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epi.2by2 Summary measures for count data presented in a 2 by 2 table

Description

Computes summary measures of risk and a chi-squared test for difference in the observed propor-
tions from count data presented in a 2 by 2 table. Multiple strata may be represented by additional
rows of count data and in this case crude and Mantel-Haenszel adjusted measures of risk are calcu-
lated and chi-squared tests of homogeneity are performed.

Usage

epi.2by2(a, b, c, d, method = "cohort.count", conf.level = 0.95,
units = 100, verbose = FALSE)

Arguments

a number of observations where exposure present and outcome present.

b number of observations where exposure present and outcome absent.

c number of observations where exposure absent and outcome present.

d number of observations where exposure absent and outcome absent.
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method a character string indicating the experimental design on which the tabular data
has been based. Options are cohort.count, cohort.time, case.control,
or cross.sectional.

conf.level magnitude of the returned confidence interval. Must be a single number between
0 and 1.

units multiplier for prevalence and incidence estimates.

verbose logical indicating whether detailed or summary results are to be returned.

Details

Where method is cohort.count, case.control, or cross.sectional the 2 by 2 table
format required is:

Disease + Disease -
Expose + a b
Expose - c d

Where method is cohort.time the 2 by 2 table format required is:

Disease + Time at risk
Expose + a b
Expose - c d

Value

When method equals cohort.count the following measures of association are returned: the
incidence risk ratio (RR), the odds ratio (OR), the attributable risk (AR), the attributable risk in the
population (ARp), the attributable fraction in the exposed (AFe), and the attributable fraction in the
population (AFp).

When method equals cohort.time the following measures of association are returned: the inci-
dence rate ratio (IRR), the attributable rate (AR), the attributable rate in the population (ARp), the
attributable fraction in the exposed (AFe), and the attributable fraction in the population (AFp).

When method equals case.control the following measures of association are returned: the
odds ratio (OR), the attributable prevalence (AR), the attributable prevalence in population (ARp),
the estimated attributable fraction in the exposed (AFest), and the estimated attributable fraction in
the population (AFp).

When method equals cross.sectional the following measures of association are returned: the
prevalence ratio (PR), the odds ratio (OR), the attributable prevalence (AR), the attributable preva-
lence in the population (ARp), the attributable fraction in the exposed (AFe), and the attributable
fraction in the population (AFp).

When there are multiple strata, the function returns the appropriate measure of association for each
strata (e.g. OR), the crude measure of association across all strata (e.g. OR.crude) and the Mantel-
Haenszel adjusted measure of association (e.g. OR.summary). Strata-level weights (i.e. inverse
variance of the strata-level measures of assocation) are provided — these are useful to understand
the relationship between the crude strata-level measures of association and the Mantel-Haenszel
adjusted measure of association. chisq returns the results of a chi-squared test for difference
in exposed and non-exposed proportions for each strata. chisq.summary returns the results of
a chi-squared test for difference in exposed and non-exposed proportions across all strata. The



4 epi.2by2

chi-squared test of homogeneity (e.g. OR.homogeneity) provides a test of homogeneity of the
strata-level measures of association.

Note

Measures of strength of association include the prevalence ratio, the incidence risk ratio, the in-
cidence rate ratio and the odds ratio. The incidence risk ratio is the ratio of the incidence risk of
disease in the exposed group to the incidence risk of disease in the unexposed group. The odds ratio
(also known as the cross-product ratio) is an estimate of the incidence risk ratio. When the inci-
dence of an outcome in the study population is low (say, less than 5%) the odds ratio will provide a
reliable estimate of the incidence risk ratio. The more frequent the outcome becomes, the more the
odds ratio will overestimate the incidence risk ratio when it is greater than than 1 or understimate
the incidence risk ratio when it is less than 1.

Measures of effect include the attributable risk (or prevalence) and the attributable fraction. The
attributable risk is the risk of disease in the exposed group minus the risk of disease in the unex-
posed group. The attributable risk provides a measure of the absolute increase or decrease in risk
associated with exposure. The attributable fraction is the proportion of disease in the exposed group
attributable to exposure.

Measures of total effect include the population attributable risk (or prevalence) and the population
attributable fraction (also known as the aetiologic fraction). The population attributable risk is the
risk of disease in the population that may be attributed to exposure. The population attributable
fraction is the proportion of the disease in the population that is attributable to exposure.

Point estimates and confidence intervals for the summary prevalence ratio, incidence risk ratio,
incidence rate ratio, and odds ratio are based on formulae provided by Rothman (2002, p 152).
The point estimate and confidence intervals for the population attributable fraction are based on
formulae provided by Jewell (2004, p 84 - 85). The point estimate and confidence intervals for
the summary risk differences are based on formulae provided by Rothman and Greenland (1998, p
271).

The function checks each strata for cells with zero frequencies. If a zero frequency is found in any
cell, 0.5 is added to all cells within the strata.

The chi-squared test of homogeneity is equivalent to the Breslow Day test for interaction. Mantel-
Haenszel adjusted measures of association are valid when the measures of association across the
different strata are similar (homogenous), that is when the chi-squared test of homogeneity is not
significant.

Author(s)

Mark Stevenson and Cord Heuer (EpiCentre, IVABS, Massey University, Palmerston North, New
Zealand).

References

Altman D, Machin D, Bryant T, Gardner M (2000). Statistics with Confidence. British Medical
Journal, London, pp. 69.

Elwood JM (2007). Critical Appraisal of Epidemiological Studies and Clinical Trials. Oxford
University Press, London.

Feychting M, Osterlund B, Ahlbom A (1998). Reduced cancer incidence among the blind. Epi-
demiology 9: 490 - 494.

Hanley JA (2001). A heuristic approach to the formulas for population attributable fraction. Journal
of Epidemiology and Community Health 55: 508 - 514.
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Jewell NP (2004). Statistics for Epidemiology. Chapman & Hall/CRC, London, pp. 84 - 85.

Martin SW, Meek AH, Willeberg P (1987). Veterinary Epidemiology Principles and Methods. Iowa
State University Press, Ames, Iowa, pp. 130.

McNutt L, Wu C, Xue X, Hafner JP (2003). Estimating the relative risk in cohort studies and
clinical trials of common outcomes. American Journal of Epidemiology 157: 940 - 943.

Robbins AS, Chao SY, Fonesca VP (2002). What’s the relative risk? A method to directly estimate
risk ratios in cohort studies of common outcomes. Annals of Epidemiology 12: 452 - 454.

Rothman KJ (2002). Epidemiology An Introduction. Oxford University Press, London, pp. 130 -
143.

Rothman KJ, Greenland S (1998). Modern Epidemiology. Lippincott Williams, & Wilkins, Philadel-
phia, pp. 271.

Willeberg P (1977). Animal disease information processing: Epidemiologic analyses of the feline
urologic syndrome. Acta Veterinaria Scandinavica. Suppl. 64: 1 - 48.

Woodward MS (2005). Epidemiology Study Design and Data Analysis. Chapman & Hall/CRC,
New York, pp. 163 - 214.

Zhang J, Yu KF (1998). What’s the relative risk? A method for correcting the odds ratio in cohort
studies of common outcomes. Journal of the American Medical Association 280: 1690 - 1691.

Examples

## EXAMPLE 1
## A cross sectional study investigating the relationship between dry cat
## food (DCF) and feline urologic syndrome (FUS) was conducted (Willeberg
## 1977). Counts of individuals in each group were as follows:

## DCF-exposed cats (cases, non-cases) 13, 2163
## Non DCF-exposed cats (cases, non-cases) 5, 3349

epi.2by2(a = 13, b = 2163, c = 5, d = 3349, method = "cross.sectional",
conf.level = 0.95, units = 100, verbose = FALSE)

## Risk ratio:
## The incidence risk of FUS in DCF exposed cats is 4.01 times (95% CI 1.43 to
## 11.23) greater than the incidence risk of FUS in non-DCF exposed cats.

