
Package ‘RUnit’
September 19, 2014

Version 0.4.27

Date 2014-09-19

Title R Unit test framework

Author Matthias Burger <burgerm@users.sourceforge.net>, Klaus
Juenemann <k.junemann@gmx.net>, Thomas Koenig <thomas.koenig@epigenomics.com>

Maintainer Matthias Burger <burgerm@users.sourceforge.net>

LazyLoad yes

Depends R (>= 2.5.0), utils (>= 2.5.0), methods (>= 2.5.0)

Description R functions implementing a standard Unit Testing
framework, with additional code inspection and report generation tools

License GPL-2

R topics documented:

.setUp . 2
checkFuncs . 2
inspect . 5
options . 6
printHTML.trackInfo . 7
RUnit . 8
runTestSuite . 9
textProtocol . 11
tracker . 14

Index 16

1

2 checkFuncs

.setUp Definition of RUnit Test Case code files.

Description

Either one or both functions have to be provided by the test case author, take precedence over the
dummy definitions provided by the RUnit package and are called once for every test case identified.

Usage

.setUp()

.tearDown()

Details

To be written ...

Value

Functions do not return a value; called for their side effects.

Author(s)

Thomas König, Klaus Jünemann & Matthias Burger

See Also

runTestFile.

checkFuncs RUnit check functions

Description

A set of functions used to check the results of some test calculation. If these functions are called
within the RUnit framework, the results of the checks are stored and reported in the test protocol.

checkEquals compares two R objects by invoking all.equal on the two objects. If the objects are
not equal an error is generated and the failure is reported to the test logger such that it appears in
the test protocol.

checkEqualsNumeric works just like checkEquals except that it invokes all.equal.numeric
instead of all.equal

checkIdentical is a convenience wrapper around identical using the error logging mechanism of
RUnit.

checkTrue uses the function identical to check if the expression provided as first argument eval-
uates to TRUE. If not, an error is generated and the failure is reported to the test logger such that it
appears in the test protocol.

checkException evaluates the passed expression and uses the try mechanism to check if the eval-
uation generates an error. If it does the test is OK. Otherwise an error is generated and the failure is
reported to the test logger such that it appears in the test protocol.

checkFuncs 3

DEACTIVATED interrupts the test function and reports the test case as deactivated. In the test protocol
deactivated test functions are listed separately. Test case deactivation can be useful in the case of
major refactoring. Alternatively, test cases can be commented out completely but then it is easy to
forget the test case altogether.

Usage

checkEquals(target, current, msg,
tolerance = .Machine$double.eps^0.5,
checkNames = TRUE, ...)

checkEqualsNumeric(target, current, msg,
tolerance = .Machine$double.eps^0.5, ...)

checkIdentical(target, current, msg)
checkTrue(expr, msg)
checkException(expr, msg, silent = getOption("RUnit")$silent)
DEACTIVATED(msg)

Arguments
current, target

objects to be compared (checkEqualsNumeric cannot handle S4 class objects).

msg an optional message to document a check and to facilitate the identification of a
possible failure. The message only appears as text in the test protocol, it is not
further used in any of the check functions.

tolerance numeric >= 0. A numeric check does not fail if differences are smaller than
‘tolerance’.

checkNames flag, if FALSE the names attributes are set to NULL for both current and target
before performing the check.

expr syntactically valid R expression which can be evaluated and must return a log-
ical scalar (TRUE|FALSE). A named expression is also allowed but the name is
disregarded.

silent flag passed on to try, which determines if the error message generated by the
checked function is displayed. Queried from global options set for RUnit at
package load.

... optional arguments passed to all.equal or all.equal.numeric

Details

The check functions are direct equivalents of the various methods of the class junit.framework.Assert
of Javas JUnit framework which served as basis for the RUnit package.

For functions defined inside a package equipped with a namespace only exported functions can be
accessed inside test cases directly. For functions not exported the only way to test them is to use the
’:::’ operator combined with the package name as a prefix.

