaur Technology) UBDD Library Enhancements November 5, 2008 40 / 83

Reasoning about UBDDs Pick-a-point proofs

Pick-a-point proofs

Prove: (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)

Proof: Let x be an arbitrary element. We will show x is in (A ∪ B) ∩ C
exactly when it is in (A ∩ C) ∪ (B ∩ C).

x ∈ (A ∪ B) ∩ C ↔ (x ∈ A ∪ B) ∧ x ∈ C

↔ (x ∈ A ∨ x ∈ B) ∧ x ∈ C

x ∈ (A ∩ C) ∪ (B ∩ C) ↔ x ∈ A ∩ C ∨ x ∈ B ∩ C

↔ (x ∈ A ∧ x ∈ C) ∨ (x ∈ B ∧ x ∈ C)

↔ (x ∈ A ∨ x ∈ B) ∧ x ∈ C

Q.E.D.

Page 26 (Centaur Technology) UBDD Library Enhancements November 5, 2008 41 / 83

Reasoning about UBDDs Pick-a-point proofs

Pick-a-point proofs of UBDDs

Sets
x = y ↔ ∀a : has(x , a) = has(y , a)

UBDDs
x = y ↔ ∀a : eval-bdd(x , a) = eval-bdd(y , a)

Some familiar set-theory operations

NIL, the empty set

T, the universal set

Q-NOT, set complement

Q-AND, set intersection

Q-OR, set union

Page 27 (Centaur Technology) UBDD Library Enhancements November 5, 2008 42 / 83

Reasoning about UBDDs Pick-a-point proofs

Osets-style automation

Suppose (bdd-lhs), (bdd-rhs), and (bdd-hyp) satisfy

(implies (and (bdd-hyp)
(normp (bdd-lhs))
(normp (bdd-rhs)))

(equal (eval-bdd (bdd-lhs) vals)
(eval-bdd (bdd-rhs) vals)))

Then, we can prove

(implies (and (bdd-hyp)
(normp (bdd-lhs))
(normp (bdd-rhs)))

(equal (bdd-lhs) (bdd-rhs)))

A default hint functionally instantiates this theorem when our goal is to
show two normp’s are equal (and other approaches have failed)

Page 28 (Centaur Technology) UBDD Library Enhancements November 5, 2008 44 / 83

Reasoning about UBDDs Pick-a-point proofs

Preparing for pick-a-point proofs

For ordered sets

(setp (union x y))

(in a (union x y)) = (in a x) ∨ (in a y)

For UBDDs

(normp x), (normp y) → (normp (q-or x y))

(eval-bdd (q-or x y) a) = (eval-bdd x a) ∨ (eval-bdd y a)

These proofs are done in the “recursion and induction” style
They tend to be easy

Page 29 (Centaur Technology) UBDD Library Enhancements November 5, 2008 46 / 83

Reasoning about UBDDs Pick-a-point proofs

(add-bdd-fn q-and)

(defthm q-and-equiv

(implies (and (normp x)

(normp y))

(equal (q-and x y)

(q-ite x y nil))))

We now appeal to EQUAL-BY-EVAL-BDDS in an attempt to show that (Q-AND X Y)

and (Q-ITE X Y NIL) are equal because all of their evaluations under

EVAL-BDD are the same. (You can disable EQUAL-BY-EVAL-BDDS to avoid

this. See :doc EQUAL-BY-EVAL-BDDS for more details.)

We augment the goal with the hypothesis provided by the :USE hint.

The hypothesis can be derived from EQUAL-BY-EVAL-BDDS via functional

instantiation, provided we can establish the constraint generated;

the constraint can be simplified using case analysis. We are left

with the following two subgoals.

Page 30 (Centaur Technology) UBDD Library Enhancements November 5, 2008 48 / 83

Reasoning about UBDDs Pick-a-point proofs

Subgoal 2

(IMPLIES (AND (IMPLIES (AND (AND (NORMP X) (NORMP Y))

(NORMP (Q-AND X Y))

(NORMP (Q-ITE X Y NIL)))

(EQUAL (EQUAL (Q-AND X Y) (Q-ITE X Y NIL))

T))

(NORMP X)

(NORMP Y))

(EQUAL (Q-AND X Y) (Q-ITE X Y NIL))).