## Attributable fraction:
## In DCF exposed cats, 75% of FUS is attributable to DCF (95% CI 30% to 91%).

## Population attributable fraction:
## Fifty-four percent of FUS cases in the cat population are attributable
## to DCF (95% CI 4% to 78%).

## EXAMPLE 2
## A study was conducted by Feychting et al (1998) comparing cancer occurrence
## among the blind with occurrence among those who were not blind but had
## severe visual impairment. From these data we calculate a cancer rate of
## 136/22050 person-years among the blind compared with 1709/127650 person-
## years among those who were visually impaired but not blind.

rval <- epi.2by2(a = 136, b = 22050, c = 1709, d = 127650, method =
"cohort.time", conf.level = 0.90, units = 1000, verbose = TRUE)

round(rval$AR, digits = 3)
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## The incidence rate of cancer was 7.22 cases per 1000 person-years less in the
## blind, compared with those who were not blind but had severe visual impairment
## (90% CI 6.20 to 8.24 cases per 1000 person-years).

round(rval$IRR, digits = 3)

## The incidence rate of cancer in the blind group was less than half that of the
## comparison group (incidence rate ratio 0.46, 90% CI 0.40 to 0.53).

## EXAMPLE 3
## The results of an unmatched case control study of the association between
## smoking and cervical cancer were stratified by age. Counts of individuals
## in each group were as follows:

## Age group 20 - 29 years (cases, controls)
## Smokers: 41, 6
## Non-smokers: 13, 53

## Age group 30 - 39 years (cases, controls)
## Smokers: 66, 25
## Non-smokers: 37, 83

## Age +40 years (cases, controls)
## Smokers: 23, 14
## Non-smokers: 37, 62

a <- c(41, 66, 23)
b <- c(6, 25, 14)
c <- c(13, 37, 37)
d <- c(53, 83, 62)
tmp.2by2 <- epi.2by2(a, b, c, d, method = "case.control", conf.level = 0.95,

units = 100, verbose = TRUE)
tmp.2by2

## Crude odds ratio:
## 6.57 (95% CI 4.31 to 10.03)

## Mantel-Haenszel adjusted odds ratio:
## 6.27 (95% CI 3.52 to 11.17)

## Summary chi-squared test for difference in proportions:
## Test statistic 83.31; df = 1; P < 0.01

## Test of homeogeneity of odds ratios:
## Test statistic 2.09; df = 2; P = 0.35

## We accept the null hypothesis that the strata level odds ratios
## are homogenous. The crude odds ratio is 6.57 (95% CI 4.31 -- 10.03).
## The Mantel-Haenszel adjusted odds ratio is 6.27 (95% CI 3.52 to 11.17).
## The crude odds ratio is 1.05 times the magnitude of the Mantel-Haenszel
## adjusted odds ratio so we conclude that age does not confound the association
## between smoking and risk of cervical cancer (using a ratio of greater
## than 1.10 or less than 0.90 as indicative of the presence of confounding).

## Now plot the individual strata-level odds ratio and compare them with the
## Mantel-Haenszel adjusted odds ratio.



epi.about 7

## Not run:
## Not run: library(latticeExtra)
nstrata <- 1:length(a)
strata.lab <- paste("Strata ", nstrata, sep = "")
y.at <- c(nstrata, max(nstrata) + 1)
y.labels <- c("Mantel-Haenszel", strata.lab)
x.labels <- c(0.5, 1, 2, 4, 8, 16, 32, 64, 128)

or.l <- c(tmp.2by2$OR.summary$lower, tmp.2by2$OR$lower)
or.u <- c(tmp.2by2$OR.summary$upper, tmp.2by2$OR$upper)
or.p <- c(tmp.2by2$OR.summary$est, tmp.2by2$OR$est)
vert <- 1:length(or.p)

segplot(vert ~ or.l + or.u, centers = or.p, horizontal = TRUE,
aspect = 1/2, col = "grey",
ylim = c(0,vert + 1),
xlab = "Odds ratio", ylab = "",
scales = list(y = list(at = y.at, labels = y.labels, ticks = FALSE)),
main = "Strata level and summary measures of association")

## End(Not run)
## End(Not run)

## In this example the precision of both strata 2 and 3 odds ratio estimates is
## high (i.e. the confidence intervals are narrow) so strata 2 and 3 carry most
## of the weight in determining the value of the Mantel-Haenszel adjusted
## odds ratio.

epi.about The library epiR: summary information

Description

Functions for quantitative epidemiology.

Usage

epi.about()

Details

The most recent version of the epiR package can be obtained from: http://epicentre.
massey.ac.nz/

Author(s)

Mark Stevenson, EpiCentre, IVABS, Massey University, Palmerston North New Zealand.

Telmo Nunes, UISEE/DETSA, Faculdade de Medicina Veterinaria — UTL, Rua Prof. Cid dos
Santos, 1300 - 477 Lisboa Portugal.

Javier Sanchez, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown,
Prince Edward Island, C1A 4P3, Canada.

Ron Thornton, MAF New Zealand, PO Box 2526 Wellington, New Zealand.

http://epicentre.massey.ac.nz/
http://epicentre.massey.ac.nz/
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epi.asc Write matrix to an ASCII raster file

Description

Writes a data frame to an ASCII raster file, suitable for display in ArcView or ArcGIS.

Usage

epi.asc(dat, file, xllcorner, yllcorner, cellsize, na = -9999)

Arguments

dat a matrix with data suitable for plotting using the image function.

file character string specifying the name and path of the ASCII raster output file.

xllcorner the easting coordinate corresponding to the lower left hand corner of the matrix.

yllcorner the northing coordinate corresponding to the lower left hand corner of the ma-
trix.

cellsize number, defining the size of each matrix cell.

na scalar, defines null values in the matrix. NAs are converted to this value.

Value

Writes an ASCII raster file (typically with *.asc extension), suitable for display in a GIS package.

Note

The image function in R rotates tabular data counter clockwise by 90 degrees for display. A matrix
of the form:

1 3
2 4

is displayed (using image) as:

3 4
1 2

It is recommended that the source data for this function is a matrix. Replacement of NAs in a data
frame extends processing time for this function.

epi.bohning Bohning’s test for overdispersion of Poisson data
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Description

A test for overdispersion of Poisson data.

Usage

epi.bohning(obs, exp, alpha = 0.05)

Arguments

obs the observed number of cases in each area.

exp the expected number of cases in each area.

alpha alpha level to be used for the test of significance. Must be a single number
between 0 and 1.

Value

A data frame with two elements: test.statistic Bohning’s test statistic, p.value the asso-
ciated P-value.

References

Bohning D (2000). Computer-assisted Analysis of Mixtures and Applications. Chapman and Hall,
Boca Raton.

Ugarte MD, Ibanez B, Militino AF (2006). Modelling risks in disease mapping. Statistical Methods
in Medical Research 15: 21 - 35.

Examples

data(epi.SClip)
obs <- epi.SClip$cases
pop <- epi.SClip$population
exp <- (sum(obs) / sum(pop)) * pop

epi.bohning(obs, exp, alpha = 0.05)

epi.ccc Concordance correlation coefficient

Description

Calculates Lin’s (1989, 2000) concordance correlation coefficient for agreement on a continuous
measure.

Usage

epi.ccc(x, y, ci = "z-transform", conf.level = 0.95)
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Arguments

x a vector, representing the first set of measurements.

y a vector, representing the second set of measurements.

ci a character string, indicating the method to be used. Options are z-transform
or asymptotic.

conf.level magnitude of the returned confidence interval. Must be a single number between
0 and 1.