Special care is required if test cases are written for S4 classes and methods. If a new class is de-
fined inside a test case via a setClass call the class is added to the global class cache and thus
available outside the test case. It will persist until explicitly removed via a removeClass call.
Same applies for new method and generic definitions. Be sure to remove methods and classes in
each test case they are defined after the checks have been performed. This is an advise gained
from the cumbersome experience: not doing so leads to difficult to pin down error causes incurred
from previously executed test cases. For a simple example see the provided test cases in /pri-
vate/var/folders/pk/n4bndnt1287ctrd_ftthnnnr0000gp/T/RtmpvoXOfz/Rinst4b0d75c5b24a/RUnit/examples/runitVirtualClassTest.r.

4 checkFuncs

Author(s)

Thomas König, Klaus Jünemann & Matthias Burger

See Also

all.equal, all.equal.numeric and identical are the underlying comparison functions. try is
used for error catching. .setUp for details on test case setup. See RUnit-options for global options
controlling log out.

Examples

checkTrue(1 < 2, "check1") ## passes fine
checkTrue(1 > 2, "check2") ## appears as failure in the test protocol

v <- 1:3
w <- 1:3
checkEquals(v, w) ## passes fine
names(v) <- c("A", "B", "C")
checkEquals(v, w) ## fails because v and w have different names
checkEqualsNumeric(v, w) ## passes fine because names are ignored

x <- rep(1:12, 2)
y <- rep(0:1, 12)
res <- list(a=1:3, b=letters, LM=lm(y ~ x))
res2 <- list(a=seq(1,3,by=1), b=letters, LM=lm(y ~ x))
checkEquals(res, res2) ## passes fine
checkIdentical(res, res)
checkIdentical(res2, res2)
checkIdentical(res, res2) ## fails because element 'a' differs in type

fun <- function(x) {
if(x)
{
stop("stop conditions signaled")
}
return()

}

checkException(fun(TRUE)) ## passes fine
checkException(fun(FALSE)) ## failure, because fun raises no error
checkException(fun(TRUE), silent=TRUE)

special constants
same behaviour as for underlying base functions
checkEquals(NA, NA)
checkEquals(NaN, NaN)
checkEquals(Inf, Inf)

checkIdentical(NA, NA)
checkIdentical(NaN, NaN)
checkIdentical(-Inf, -Inf)

DEACTIVATED("here one can document on the reason for deactivation")

inspect 5

inspect Track the executed code lines of a function or method.

Description

inspect examines and modifies the source code of a function or method. After the modification of
the source code, the modified function will be executed and the result of the tracking process will
be stored. To store the information a tracker environment with the name track must exist. Note,
that not all R code constructs can be handled at the current state. In some cases it is not possible to
track a specific code line. Therefore, clearly structured code with consequent use of opening and
closing braces to indicate conditional expressions can prevent these parser problems.

Usage

inspect(expr, track = track)

Arguments

expr Any R function or method call.

track list object, as returned by a call to tracker.

Details

The return value of inspect is the result returned by the function executed. If the function has no
return value nothing is returned either.

Author(s)

Thomas König, Klaus Jünemann & Matthias Burger

See Also

tracker for the call tracking object, and printHTML.trackInfo for displaying results.

Examples

example function
foo <- function(x){

y <- 0
for(i in 1:100)
{

y <- y + i
}
return(y)

}

the name track is necessary
track <- tracker()

initialize the tracker
track$init()

6 options

inspect the function
res will collect the result of calling foo
res <- inspect(foo(10), track = track)

get the tracked function call info
resTrack <- track$getTrackInfo()

create HTML sites
printHTML.trackInfo(resTrack)

options RUnit options

Description

RUnit uses three options available via the global R options list

Details

RUnit specif options are added to R’s global options list on package loading and removed again on
pachage unloading.

Options used in RUnit

silent: logical flag, default FALSE, sets the ’silent’ argument for checkException. Allows to
globally silence output from exception checks for all test suites excuted in one run.

verbose: non-negative integer, default 1, 0: surpresses enclosing begin/end messages for each test
case, 1: output enclosing begin/end messages for each test case

outfile: NULL, connection or character, default NULL. If non-null has to be an open connection
or a file name. Will be used to redirect all output to specified file/connection using sink.
Connection is close after test suite execution call (via runTestSuite or runTestFile) has
completed. If the file exists it is overwriten.