But simplification reduces this to T, using the :executable-counterparts

of EQUAL and NORMP, primitive type reasoning, the :rewrite rules NORMP-

OF-Q-AND and NORMP-OF-Q-ITE and the :type-prescription rule NORMP.

Page 31 (Centaur Technology) UBDD Library Enhancements November 5, 2008 50 / 83

Reasoning about UBDDs Pick-a-point proofs

Subgoal 1

(IMPLIES (AND (NORMP X)

(NORMP Y)

(EQUAL (LEN ARBITRARY-VALUES)

(MAX (MAX-DEPTH (Q-AND X Y))

(MAX-DEPTH (Q-ITE X Y NIL))))

(BOOLEAN-LISTP ARBITRARY-VALUES)

(NORMP (Q-AND X Y))

(NORMP (Q-ITE X Y NIL)))

(EQUAL (EVAL-BDD (Q-AND X Y) ARBITRARY-VALUES)

(EVAL-BDD (Q-ITE X Y NIL) ARBITRARY-VALUES))).

But simplification reduces this to T, using the :definition MAX, the

:executable-counterpart of NORMP, primitive type reasoning, the :rewrite

rules EVAL-BDD-OF-NON-CONSP-CHEAP, EVAL-BDD-OF-Q-AND, EVAL-BDD-OF-Q-

ITE, NORMP-OF-Q-AND and NORMP-OF-Q-ITE and the :type-prescription rule

NORMP.

Q.E.D.

Page 32 (Centaur Technology) UBDD Library Enhancements November 5, 2008 52 / 83

Reasoning about UBDDs A subset-oriented approach

A subset-oriented approach

Our simple pick-a-point approach sometimes led to goals whose
hypotheses were difficult to use effectively

(IMPLIES (AND (NORMP C)
(NORMP HYP)
(Q-ITE C HYP NIL)
(NOT (EQUAL (Q-ITE C HYP NIL) HYP))
HYP
(NOT (EQUAL C T))
(NOT (Q-ITE C NIL HYP))
(NOT (EVAL-BDD C ARBITRARY-VALUES)))

(NOT (EVAL-BDD HYP ARBITRARY-VALUES))))

Page 33 (Centaur Technology) UBDD Library Enhancements November 5, 2008 54 / 83

Reasoning about UBDDs A subset-oriented approach

A graphical view

Page 34 (Centaur Technology) UBDD Library Enhancements November 5, 2008 56 / 83

Reasoning about UBDDs A subset-oriented approach

Subset mode

(qs-subset x y): ∀ vals : (eval-bdd x vals) → (eval-bdd y vals)

Good properties: reflexive, transitive, membership-preserving

Similar pick-a-point approach for proving qs-subset

(QS-SUBSET-MODE T) – an alternate normal form

(equal x y) ⇒ (qs-subset x y) ∧ (qs-subset y x)

(not x) ⇒ (qs-subset x nil)

x ⇒ (not (qs-subset x nil))

(qs-subset (q-and x y) x)

(qs-subset (q-and x y) y)

(qs-subset x (q-or x y))

(qs-subset y (q-or x y))

Page 35 (Centaur Technology) UBDD Library Enhancements November 5, 2008 58 / 83

Reasoning about UBDDs A subset-oriented approach

Rewrite rules for subset mode (without normp hyps)

(equal (qs-subset w (q-ite x y z))
(and (qs-subset (q-ite w x nil) y)

(qs-subset (q-ite x nil w) z)))

(implies (and (syntaxp (not (equal y ’’nil)))
(syntaxp (not (equal z ’’nil))))

(equal (qs-subset (q-ite x y z) w)
(and (qs-subset (q-ite x y nil) w)

(qs-subset (q-ite x nil z) w))))

(equal (qs-subset (q-ite x nil y) x)
(qs-subset y x))

(equal (qs-subset (q-ite x nil y) nil)
(qs-subset y x))

Page 36 (Centaur Technology) UBDD Library Enhancements November 5, 2008 60 / 83

Reasoning about UBDDs A subset-oriented approach

Subset mode in action

(not (equal (q-ite c hyp nil) hyp)) → (not (qs-subset hyp c))

(not (equal (q-ite c hyp nil) hyp))