Details

Computes Lin’s (1989, 2000) concordance correlation coefficient for agreement on a continuous
measure obtained by two methods. The concordance correlation coefficient combines measures of
both precision and accuracy to determine how far the observed data deviate from the line of perfect
concordance (that is, the line at 45 degrees on a square scatter plot). Lin’s coefficient increases in
value as a function of the nearness of the data’s reduced major axis to the line of perfect concordance
(the accuracy of the data) and of the tightness of the data about its reduced major axis (the precision
of the data).

Both x and y values need to be present for a measurement pair to be included in the analysis.
If either or both values are missing (i.e. coded NA) then the measurement pair is deleted before
analysis.

Value

A list containing the following:

rho.c the concordance correlation coefficient.

s.shift the scale shift.

l.shift the location shift.

C.b a bias correction factor that measures how far the best-fit line deviates from a
line at 45 degrees. No deviation from the 45 degree line occurs when C.b = 1.
See Lin (1989, page 258).

blalt a data frame with two columns: mean the mean of each pair of measurements,
delta vector y minus vector x.

nmissing a count of the number of measurement pairs ignored due to missingness.

References

Bland J, Altman D (1986). Statistical methods for assessing agreement between two methods of
clinical measurement. The Lancet 327: 307 - 310.

Bradley E, Blackwood L (1989). Comparing paired data: a simultaneous test for means and vari-
ances. American Statistician 43: 234 - 235.

Dunn G (2004). Statistical Evaluation of Measurement Errors: Design and Analysis of Reliability
Studies. London: Arnold.

Hsu C (1940). On samples from a normal bivariate population. Annals of Mathematical Statistics
11: 410 - 426.

Krippendorff K (1970). Bivariate agreement coefficients for reliability of data. In: Borgatta E,
Bohrnstedt G (eds) Sociological Methodology. San Francisco: Jossey-Bass, pp. 139 - 150.

Lin L (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics 45: 255
- 268.
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Lin L (2000). A note on the concordance correlation coefficient. Biometrics 56: 324 - 325.

Pitman E (1939). A note on normal correlation. Biometrika 31: 9 - 12.

Reynolds M, Gregoire T (1991). Comment on Bradley and Blackwood. American Statistician 45:
163 - 164.

Snedecor G, Cochran W (1989). Statistical Methods. Ames: Iowa State University Press.

Examples

## Concordance correlation plot:
set.seed(seed = 1234)
method1 <- rnorm(n = 100, mean = 0, sd = 1)
method2 <- method1 + runif(n = 100, min = 0, max = 1)

## Introduce some missing values:
method1[50] <- NA
method2[75] <- NA

tmp.ccc <- epi.ccc(method1, method2, ci = "z-transform",
conf.level = 0.95)

lab <- paste("CCC: ", round(tmp.ccc$rho.c[,1], digits = 2), " (95% CI ",
round(tmp.ccc$rho.c[,2], digits = 2), " - ",
round(tmp.ccc$rho.c[,3], digits = 2), ")", sep = "")

z <- lm(method2 ~ method1)

par(pty = "s")
plot(method1, method2, xlim = c(0, 5), ylim = c(0,5), xlab = "Method 1",

ylab = "Method 2", pch = 16)
abline(a = 0, b = 1, lty = 2)
abline(z, lty = 1)
legend(x = "topleft", legend = c("Line of perfect concordance",

"Reduced major axis"), lty = c(2,1), lwd = c(1,1), bty = "n")
text(x = 1.55, y = 3.8, labels = lab)

## Bland and Altman plot (Figure 2 from Bland and Altman 1986):
x <- c(494,395,516,434,476,557,413,442,650,433,417,656,267,

478,178,423,427)

y <- c(512,430,520,428,500,600,364,380,658,445,432,626,260,
477,259,350,451)

tmp.ccc <- epi.ccc(x, y, ci = "z-transform", conf.level = 0.95)
tmp.mean <- mean(tmp.ccc$blalt$delta)
tmp.sd <- sqrt(var(tmp.ccc$blalt$delta))

plot(tmp.ccc$blalt$mean, tmp.ccc$blalt$delta, pch = 16,
xlab = "Average PEFR by two meters (L/min)",
ylab = "Difference in PEFR (L/min)", xlim = c(0,800),
ylim = c(-140,140))

abline(h = tmp.mean, lty = 1, col = "gray")
abline(h = tmp.mean - (2 * tmp.sd), lty = 2, col = "gray")
abline(h = tmp.mean + (2 * tmp.sd), lty = 2, col = "gray")
legend(x = "topleft", legend = c("Mean difference",

"Mean difference +/ 2SD"), lty = c(1,2), bty = "n")
legend(x = 0, y = 125, legend = c("Difference"), pch = 16,

bty = "n")
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epi.cluster1size Sample size under under one-stage cluster sampling

Description

Returns the required number of clusters to be sampled using a one-stage cluster sampling strategy.

Usage

epi.cluster1size(n, mean, var, epsilon, method = "mean",
conf.level = 0.95)

Arguments

n integer, representing the total number of clusters in the population.

mean number, representing the population mean of the variable of interest.

var number, representing the population variance of the variable of interest.

epsilon the maximum relative difference between our estimate and the unknown popu-
lation value.

method a character string indicating the method to be used. Options are total, mean
or mean.per.unit.

conf.level scalar, defining the level of confidence in the computed result.

Value

Returns an integer defining the required number of clusters to be sampled.

References

Levy PS, Lemeshow S (1999). Sampling of Populations Methods and Applications. Wiley Series
in Probability and Statistics, London, pp. 258.

Examples

## We intend to conduct a survey of residents to estimate the total number
## over 65 years of age that require the services of a nurse. There are
## five housing complexes in the study area and we expect that there might
## be a total of around 34 residents meeting this criteria (variance 6.8).
## We would like the estimated sample size to provide us with an estimate
## that is within 10% of the true value. How many housing complexes (clusters)
## should be sampled?

epi.cluster1size(n = 5, mean = 34, var = 6.8, epsilon = 0.10, method =
"total", conf.level = 0.999)

## We would need to sample 3 housing complexes to meet the specifications
## for this study.
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epi.cluster2size Sample size under under two-stage cluster sampling

Description

Returns the required number of clusters to be sampled using a two-stage cluster sampling strategy.

Usage

epi.cluster2size(nbar, n, mean, var, epsilon, method = "mean",
conf.level = 0.95)

Arguments

nbar integer, representing the total number of primary sampling units to be selected
from each cluster.

n vector of length two, specifying the total number of clusters in the population
and the total number of primary sampling units in each cluster, respectively.

mean vector of length two, specifying the mean of the variable of interest at the cluster
level and the mean of the variable of interest at the primary sampling unit level,
respectively.

var vector of length two, specifying the variance of the variable of interest at the
cluster level and the variance of the variable of interest at the primary sampling
unit level, respectively.

epsilon the maximum relative difference between our estimate and the unknown popu-
lation value.

method a character string indicating the method to be used. Options are total, or
mean.

conf.level scalar, defining the level of confidence in the computed result.

Details

In simple two-stage cluster sampling the desired number of primary sampling units to be selected
from each cluster is determined on the basis of cost and on the basis of the relative sizes of the
first- and second-stage variance components. Once the number of primary sampling units is fixed
we might then wish to determine the total number of clusters to be selected at the first stage of
sampling in order to be confident of obtaining estimates that reflect the true population value.

Value

Returns an integer defining the required number of clusters to be sampled.