Author(s)

Matthias Burger

See Also

options, getOption, sink.

Examples

Not run:
quiet log output
ro <- getOption("RUnit")
ro$silent <- TRUE
ro$verbose <- 0L
options("RUnit"=ro)

End(Not run)

printHTML.trackInfo 7

printHTML.trackInfo Write HTML pages of the tracking result.

Description

printHTML.trackInfo creates a subdirectory named "result" in the base directory specified via
baseDir. All HTML pages and images will be put in that directory.

Usage

printHTML.trackInfo(object, baseDir = ".")

Arguments

object ’trackInfo’ S3 class object (list), containing the result of the function tracker.

baseDir A character string, specifying the base directory for the HTML pages to be writ-
ten to. Defaults to the current working directory.

Details

An "index.html" page will be created in the directory "results" which is the root entry page of the
HTML pages. The displayed result for every tracked function consists of two HTML pages. The
first page is an overview on how often every line of code was executed. Code lines not executed are
highlighted red, executed lines are shown in green. The second page is a graph representation of
the execution flow of the function. Each code line has a edge pointing to the next code line that is
executed subsequently. Thus loops and jumps become clearly visible.

Author(s)

Thomas König, Klaus Jünemann & Matthias Burger

See Also

tracker for the call tracking object definition.

Examples

example function
foo <- function(x){

y <- 0
for(i in 1:100)
{

y <- y + i
}
return(y)

}

the name track is necessary
track <- tracker()

initialize the tracker
track$init()

8 RUnit

inspect the function
res is the result of foo
res <- inspect(foo(10), track = track)

get the tracking info
resTrack <- track$getTrackInfo()

create HTML pages
printHTML.trackInfo(resTrack)

RUnit RUnit - Package Description

Description

This package models the common Unit Test framework for R and provides functionality to track
results of test case execution and generate a summary report. It also provides tools for code inspec-
tion and thus for test case coverage analysis. The design is inspired by the popular JUnit unit test
framework.

This package comes with a set of unit tests, serving as a test battery to check correct function-
ing against new R versions released as well as practical examples for writing test cases (see the
‘inst/unitTests’ subdirectory of the source package, or ‘unitTests’ contained in the binary
package version).

The R wiki has a section on setting up a test suite for your package and combining it with R CMD check
as well as references to alternative implementations:

http://wiki.r-project.org/rwiki/doku.php?id=developers:runit

Author(s)

Thomas König, Klaus Jünemann & Matthias Burger

References

RUnit - A Unit Test Framework for R. useR! 2004 Vienna

See Also

See defineTestSuite, runTestSuite for unit testing or inspect and tracker for code inspec-
tion.

http://wiki.r-project.org/rwiki/doku.php?id=developers:runit

runTestSuite 9

runTestSuite Definition and execution of RUnit test suites.

Description

runTestSuite is the central function of the RUnit package. Given one or more test suites it iden-
tifies and sources specified test code files one after another and executes all specified test functions
defined therein. This is done sequentially for suites, test code files and test functions. During the
execution information about the test function calls including the possible occurrence of failures or
errors is recorded and returned at the end of the test run. The return object can then be used to create
a test protocol of various formats.

runTestFile is just a convenience function for executing the tests in a single test file.

defineTestSuite is a helper function to define a test suite. See below for a precise definition of a
test suite.

isValidTestSuite checks if an object defines a valid test suite.

Usage

defineTestSuite(name, dirs, testFileRegexp = "^runit.+\\.[rR]$",
testFuncRegexp = "^test.+",
rngKind = "Marsaglia-Multicarry",
rngNormalKind = "Kinderman-Ramage")

isValidTestSuite(testSuite)
runTestSuite(testSuites, useOwnErrorHandler = TRUE,

verbose = getOption("RUnit")$verbose)
runTestFile(absFileName, useOwnErrorHandler = TRUE,

testFuncRegexp = "^test.+",
rngKind = "Marsaglia-Multicarry",
rngNormalKind = "Kinderman-Ramage",
verbose = getOption("RUnit")$verbose)