==> (not (and 1. (qs-subset (q-ite c hyp nil) hyp)

==> t

2. (qs-subset hyp (q-ite c hyp nil))))

==> (and 2a. (qs-subset (q-ite hyp c nil) hyp)

==> t

2b. (qs-subset (q-ite c nil hyp) nil)))

==> (qs-subset hyp c)

==> (not (qs-subset hyp c))

(not (q-ite c nil hyp)) → (qs-subset hyp c)

(not (q-ite c nil hyp))

==> (qs-subset (q-ite c nil hyp) nil)

==> (qs-subset hyp c)

Page 37 (Centaur Technology) UBDD Library Enhancements November 5, 2008 62 / 83

Reasoning about UBDDs A witness-oriented approach

A witness-oriented approach

Subset-mode often works in practice, but does not seem ideal

Strange normal form that affects all booleans

Strange iff-rewrites needed for all UBDD-making functions

Free variables in transitivity and the preservation of membership

Rules about q-ite seem somehow fragile

Witness-mode is a more advanced alternative

Intuitively, “Pick all of the probably-relevant points”

Casts everything in terms of eval-bdd

Works with existing normal forms

Page 38 (Centaur Technology) UBDD Library Enhancements November 5, 2008 64 / 83

Reasoning about UBDDs A witness-oriented approach

The witness approach, graphically

Page 39 (Centaur Technology) UBDD Library Enhancements November 5, 2008 66 / 83

Reasoning about UBDDs A witness-oriented approach

The basic transformation

Hypothesis: x 6= y (or x)

Means ∃ v : (eval-bdd x v) 6= (eval-bdd y v)

Introduce a new variable, v

Replace the hyp with (eval-bdd x v) 6= (eval-bdd y v)

Hypothesis: x = y (or (not x))

Means ∀ v : (eval-bdd x v) = (eval-bdd y v)

Collect all v occurring in the clause

Replace the hyp with (eval-bdd x v) = (eval-bdd y v)

Page 40 (Centaur Technology) UBDD Library Enhancements November 5, 2008 68 / 83

Reasoning about UBDDs A witness-oriented approach

Transformation example

(IMPLIES (AND ;; (NORMP C)
;; (NORMP HYP)
(Q-ITE C HYP NIL)
(NOT (EQUAL (Q-ITE C HYP NIL) HYP))
HYP
(NOT (EQUAL C T))
(NOT (Q-ITE C NIL HYP))
(NOT (EVAL-BDD C ARBITRARY-VALUES)))

(NOT (EVAL-BDD HYP ARBITRARY-VALUES))))

Page 41 (Centaur Technology) UBDD Library Enhancements November 5, 2008 70 / 83

Reasoning about UBDDs A witness-oriented approach

(IMPLIES (AND (NOT (EQUAL (EVAL-BDD (Q-ITE C HYP NIL) V1)
(EVAL-BDD NIL V1)))

(NOT (EQUAL (EVAL-BDD (Q-ITE C HYP NIL) V2)
(EVAL-BDD HYP V2)))

(NOT (EQUAL (EVAL-BDD HYP V3)
(EVAL-BDD NIL V3)))

(NOT (EQUAL (EVAL-BDD C V4)
(EVAL-BDD T V4)))

(NOT (Q-ITE C NIL HYP))
(NOT (EVAL-BDD C ARBITRARY-VALUES)))

(NOT (EVAL-BDD HYP ARBITRARY-VALUES))))

Values: V1, V2, V3, V4, ARBITRARY-VALUES

Page 42 (Centaur Technology) UBDD Library Enhancements November 5, 2008 72 / 83

Reasoning about UBDDs A witness-oriented approach

(IMPLIES (AND (NOT (EQUAL (EVAL-BDD (Q-ITE C HYP NIL) V1)

(EVAL-BDD NIL V1)))

(NOT (EQUAL (EVAL-BDD (Q-ITE C HYP NIL) V2)

(EVAL-BDD HYP V2)))

(NOT (EQUAL (EVAL-BDD HYP V3)

(EVAL-BDD NIL V3)))

(NOT (EQUAL (EVAL-BDD C V4)

(EVAL-BDD T V4)))

(EQUAL (EVAL-BDD (Q-ITE C NIL HYP) V1)

(EVAL-BDD NIL V1))