References

Levy PS, Lemeshow S (1999). Sampling of Populations Methods and Applications. Wiley Series
in Probability and Statistics, London, pp. 292.
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Examples

## We intend to conduct a survey of nurse practitioners to estimate the
## average number of patients seen by each nurse. There are five health
## centres in the study area, each with three nurses. We intend to sample
## two nurses from each health centre. We would like to be 95% confident
## of obtaining an estimate that is within 30% of the true value. We
## expect that the mean number of patients seen at the health centre level
## is 84 (var 567) and the mean number of patients seen at the nurse
## level is 28 (var 160). How many health centres should we sample?

nbar <- 2
n <- c(5, 3)
mean <- c(84, 28)
var <- c(567, 160)
epi.cluster2size(nbar, n, mean, var, epsilon = 0.3, method = "mean",

conf.level = 0.95)

## We would need a simple two-stage cluster sample of 3 health centres to
## meet these specifications.

epi.clustersize Sample size for cluster-sample surveys

Description

Estimates the number of clusters to be sampled using a cluster-sample design.

Usage

epi.clustersize(p, b, rho, epsilon, conf.level = 0.95)

Arguments

p the estimated prevalence of disease in the population.

b the number of units to be sampled per cluster.

rho the intra-cluster correlation, a measure of the variation between clusters com-
pared with the variation within clusters.

epsilon scalar, the acceptable absolute error.

conf.level scalar, defining the level of confidence in the computed result.

Value

A list containing the following:

clusters the estimated number of clusters to be sampled.

units the total number of units to be sampled.

design the design effect.
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Note

The intra-cluster correlation (rho) will be higher for those situations where the between-cluster
variation is greater than within-cluster variation. The design effect is dependent on rho and b
(the number of units sampled per cluster): rho = (D - 1) / (b - 1). Design effects of
2, 4, and 7 can be used to estimate rho when intra-cluster correlation is low, medium, and high
(respectively). A design effect of 7.5 should be used when the intra-cluster correlation is unknown.

References

Otte J, Gumm I (1997). Intra-cluster correlation coefficients of 20 infections calculated from the
results of cluster-sample surveys. Preventive Veterinary Medicine 31: 147 - 150.

Bennett S, Woods T, Liyanage WM, Smith DL (1991). A simplified general method for cluster-
sample surveys of health in developing countries. Raport trimestriel de statistiques sanitaires modi-
ales 44: 98 - 106.

Examples

## The expected prevalence of disease in a population of cattle is 0.10.
## We wish to conduct a survey, sampling 50 animals per farm. No data
## are available to provide an estimate of rho, though we suspect
## the intra-cluster correlation for this disease to be relatively high.
## We wish to be 95% certain of being within 10% of the true population
## prevalence of disease. How many herds should be sampled?

p <- 0.10
b <- 50
D <- 7
rho <- (D - 1) / (b - 1)
epi.clustersize(p = 0.10, b = 50, rho = rho, epsilon = 0.10, conf.level = 0.95)

## We need to sample 485 herds (24250 samples in total).

epi.conf Confidence intervals for means, proportions, incidence, and standard-
ised mortality ratios

Description

Computes confidence intervals for means, proportions, incidence, and standardised mortality ratios.

Usage

epi.conf(dat, method = "mean.single", conf.level = 0.95)

Arguments

dat the data, either a vector or a matrix depending on the method chosen.

method a character string indicating the method to use. Options are mean.single,
mean.unpaired, mean.paired, prop.single, prop.unpaired, prop.paired,
prevalence, inc.risk, inc.rate, and smr.

conf.level magnitude of the returned confidence interval. Must be a single number between
0 and 1.



16 epi.conf

Details

Method mean.single requires a vector as input. Method mean.unpaired requires a two-column
data frame; the first column defining the groups must be a factor. Method mean.paired requires
a two-column data frame; one column for each group. Method prop.single requires a two-
column matrix; the first column specifies the number of positives, the second column specifies
the number of negatives. Methods prop.unpaired and prop.paired require a four-column
matrix; columns 1 and 2 specify the number of positives and negatives for the first group, columns
3 and 4 specify the number of positives and negatives for the second group. Method prevalence
and inc.risk require a two-column matrix; the first column specifies the number of positives,
the second column specifies the total number tested. Method inc.rate requires a two-column
matrix; the first column specifies the number of positives, the second column specifies individual
time at risk. Method smr requires a two-colum matrix; the first column specifies the total number
of positives, the second column specifies the total number tested.

The methodology implemented here follows Altman, Machin, Bryant, and Gardner (2000). Exact
binomial confidence limits are calculated for inc.risk, prevalence and inc.rate (see Col-
lett 1999 for details). Where method is inc.risk, prevalence or inc.rate if the numerator
equals zero the lower bound of the confidence interval estimate is set to zero. Where method is smr
the method of Dobson et al. (1991) is used.

References

Altman DG, Machin D, Bryant TN, and Gardner MJ (2000). Statistics with Confidence, second
edition. British Medical Journal, London, pp. 28 - 29 and pp. 45 - 56.

Collett D (1999). Modelling Binary Data. Chapman & Hall/CRC, Boca Raton Florida, p. 24.

Dobson AJ, Kuulasmaa K, Eberle E, and Scherer J (1991). Confidence intervals for weighted sums
of Poisson parameters. Statistics in Medicine 10: 457 - 462.

Fleiss JL (1981). Statistical methods for rates and proportions. 2nd edition. John Wiley & Sons,
New York.

Rothman KJ (2002). Epidemiology An Introduction. Oxford University Press, London, pp. 130 -
143.

Examples

## EXAMPLE 1
dat <- rnorm(n = 100, mean = 0, sd = 1)
epi.conf(dat, method = "mean.single")

## EXAMPLE 2
group <- c(rep("A", times = 5), rep("B", times = 5))
val = round(c(rnorm(n = 5, mean = 10, sd = 5),

rnorm(n = 5, mean = 7, sd = 5)), digits = 0)
dat <- data.frame(group = group, val = val)
epi.conf(dat, method = "mean.unpaired")

## EXAMPLE 3
grp1 <- as.vector(round(rnorm(n = 100, mean = 10, sd = 5), digits = 0))
grp2 <- as.vector(round(rnorm(n = 100, mean = 7, sd = 5), digits = 0))
dat <- data.frame(cbind(grp1 = grp1, grp2 = grp2))
epi.conf(dat, method = "mean.paired")

## EXAMPLE 4
## Single sample (Altman et al. 2000, page 47):
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## Out of 263 giving their views on the use of personal computers in
## general practice, 81 thought that the privacy of their medical file
## had been reduced.

pos <- 81
neg <- (263 - 81)
dat <- as.matrix(cbind(pos, neg))
round(epi.conf(dat, method = "prop.single"), digits = 3)

## The 95% confidence interval for the population value of the proportion
## of patients thinking their privacy was reduced was from 0.255 to 0.366.

## EXAMPLE 5
## Two samples, unpaired (Altman et al. 2000, page 49):
## Goodfield et al. report adverse effects in 85 patients receiving either
## terbinafine or placebo treatment for dermatophyte onchomychois.
## Out of 56 patients receiving terbinafine, 5 patients experienced
## adverse effects. Out of 29 patients receiving a placebo, none experienced
## adverse effects.

grp1 <- matrix(cbind(5, 51), ncol = 2)
grp2 <- matrix(cbind(0, 29), ncol = 2)
dat <- as.matrix(cbind(grp1, grp2))
round(epi.conf(dat, method = "prop.unpaired"), digits = 3)

## The 95% confidence interval for the difference between the two groups is
## from -0.038 to +0.193.

## EXAMPLE 6
## Two samples, paired (Altman et al. 2000, page 53):
## In a reliability exercise, 41 patients were randomly selected from those
## who had undergone a thalium-201 stress test. The 41 sets of images were
## classified as normal or not by the core thalium laboratory and,
## independently, by clinical investigators from different centres.
## Of the 19 samples identified as ischaemic by clinical investigators
## 5 were identified as ischaemic by the laboratory. Of the 22 samples
## identified as normal by clinical investigators 0 were identified as
## ischaemic by the laboratory.