Arguments

name The name of the test suite.
dirs Vector of absolute directory names where to look for test files.
testFileRegexp Regular expression for matching test files.
testFuncRegexp Regular expression for matching test functions.
rngKind name of an available RNG (see RNGkind for possible options).
rngNormalKind name of a valid rnorm RNG version (see RNGkind for possible options).
testSuite A single object of class test suite.
testSuites A single object of class test suite or a list of test suite objects.
useOwnErrorHandler

If TRUE the RUnit framework installs its own error handler during test case ex-
ecution (but reinstalls the original handler before it returns). If FALSE the error
handler is not touched by RUnit but then the test protocol does not contain any
call stacks in the case of errors.

verbose level of verbosity of output log messages, 0: omits begin/end comments for each
test function. Queried from global options set for RUnit at package load.

absFileName Absolute file name of a test function.

10 runTestSuite

Details

The basic idea of the RUnit test framework is to declare a certain set of functions to be test functions
and report the results of their execution. The test functions must not take any parameter nor return
anything such that their execution can be automatised.

The specification which functions are taken as test functions is contained in an object of class
RUnitTestSuite which is a list with the following elements.

name A simple character string. The name of a test suite is mainly used to create a well structure
test protocol.

dirs A character vector containing the absolute names of all directories where to look for test files.

testFileRegexp A regular expression specifying the test files. All files in the test directories whose
names match this regular expression are taken as test files. Order of file names will be alpha-
betical but depending on the used locale.

testFuncRegexp A regular expression specifying the test functions. All functions defined in the
test files whose names match this regular expression are used as test functions. Order of test
functions will be alphabetical.

After the RUnit framework has sequentially executed all test suites it returns all data collected
during the test run as an object of class RUnitTestData. This is a (deeply nested) list with one list
element for each executed test suite. Each of these executed test suite lists contains the following
elements:

nTestFunc The number of test functions executed in the test suite.

nErr The number of errors that occurred during the execution.

nFail The number of failures that occurred during the execution.

dirs The test directories of the test suite.

testFileRegexp The regular expression for identifying the test files of the test suite.

testFuncRegexp The regular expression for identifying the test functions of the test suite.

sourceFileResults A list containing the results for each separate test file of the test suite.

The sourceFileResults list just mentioned contains one element for each specified test function
in the source file. This element is a list with the following entries:

kind Character string with one of success, error or failure describing the outcome of the test
function.

msg the error message in case of an error or failure and NULL for a successfully executed test
function.

time The duration (measured in seconds) of the successful execution of a test function and NULL in
the case of an error or failure.

traceBack The full trace back as a character vector in the case of an error and NULL otherwise.

To further control test case execution it is possible to define two parameterless function .setUp and
.tearDown in each test file. .setUp() is executed directly before and .tearDown() directly after
each test function execution.

Quite often, it is useful to base test cases on random numbers. To make this procedure reproducible,
the function runTestSuite sets the random number generator to the default setting RNGkind(kind="Marsaglia-Multicarry", normal.kind="Kinderman-Ramage")
before sourcing each test file (note that this default has been chosen due to historical reasons and
differs from the current R default). This default can be overwritten by configuring the random num-
ber generator at the beginning of a test file. This setting, however, is valid only inside its own source
file and gets overwritten when the next test file is sourced.

textProtocol 11

Value

runTestSuite and runTestFile both return an object of class RUnitTestData.

defineTestSuite returns an object of class RUnitTestSuite.

Author(s)

Thomas König, Klaus Jünemann & Matthias Burger

See Also

checkTrue and friends for writing test cases. printTextProtocol and printHTMLProtocol for
printing the test protocol. See RUnit-options for global options controlling log out.

Examples

run some test suite
myTestSuite <- defineTestSuite("RUnit Example",

system.file("examples", package = "RUnit"),
testFileRegexp = "correctTestCase.r")

testResult <- runTestSuite(myTestSuite)

same but without the logger being involved
source(file.path(system.file("examples", package = "RUnit"),
"correctTestCase.r"))
test.correctTestCase()

prints detailed text protocol
to standard out:
printTextProtocol(testResult, showDetails = TRUE)

use current default RNGs
myTestSuite1 <- defineTestSuite("RUnit Example",

system.file("examples", package = "RUnit"),
testFileRegexp = "correctTestCase.r",
rngKind = "Mersenne-Twister",
rngNormalKind = "Inversion")

testResult1 <- runTestSuite(myTestSuite)

for single test files, e.g. outside a package context
testResult2 <- runTestFile(file.path(system.file("examples",

package = "RUnit"),
"correctTestCase.r"))

printTextProtocol(testResult2, showDetails = TRUE)

textProtocol Printing a plain text or HTML version of an RUnit test run protocol.