(EQUAL (EVAL-BDD (Q-ITE C NIL HYP) V2)

(EVAL-BDD NIL V2))

(EQUAL (EVAL-BDD (Q-ITE C NIL HYP) V3)

(EVAL-BDD NIL V3))

(EQUAL (EVAL-BDD (Q-ITE C NIL HYP) V4)

(EVAL-BDD NIL V4))

(EQUAL (EVAL-BDD (Q-ITE C NIL HYP) ARBITRARY-VALUES)

(EVAL-BDD NIL ARBITRARY-VALUES))

(NOT (EVAL-BDD C ARBITRARY-VALUES)))

(NOT (EVAL-BDD HYP ARBITRARY-VALUES))))

Page 43 (Centaur Technology) UBDD Library Enhancements November 5, 2008 74 / 83

Reasoning about UBDDs A witness-oriented approach

(IMPLIES (AND (EVAL-BDD (Q-ITE C HYP NIL) V1)
(NOT (EQUAL (EVAL-BDD (Q-ITE C HYP NIL) V2)

(EVAL-BDD HYP V2)))
(EVAL-BDD HYP V3)
(NOT (EVAL-BDD C V4))

(NOT (EVAL-BDD (Q-ITE C NIL HYP) V1))
(NOT (EVAL-BDD (Q-ITE C NIL HYP) V2))
(NOT (EVAL-BDD (Q-ITE C NIL HYP) V3))
(NOT (EVAL-BDD (Q-ITE C NIL HYP) V4))
(NOT (EVAL-BDD (Q-ITE C NIL HYP) ARBITRARY-VALUES))

(NOT (EVAL-BDD C ARBITRARY-VALUES)))
(NOT (EVAL-BDD HYP ARBITRARY-VALUES))))

Follows from cases introduced by eval-bdd-of-q-ite

Page 44 (Centaur Technology) UBDD Library Enhancements November 5, 2008 76 / 83

Reasoning about UBDDs A witness-oriented approach

The eval-bdd-cp clause processor (1/2)

(diff x y)

When x 6= y, (eval-bdd x (diff x y)) 6= (eval-bdd y (diff x y))

1a.. Gather hyps of the form x 6= y, where x, y are (likely) UBDDs

A hyp which is just x also counts: x 6= NIL

1b.. For each x 6= y found, replace the hyp with

(implies (and (normp x) (normp y)))

(eval-bdd x (diff x y)) 6= (eval-bdd y (diff x y))

This is sound

In the normp case, the clauses are equivalent

Otherwise, the new clause implies the original

Page 45 (Centaur Technology) UBDD Library Enhancements November 5, 2008 78 / 83

Reasoning about UBDDs A witness-oriented approach

The eval-bdd-cp clause processor (2/2)

2. As a convenience, generalize away all (diff x y) terms just introduced
with fresh variables. (trivially sound)

3. Gather up all v which are used, anywhere, as arguments to eval-bdd,
i.e., (eval-bdd x v).

4a. Gather hyps of the form x = y found, where x, y are (likely) UBDDs

A hyp which is (not x) also counts: x = NIL

4b. Replace these hyps with (eval-bdd x v) = (eval-bdd y v), for all v
found in step 3. (trivially sound)

Page 46 (Centaur Technology) UBDD Library Enhancements November 5, 2008 80 / 83

Reasoning about UBDDs A witness-oriented approach

Automating eval-bdd-cp

We use a default hint

The clause must be stable-under-simplificationp

The definition of eval-bdd-cp-hint must be enabled

The transformation must modify the clause

The hint we give

(:or (:clause-processor ...)
(:no-op t))

Page 47 (Centaur Technology) UBDD Library Enhancements November 5, 2008 82 / 83

Future directions

Future directions

Maybe: A non-UBDD convention, UBDD-fixing, and guards

Names and packages

Similar libraries for AIGs, other representations

Page 48 (Centaur Technology) UBDD Library Enhancements November 5, 2008 83 / 83

	Introduction to UBDDs
	New, generally useful stuff
	Opportunistic laziness
	Rulesets
	Make-flag
	Generalization clause processor

	Reasoning about UBDDs
	Pick-a-point proofs
	A subset-oriented approach
	A witness-oriented approach

	Future directions