## Clinic | Laboratory | |
## | Ischaemic | Normal | Total
## ---------------------------------------------------------
## Ischaemic | 14 | 5 | 19
## Normal | 0 | 22 | 22
## ---------------------------------------------------------
## Total | 14 | 27 | 41
## ---------------------------------------------------------

dat <- as.matrix(cbind(14, 5, 0, 22))
round(epi.conf(dat, method = "prop.paired", conf.level = 0.95), digits = 3)

## The 95% confidence interval for the population difference in
## proportions is 0.011 to 0.226 or approximately +1% to +23%.

## EXAMPLE 7
## A herd of cattle were tested for brucellosis. Two samples out of 200
## test returned a positive result. Assuming 100% test sensitivity and



18 epi.convgrid

## specificity, what is the estimated prevalence of brucellosis in this
## group of animals?

pos <- 4
pop <- 200
dat <- as.matrix(cbind(pos, pop))
epi.conf(dat, method = "prevalence") * 100

## The estimated prevalence of brucellosis in this herd is 2 cases
## per 100 cattle (95% CI 0.54 -- 5.0 cases per 100 cattle).

## EXAMPLE 8
## The observed disease counts and population size in four areas are provided
## below. What are the the standardised morbidity ratios of disease for each
## area and their 95% confidence intervals?

obs <- c(5, 10, 12, 18)
pop <- c(234, 189, 432, 812)
dat <- as.matrix(cbind(obs, pop))
round(epi.conf(dat, method = "smr"), digits = 2)

epi.convgrid Convert British National Grid georeferences to easting and northing
coordinates

Description

Convert British National Grid georeferences to easting and northing coordinates.

Usage

epi.convgrid(os.refs)

Arguments

os.refs a vector of character strings listing the British National Grid georeferences to be
converted.

Note

If an invalid georeference is encountered in the vector os.ref the method returns a NA.

Examples

os.refs <- c("SJ505585","SJ488573","SJ652636")
epi.convgrid(os.refs)
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epi.cp Extract unique covariate patterns from a data set

Description

Extract the set of unique patterns from a set of covariates.

Usage

epi.cp(dat)

Arguments

dat an i row by j column data frame where the i rows represent individual observa-
tions and the m columns represent covariates.

Details

A covariate pattern is a unique combination of values of predictor variables. For example, if a
model contains two dichotomous predictors, there will be four covariate patterns possible: (1,1),
(1,0), (0,1), and (0,0). This function extracts the n unique covariate patterns from a data
set comprised of i observations, labelling them from 1 to n. A vector of length m is also returned,
listing the covariate pattern identifier for each observation.

Value

A list containing the following:

cov.pattern a data frame with columns: id the unique covariate patterns, n the number of
occasions each of the listed covariate pattern appears in the data, and the unique
covariate combinations.

id a vector listing the covariate pattern identifier for each observation.

References

Dohoo I, Martin W, Stryhn H (2003). Veterinary Epidemiologic Research. AVC Inc, Charlottetown,
Prince Edward Island, Canada.

Examples

## Generate a set of covariates:
set.seed(seed = 1234)
obs <- round(runif(n = 100, min = 0, max = 1), digits = 0)
v1 <- round(runif(n = 100, min = 0, max = 4), digits = 0)
v2 <- round(runif(n = 100, min = 0, max = 4), digits = 0)
dat <- as.data.frame(cbind(obs, v1, v2))

dat.glm <- glm(obs ~ v1 + v2, family = binomial, data = dat)
dat.mf <- model.frame(dat.glm)

## Covariate pattern:
epi.cp(dat.mf[-1])
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## There are 25 covariate patterns in this data set. Subject 100 has
## covariate pattern 21.

epi.cpresids Covariate pattern residuals from a logistic regression model

Description

Returns covariate pattern residuals and delta betas from a logistic regression model.

Usage

epi.cpresids(obs, fit, covpattern)

Arguments

obs a vector of observed values (i.e. counts of ‘successes’) for each covariate pat-
tern).

fit a vector defining the predicted (i.e. fitted) probability of success for each covari-
ate pattern.

covpattern a epi.cp object.

Value

A data frame with 13 elements: cpid the covariate pattern identifier, n the number of subjects
in this covariate pattern, obs the observed number of successes, pred the predicted number
of successes, raw the raw residuals, sraw the standardised raw residuals, pearson the Pear-
son residuals, spearson the standardised Pearson residuals, deviance the deviance residuals,
leverage leverage, deltabeta the delta-betas, sdeltabeta the standardised delta-betas,
and deltachi delta chi statistics.

References

Hosmer DW, Lemeshow S (1989). Applied Logistic Regression. John Wiley & Sons, New York,
USA, pp. 137 - 138.

See Also

epi.cp

Examples

infert.glm <- glm(case ~ spontaneous + induced, data = infert,
family = binomial())

infert.mf <- model.frame(infert.glm)
infert.cp <- epi.cp(infert.mf[-1])

infert.obs <- as.vector(by(infert$case, as.factor(infert.cp$id),
FUN = sum))

infert.fit <- as.vector(by(fitted(infert.glm), as.factor(infert.cp$id),
FUN = min))

infert.res <- epi.cpresids(obs = infert.obs, fit = infert.fit,
covpattern = infert.cp)
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epi.descriptives Descriptive statistics

Description

Computes descriptive statistics from a vector of numbers.

Usage

epi.descriptives(dat, quantile = c(0.025, 0.975))

Arguments

dat vector for which descriptive statistics will be calculated.

quantile vector of length two specifying quantiles to be calculated.

Examples

tmp <- rnorm(1000, mean = 0, sd = 1)
epi.descriptives(tmp, quantile = c(0.025, 0.975))

epi.detectsize Sample size to detect disease

Description

Estimates the required sample size to detect disease. The method adjusts sample size estimates on
the basis of test sensitivity and specificity and can account for series and parallel test interpretation.

Usage

epi.detectsize(N, prev, se, sp, interpretation = "series",
covar = c(0,0), conf.level = 0.95, finite.correction = TRUE)

Arguments

N a vector of length one or two defining the size of the population. The first ele-
ment of the vector defines the number of clusters, the second element defining
the mean number of sampling units per cluster.

prev a vector of length one or two defining the prevalence of disease in the popula-
tion. The first element of the vector defines the between-cluster prevalence, the
second element defines the within-cluster prevalence.

se a vector of length one or two defining the sensitivity of the test(s) used.

sp a vector of length one or two defining the specificity of the test(s) used.
interpretation

a character string indicating how test results should be interpreted. Options are
series or parallel.
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covar a vector of length two defining the covariance between test results for disease
positive and disease negative groups. The first element of the vector is the co-
variance between test results for disease positive subjects. The second element
of the vector is the covariance between test results for disease negative subjects.
Use covar = c(0,0) (the default) if these values are not known.

conf.level scalar, defining the level of confidence in the computed result.
finite.correction

logial, should a finite correction factor be applied?

Value

A list containing the following:

performance The sensitivity and specificity of the testing strategy.

sample.size The number of clusters, units, and total number of units to be sampled.

Note

The finite correction factor reduces the variance of the sample as the sample size approaches the
population size. As a rule of thumb, set finite.correction = TRUE when the sample size
is greater than 5% of the population size.

Define se1 and se2 as the sensitivity for the first and second test, sp1 and sp2 as the specificity
for the first and second test, p111 as the proportion of disease-positive subjects with a positive
test result to both tests and p000 as the proportion of disease-negative subjects with a negative test
result to both tests. The covariance between test results for the disease-positive group is p111 -
se1 * se2. The covariance between test results for the disease-negative group is p000 - sp1

* sp2.

References

Dohoo I, Martin W, Stryhn H (2003). Veterinary Epidemiologic Research. AVC Inc, Charlottetown,
Prince Edward Island, Canada, pp. 47 and pp 102 - 103.