12 textProtocol

Description

printTextProtocol prints a plain text protocol of a test run. The resulting test protocol can be
configured through the function arguments.

printHTMLProtocol prints an HTML protocol of a test run. For long outputs this version of the
test protocol is slightly more readable than the plain text version due to links in the document. The
resulting test protocol can be configured through the function arguments.

print prints the number of executed test functions and the number of failures and errors.

summary directly delegates the work to printTextProtocol.

getErrors returns a list containing the number of test functions, the number of deactivated func-
tions (if there are any), the number of errors and the number of failures.

Usage

printTextProtocol(testData, fileName = "",
separateFailureList = TRUE,
showDetails = TRUE, traceBackCutOff = 9)

printHTMLProtocol(testData, fileName = "",
separateFailureList = TRUE,
traceBackCutOff = 9,
testFileToLinkMap = function(x) x)

S3 method for class 'RUnitTestData'
print(x, ...)
S3 method for class 'RUnitTestData'

summary(object, ...)
getErrors(testData)

Arguments

testData, x, object

objects of class RUnitTestData, typically obtained as return value of a test run.

fileName Connection where to print the text protocol (printing is done by the cat com-
mand).

separateFailureList

If TRUE a separate list of failures and errors is produced at the top of the protocol.
Otherwise, the failures and errors are only listed in the details section.

showDetails If TRUE the protocol contains a detailed listing of all executed test functions.
traceBackCutOff

The details section of the test protocol contains the call stack for all errors. The
first few entries of the complete stack typically contain the internal RUnit func-
tion calls that execute the test cases and are irrelevant for debugging. This argu-
ment specifies how many calls are removed from the stack before it is written to
the protocol. The default value is chosen such that all uninteresting RUnit calls
are removed from the stack if runTestSuite has been called from the console.
This argument takes effect only if showDetails=TRUE.

testFileToLinkMap

This function can be used to map the full name of the test file to a corresponding
html link to be used in the html protocol. By default, this is the identity map.
See example below.

... additional arguments to summary are passed on to the printTextProtocol() call.

textProtocol 13

Details

The text protocol can roughly be divided into three sections with an increasing amount of infor-
mation. The first section as an overview just reports the number of executed test functions and the
number of failures and errors. The second section describes all test suites. Optionally, all errors
and failures that occurred in some test suite are listed. In the optional third section details are given
about all executed test functions in the order they were processed. For each test file all test func-
tions executed are listed in the order they were executed. After the test function name the number
of check<*> function calls inside the test case and the execution time in seconds are stated. In the
case of an error or failure as much debug information as possible is provided.

Author(s)

Thomas König, Klaus Jünemann & Matthias Burger

See Also

runTestSuite

Examples

run some test suite
myTestSuite <- defineTestSuite("RUnit Example",

system.file("examples", package = "RUnit"),
testFileRegexp = "correctTestCase.r")

testResult <- runTestSuite(myTestSuite)

prints detailed text protocol
to standard out:
printTextProtocol(testResult, showDetails = TRUE)
prints detailed html protocol
to standard out
printHTMLProtocol(testResult)

Not run:
example function to add links to URL of the code files in a code
repository, here the SourceForge repository
testFileToSFLinkMap <- function(testFileName, testDir = "tests") {

get unit test file name
bname <- basename(testFileName)

figure out package name
regExp <- paste("^.*/([\.a-zA-Z0-9]*)/", testDir,"/.*$", sep = "")
pack <- sub(regExp, "\1", testFileName)
return(paste("http://runit.cvs.sourceforge.net/runit/",

pack, testDir, bname, sep = "/"))
}

example call for a test suite run on the RUnit package
testSuite <- defineTestSuite("RUnit", "<path-to-source-folder>/RUnit/tests",

testFileRegexp = "^test.+")
testResult <- runTestSuite(testSuite)
printHTMLProtocol(testResult, fileName = "RUnit-unit-test-log.html",

14 tracker

testFileToLinkMap = testFileToSFLinkMap)

End(Not run)

tracker Tracking the results of the inspect process.