Examples

## EXAMPLE 1
## We would like to confirm the absence of disease in a single 1000-cow
## dairy herd. We expect the prevalence of disease in the herd to be 5%.
## We intend to use a single test with a sensitivity of 0.90 and a
## specificity of 0.80. How many samples should we take to be 95% certain
## that, if all tests are negative, the disease is not present?

epi.detectsize(N = 1000, prev = 0.05, se = 0.90, sp = 0.80, interpretation =
"series", covar = c(0,0), conf.level = 0.95, finite.correction = TRUE)

## We need to sample 59 cows.

## EXAMPLE 2
## We would like to confirm the absence of disease in a study area. If the
## disease is present we expect the between-herd prevalence to be 8% and the
## within-herd prevalence to be 5%. We intend to use two tests: the first has
## a sensitivity and specificity of 0.90 and 0.80, respectively. The second
## has a sensitivity and specificity of 0.95 and 0.85, respectively. The two
## tests will be interpreted in parallel. How many herds and cows within herds
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## should we sample to be 95% certain that the disease is not present in the
## study area if all tests are negative? There area is comprised of
## approximately 5000 herds and the average number of cows per herd is 100.

epi.detectsize(N = c(5000, 100), prev = c(0.08, 0.05), se = c(0.90, 0.95),
sp = c(0.80, 0.85), interpretation = "parallel", covar = c(0,0),
conf.level = 0.95, finite.correction = TRUE)

## We need to sample 31 cows from 38 herds (a total of 1178 samples).
## The sensitivity of this testing regime is 99%. The specificity of this
## testing regime is 68%.

## EXAMPLE 3
## You want to document the absence of Mycoplasma from a 200-sow pig herd.
## Based on your experience and the literature, a minimum of 20% of sows
## would have seroconverted if Mycoplasma were present in the herd. How many
## sows do you need to sample?

epi.detectsize(N = 200, prev = 0.20, se = 1.00, sp = 1.00, conf.level = 0.95,
finite.correction = TRUE)

## If you test 12 sows and all test negative you can state that you are 95%
## confident that the prevalence rate of Mycoplasma in the herd is less than
## 20%.

epi.dgamma Estimate the precision of a [structured] heterogeneity term

Description

Returns the precision of a [structured] heterogeneity term after one has specified the amount of
variation a priori.

Usage

epi.dgamma(rr, quantiles = c(0.05, 0.95))

Arguments

rr the lower and upper limits of relative risk, estimated a priori.

quantiles a vector of length two defining the quantiles of the lower and upper relative risk
estimates.

Value

Returns the precision (the inverse variance) of the heterogeneity term.

References

Best, NG. WinBUGS 1.3.1 Short Course, Brisbane, November 2000.
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Examples

## Suppose we are expecting the lower 5% and upper 95% confidence interval
## of relative risk in a data set to be 0.5 and 3.0, respectively.
## A prior guess at the precision of the heterogeneity term would be:

tau <- epi.dgamma(rr = c(0.5, 3.0), quantiles = c(0.05, 0.95))
tau

## This can be translated into a gamma distribution. We set the mean of the
## distribution as tau and specify a large variance (that is, we are not
## certain about tau).

mean <- tau
var <- 1000
shape <- mean^2 / var
inv.scale <- mean / var

## In WinBUGS the precision of the heterogeneity term may be parameterised
## as tau ~ dgamma(shape, inv.scale). Plot the probability density function
## of tau:

z <- seq(0.01, 10, by = 0.01)
fz <- dgamma(z, shape = shape, scale = 1/inv.scale)
plot(z, fz, type = "l", ylab = "Probability density of tau")

epi.directadj Directly adjusted measures of disease frequency

Description

Compute directly adjusted rates, on the basis of a specified standard population.

Usage

epi.directadj(obs, pop, std, conf.level = 0.95)

Arguments

obs a matrix representing the observed number of events. Rows represent strata
(e.g. areas) and the columns represent the covariates to be adjusted for (e.g. age,
herd type). The sum of each row will equal the total number of events for each
stratum. If there are no stratification variables obs will be a one column matrix.

pop a matrix representing the population size. Rows represent the strata (e.g. areas)
and the columns represent the covariates to be adjusted for (e.g. age, herd type).
The sum of each row will equal the total population size within each stratum. If
there are no stratification variables pop will be a one column matrix.

std a matrix representing the standard population size in each areal unit. In this
matrix the rows represent each strata and the columns represent each covariate.
Each cell of the matrix gives the strata and covariate specific standardised pop-
ulation size. The sum of each row will equal the total standardised population
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size within each strata. If there are no stratification variables std will be a one
column matrix.

conf.level magnitude of the returned confidence interval. Must be a single number between
0 and 1.

Value

A list containing the following:

crude.strata the crude rates for each strata.
crude.summary

the crude rates across all strata.

adj.strata the directly adjusted rates for each strata.

adj.summary the directly adjusted rates across all strata.

References

Fay M, Feuer E (1997). Confidence intervals for directly standardized rates: A method based on
the gamma distribution. Statistics in Medicine 16: 791 - 801.

Examples

## A study was conducted to estimate the seroprevalence of leptospirosis
## in dogs in Glasgow and Edinburgh, Scotland. The following data were
## obtained:

obs <- matrix(data = c(61,69), nrow = 2, byrow = TRUE,
dimnames = list(c("ED","GL"), NULL))

pop <- matrix(data = c(260,251), nrow = 2, byrow = TRUE,
dimnames = list(c("ED","GL"), NULL))

## Compute directly adjusted seroprevalence estimates, using a standard
## population size of 500:

std <- matrix(data = c(250,250), nrow = 2, byrow = TRUE,
dimnames = list(c("ED","GL"), NULL))

epi.directadj(obs, pop, std, conf.level = 0.95)

## > $crude.area
## > est se est.025 est.975
## > ED 0.2346154 0.01455023 0.1769231 0.2961538
## > GL 0.2749004 0.01735156 0.2111554 0.3426295

## > $crude.summary
## > est se est.025 est.975
## > 1 0.2544031 0.01125413 0.2113503 0.2994129

## > $adj.summary
## > est var est.025 est.975
## > 1 0.2547579 0.0004993969 0.2128434 0.3025123

## The crude prevalence data suggests that Glasgow has a slightly higher
## seroprevalence of leptospirosis in its dog population. We now stratify
## the data by sex:
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obs <- matrix(data = c(15,46,53,16), nrow = 2, byrow = TRUE,
dimnames = list(c("ED","GL"), c("M","F")))

pop <- matrix(data = c(48,212,180,71), nrow = 2, byrow = TRUE,
dimnames = list(c("ED","GL"), c("M","F")))

## Compute directly adjusted seroprevalence estimates, using a standard
## population size of 500:

std <- matrix(data = c(250,250,250,250), nrow = 2, byrow = TRUE,
dimnames = list(c("ED","GL"), c("M","F")))

epi.directadj(obs, pop, std, conf.level = 0.95)

## > $crude.area
## > est se est.025 est.975
## > ED 0.2346154 0.01455023 0.1769231 0.2961538
## > GL 0.2749004 0.01735156 0.2111554 0.3426295

## > $crude.summary
## > est se est.025 est.975
## > 1 0.2544031 0.01125413 0.2113503 0.2994129

## > $adj.strata
## > est var est.025 est.975
## > ED 0.2647406 0.0001323703 0.2426680 0.2882815
## > GL 0.2598983 0.0001299491 0.2380329 0.2832322

## > $adj.summary
## > est se est.025 est.975
## > 1 0.2623194 0.008295268 0.231 0.295

## The confounding effect of sex has been removed by producing gender-
## adjusted prevalence estimates.

epi.dms Decimal degrees and degrees, minutes and seconds conversion

Description

Converts decimal degrees to degrees, minutes and seconds. Converts degrees, minutes and seconds
to decimal degrees.

Usage

epi.dms(dat)

Arguments

dat the data. A one-column matrix is assumed when converting decimal degrees to
degrees, minutes, and seconds. A two-column matrix is assumed when convert-
ing degrees and decimal minutes to decimal degrees. A three-column matrix is
assumed when converting degrees, minutes and seconds to decimal degrees.
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Examples

## EXAMPLE 1 Degrees, minutes, seconds to decimal degrees:
dat <- matrix(c(41, 38, 7.836, -40, 40, 27.921),

byrow = TRUE, nrow = 2)
epi.dms(dat)

## EXAMPLE 2 Decimal degrees to degrees, minutes, seconds
dat <- matrix(c(41.63551, -40.67442), nrow = 2)
epi.dms(dat)

epi.dsl Mixed-effects meta-analysis of binary outcomes using the DerSimo-
nian and Laird method

Description

Computes individual study odds or risk ratios for binary outcome data. Computes the summary
odds or risk ratio using the DerSimonian and Laird method. Performs a test of heterogeneity among
trials. Performs a test for the overall difference between groups (that is, after pooling the studies,
do treated groups differ significantly from controls?).

Usage

epi.dsl(ev.trt, n.trt, ev.ctrl, n.ctrl, names, method = "odds.ratio",
conf.level = 0.95)

Arguments

ev.trt observed number of events in the treatment group.

n.trt number in the treatment group.

ev.ctrl observed number of events in the control group.

n.ctrl number in the control group.

names character string identifying each trial.

method a character string indicating the method to be used. Options are odds.ratio
or risk.ratio.

conf.level magnitude of the returned confidence interval. Must be a single number between
0 and 1.

Value

A list containing the following:

OR the odds ratio for each trial, the standard error of the odds ratio for each trial,
and the lower and upper bounds of the confidence interval of the odds ratio for
each trial.

RR the risk ratio for each trial, the standard error of the risk ratio for each trial, and
the lower and upper bounds of the confidence interval of the risk ratio for each
trial.
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OR.summary the DerSimonian and Laird summary odds ratio, the standard error of the Der-
Simonian and Laird summary odds ratio, the lower and upper bounds of the
confidence interval of the DerSimonian and Laird summary odds ratio.

RR.summary the DerSimonian and Laird summary risk ratio, the standard error of the DerSi-
monian and Laird summary risk ratio, the lower and upper bounds of the confi-
dence interval of the DerSimonian and Laird summary risk ratio.

weights the inverse variance and DerSimonian and Laird weights for each trial.
heterogeneity

a vector containing Q the heterogeneity test statistic, df the degrees of freedom
and its associated P-value.

Hsq the relative excess of the heterogeneity test statistic Q over the degrees of free-
dom df.

Isq the percentage of total variation in study estimates that is due to heterogeneity
rather than chance.

tau.sq the variance of the treatment effect among trials.

effect a vector containing z the test statistic for overall treatment effect and its associ-
ated P-value.

Note

Under the random-effects model, the assumption of a common treatment effect is relaxed, and the
effect sizes are assumed to have a normal distribution with variance tau.sq.

Using this method, the DerSimonian and Laird weights are used to compute the pooled odds ratio.

The function checks each strata for cells with zero frequencies. If a zero frequency is found in any
cell, 0.5 is added to all cells within the strata.

References

Deeks JJ, Altman DG, Bradburn MJ (2001). Statistical methods for examining heterogeneity and
combining results from several studies in meta-analysis. In: Egger M, Davey Smith G, Altman
D (eds). Systematic Review in Health Care Meta-Analysis in Context. British Medical Journal,
London, 2001, pp. 291 - 299.

DerSimonian R, Laird N (1986). Meta-analysis in clinical trials. Controlled Clinical Trials 7: 177
- 188.

Higgins J, Thompson S (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine
21: 1539 - 1558.

See Also

epi.iv, epi.mh, epi.smd

Examples

data(epi.epidural)
epi.dsl(ev.trt = epi.epidural$ev.trt, n.trt = epi.epidural$n.trt,

ev.ctrl = epi.epidural$ev.ctrl, n.ctrl = epi.epidural$n.ctrl,
names = as.character(epi.epidural$trial), method = "odds.ratio",
conf.level = 0.95)
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epi.edr Estimated dissemination ratio

Description

Computes estimated dissemination ratio on the basis of a vector of numbers (usually counts of
incident cases identified on each day of an epidemic).

Usage

epi.edr(dat, n = 4, conf.level = 0.95, nsim = 99, na.zero = TRUE)

Arguments

dat a numeric vector listing the number of incident cases for each day of an epi-
demic.

n scalar, defining the number of days to be used when computing the estimated
dissemination ratio.

conf.level magnitude of the returned confidence interval. Must be a single number between
0 and 1.

nsim scalar, defining the number of simulations to be used for the confidence interval
calculations.

na.zero logical, replace NaN or Inf values with zeros?

Details

In infectious disease epidemics the n-day estimated dissemination ratio (EDR) at day i equals the
total number of incident cases between day i and day [i - (n - 1)] (inclusive) divided by the
total number of incident cases between day (i - n) and day (i - 2n) + 1 (inclusive). EDR
values are often calculated for each day of an epidemic and presented as a time series analysis. If
the EDR is consistently less than unity, the epidemic is said to be ‘under control.’

A simulation approach is used to calculate confidence intervals around each daily EDR estimate.
The numerator and denominator of the EDR estimate for each day is taken in turn and a random
number drawn from a Poisson distribution, using the calculated numerator and denominator value
as the mean. EDR is then calculated for these simulated values and the process repeated nsim
times. Confidence intervals are then derived from the vector of simulated values for each day.

Value

Returns the point estimate of the EDR and the lower and upper bounds of the confidence interval of
the EDR.

Examples

set.seed(123)
dat <- rpois(n = 50, lambda = 2)
edr.04 <- epi.edr(dat, n = 4, conf.level = 0.95, nsim = 99, na.zero = TRUE)

## Plot:
plot(1:50, 1:50, xlim = c(0,25), ylim = c(0, 10), xlab = "Days",

ylab = "Estimated dissemination ratio", type = "n", main = "")
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lines(1:50, edr.04[,1], type = "l", lwd = 2, lty = 1, col = "blue")
lines(1:50, edr.04[,2], type = "l", lwd = 1, lty = 2, col = "blue")
lines(1:50, edr.04[,3], type = "l", lwd = 1, lty = 2, col = "blue")

epi.empbayes Empirical Bayes estimates

Description

Computes empirical Bayes estimates of observed event counts using the method of moments.

Usage

epi.empbayes(obs, pop)

Arguments

obs a vector representing the observed disease counts in each region of interest.

pop a vector representing the population count in each region of interest.

Details

The gamma distribution is sometimes parameterised in terms of shape and rate parameters. The rate
parameter equals the inverse of the scale parameter. The mean of the distribution equals δ/α. The
variance of the distribution equals δ/α2. The empirical Bayes estimate of the proportion affected in
each area equals (obs+ δ)/(pop+ α).

Value

A data frame with four elements: gamma mean observed event count, phi variance of observed
event count, alpha shape parameter of gamma distribution, and delta scale parameter of gamma
distribution.

References

Bailey TC, Gatrell AC (1995). Interactive Spatial Data Analysis. Longman Scientific & Technical.
London.

Langford IH (1994). Using empirical Bayes estimates in the geographical analysis of disease risk.
Area 26: 142 - 149.