Description

The current implementation uses the ’closure trick’ to hide all details from the user and only al-
lows to retrieve the results of the code inspection. tracker is used to create a new environment
to manage and store the results of the tracking process. The inspect function requires such an
environment with the name "track" (currently mandatory). The tracker records how often each and
every function was called by inspect and summarizes the results of all calls. tracker$init ini-
tializes the tracker environment. tracker$getTrackInfo returns a list with the tracked results of
the inspection process.

Usage

tracker()

Details

The ’trackInfo’ S3 class object (list) has one entry for each function on the inspect list with the
following elements:

src The source code of the function.

run The number of executions for each line of code.

graph A matrix. Each element in the matrix counts how often a code line was called from the
previous code line in the execution flow.

nrRuns Counts how often the function was called.

funcCall The declaration of the function.

Methods

init initializes the tracker environment
addFunc add function to the inspect tracking list (internal use)
getSource return the modified source code used for during inspection the specified index (internal use)
bp update tracking info for specified function index (internal use)
getTrackInfo return ’trackInfo’ object
isValid check ’trackInfo’ object for conformance to class contract

Author(s)

Thomas König, Klaus Jünemann \& Matthias Burger

tracker 15

See Also

inspect for the registration of functions \& methods to be on the tracking list, and printHTML.trackInfo
for displaying results

Examples

example functions
foo <- function(x){

y <- 0
for(i in 1:100)
{

y <- y + i
}
return(y)

}

bar <- function(x){
y <- 0
for(i in 1:100)
{

y <- y - i
}
return(y)

}

the object name track is 'fixed' (current implementation)
track <- tracker()

initialize the tracker
track$init()

inspect the function
resFoo1 will contain the result of calling foo(50)
resFoo1 <- inspect(foo(50), track = track)

resFoo2 <- inspect(foo(20), track = track)

resBar1 <- inspect(bar(30), track = track)

get the tracked function call info for all inspect calls
resTrack <- track$getTrackInfo()

create HTML sites in folder ./results for all inspect calls
printHTML.trackInfo(resTrack)

Index

∗Topic environment
options, 6

∗Topic programming
.setUp, 2
checkFuncs, 2
inspect, 5
options, 6
printHTML.trackInfo, 7
RUnit, 8
runTestSuite, 9
textProtocol, 11
tracker, 14

.setUp, 2, 4

.tearDown, 10

.tearDown (.setUp), 2
:::, 3

all.equal, 4
all.equal.numeric, 4

checkEquals (checkFuncs), 2
checkEqualsNumeric (checkFuncs), 2
checkException (checkFuncs), 2
checkFuncs, 2
checkIdentical (checkFuncs), 2
checkTrue, 11
checkTrue (checkFuncs), 2

DEACTIVATED (checkFuncs), 2
defineTestSuite, 8
defineTestSuite (runTestSuite), 9

getErrors (textProtocol), 11
getOption, 6

identical, 4
inspect, 5, 8, 15
isValidTestSuite (runTestSuite), 9

options, 6, 6

print.RUnitTestData (textProtocol), 11
printHTML (printHTML.trackInfo), 7
printHTML.trackInfo, 5, 7, 15
printHTMLProtocol, 11

printHTMLProtocol (textProtocol), 11
printTextProtocol, 11
printTextProtocol (textProtocol), 11

removeClass, 3
RNGkind, 9
RUnit, 8
RUnit options (options), 6
RUnit-options, 4, 11
RUnit-options (options), 6
runTestFile, 2
runTestFile (runTestSuite), 9
runTestSuite, 8, 9, 13

setClass, 3
sink, 6
summary.RUnitTestData (textProtocol), 11

textProtocol, 11
tracker, 5, 7, 8, 14
try, 4

16

	.setUp
	checkFuncs
	inspect
	options
	printHTML.trackInfo
	RUnit
	runTestSuite
	textProtocol
	tracker
	Index