Examples

data(epi.SClip)
obs <- epi.SClip$cases
pop <- epi.SClip$population

est <- epi.empbayes(obs, pop)
empbayes.prop <- (obs + est[4]) / (pop + est[3])
raw.prop <- (obs) / (pop)
rank <- rank(raw.prop)
dat <- as.data.frame(cbind(rank, raw.prop, empbayes.prop))



epi.epidural 31

plot(dat$rank, dat$raw.prop, type = "n", xlab = "Rank", ylab = "Proportion")
points(dat$rank, dat$raw.prop, pch = 16, col = "red")
points(dat$rank, dat$empbayes.prop, pch = 16, col = "blue")
legend(5, 0.00025, legend = c("Raw estimate", "Bayes adjusted estimate"),

col = c("red","blue"), pch = c(16,16), bty = "n")

epi.epidural Rates of use of epidural anaesthesia in trials of caregiver support

Description

This data set provides results of six trials investigating rates of use of epidural anaesthesia during
childbirth. Each trial is made up of a group where a caregiver (midwife, nurse) provided support
intervention and a group where standard care was provided. The objective was to determine if there
were higher rates of epidural use when a caregiver was present at birth.

Usage

data(epi.epidural)

Format

A data frame with 6 observations on the following 5 variables.

trial the name and year of the trial.

ev.trt number of births in the caregiver group where an epidural was used.

n.trt number of births in the caregiver group.

ev.ctrl number of births in the standard care group where an epidural was used.

n.ctrl number of births in the standard care group.

Source

Deeks JJ, Altman DG, Bradburn MJ (2001). Statistical methods for examining heterogeneity and
combining results from several studies in meta-analysis. In: Egger M, Davey Smith G, Altman
D (eds). Systematic Review in Health Care Meta-Analysis in Context. British Medical Journal,
London, pp. 291 - 299.

epi.herdtest Estimate herd test characteristics

Description

When tests are applied to individuals within a group we may wish to designate the group as being
either diseased or non-diseased on the basis of these individual test results. This function estimates
sensitivity and specificity of this testing regime at the group (or herd) level.

Usage

epi.herdtest(se, sp, P, N, n, k)
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Arguments

se a vector of length one defining the sensitivity of the individual test used.

sp a vector of length one defining the specificity of the individual test used.

P scalar, defining the estimated true prevalence.

N scalar, defining the herd size.

n scalar, defining the number of individuals to be tested per group (or herd).

k scalar, defining the critical number of individuals testing positive that will denote
the group as test positive.

Value

A data frame with four elements: APpos the probability of obtaining a positive test, APneg the
probability of obtaining a negative test, HSe the estimated group (herd) sensitivity, and HSp the
estimated group (herd) specificity.

Note

The method implemented in this function is based on the hypergeometric distribution.

Author(s)

Ron Thornton, MAF New Zealand, PO Box 2526 Wellington, New Zealand.

References

Dohoo I, Martin W, Stryhn H (2003). Veterinary Epidemiologic Research. AVC Inc, Charlottetown,
Prince Edward Island, Canada, pp. 113 - 115.

Examples

## EXAMPLE 1
## We wish to estimate the herd-level sensitivity and specificity of
## a testing regime using an individual animal test of sensitivity 0.391
## and specificity 0.964. The estimated true prevalence of disease is 0.12.
## Assume that 60 individuals will be tested per herd and we have
## specified that two or more positive test results identify the herd
## as positive.

epi.herdtest(se = 0.391, sp = 0.964, P = 0.12, N = 1E06, n = 60, k = 2)

## This testing regime gives a herd sensitivity of 0.95 and a herd
## specificity of 0.36. With a herd sensitivity of 0.95 we can be
## confident that we will declare a herd infected if it is infected.
## With a herd specficity of only 0.36, we will declare 0.64 of disease
## negative herds as infected, so false positives are a problem.
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epi.incin Laryngeal and lung cancer cases in Lancashire 1974 - 1983

Description

Between 1972 and 1980 an industrial waste incinerator operated at a site about 2 kilometres south-
west of the town of Coppull in Lancashire, England. Addressing community concerns that there
were greater than expected numbers of laryngeal cancer cases in close proximity to the incinerator
Diggle et al. (1990) conducted a study investigating risks for laryngeal cancer, using recorded cases
of lung cancer as controls. The study area is 20 km x 20 km in size and includes location of resi-
dence of patients diagnosed with each cancer type from 1974 to 1983. The site of the incinerator
was at easting 354500 and northing 413600.

Usage

data(epi.incin)

Format

A data frame with 974 observations on the following 3 variables.

xcoord easting coordinate (in metres) of each residence.

ycoord northin coordinate (in metres) of each residence.

status disease status: 0 = lung cancer, 1 = laryngeal cancer.

Source

Bailey TC and Gatrell AC (1995). Interactive Spatial Data Analysis. Longman Scientific & Tech-
nical. London.

References

Diggle P, Gatrell A, and Lovett A (1990). Modelling the prevalence of cancer of the larynx in
Lancashire: A new method for spatial epidemiology. In: Thomas R (Editor), Spatial Epidemiology.
Pion Limited, London, pp. 35 - 47.

Diggle P (1990). A point process modelling approach to raised incidence of a rare phenomenon in
the viscinity of a prespecified point. Journal of the Royal Statistical Society, A, 153: 349 - 362.

Diggle P, Rowlingson B (1994). A conditional approach to point process modelling of elevated risk.
Journal of the Royal Statistical Society, A, 157: 433 - 440.
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epi.indirectadj Indirectly adjusted rates

Description

Compute standardised mortality ratios and indirectly adjusted rates.

Usage

epi.indirectadj(obs, pop, std = "NA", type = "risk",
conf.level = 0.95)

Arguments

obs a matrix representing the observed number of events. Rows represent strata
(e.g. areas) and the columns represent the covariates to be adjusted for (e.g. age,
herd type). The sum of each row will equal the total number of events for each
stratum. If there are no stratification variables obs will be a one column matrix.

pop a matrix representing the population size. Rows represent the strata (e.g. areas)
and the columns represent the covariates to be adjusted for (e.g. age, herd type).
The sum of each row will equal the total population size within each stratum. If
there are no stratification variables pop will be a one column matrix.

std a vector specifying the standard risks/rates to be applied. The length of std
should be one plus the number of covariates to be adjusted for.

type a character string indicating the type of data. Options are risk (number of
cases per population at risk), or rate (number of cases per population-time at
risk).

conf.level magnitude of the returned confidence interval. Must be a single number between
0 and 1.

Details

Confidence intervals for the standardised mortality ratio for risks are based on the Poisson distri-
bution. Confidence intervals for the standardised mortality ratio for rates are based on formulae
provided by Dohoo, Martin, and Stryhn (2003, p 78).

Value

A list containing the following:

crude.risk the crude risks for each stratum.

adj.risk the indirectly adjusted risk for each stratum.

crude.smr the crude standardised mortality ratio for each stratum.

adj.smr the indirectly adjusted standardised mortality ratio for each sratum.

Author(s)

Thanks to Dr. Telmo Nunes (UISEE/DETSA, Faculdade de Medicina Veterinaria - UTL, Rua Prof.
Cid dos Santos, 1300-477 Lisboa Portugal) for details and code for the confidence interval calcula-
tions.
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References

Breslow NE, Day NE (1987). Statistical Methods in Cancer Reasearch: Volume II - The Design
and Analysis of Cohort Studies. Lyon: International Agency for Cancer Research.

Dohoo I, Martin W, Stryhn H (2003). Veterinary Epidemiologic Research. AVC Inc, Charlottetown,
Prince Edward Island, Canada, pp. 76 - 81.

Rothman KJ, Greenland S (1998). Modern Epidemiology, second edition. Lippincott Williams &
Wilkins, Philadelphia.

Sahai H, Khurshid A (1993). Confidence intervals for the mean of a Poisson distribution: A review.
Biometrical Journal 35: 857 - 867.

Sahai H, Khurshid A (1996). Statistics in Epidemiology. Methods, Techniques and Applications.
CRC Press, Baton Roca.

Examples

## EXAMPLE 1
## Data have been collected on the incidence of tuberculosis in two
## areas, for two herd types: dairy and beef.

obs <- matrix(data = c(17, 41, 10, 120), nrow = 2, byrow = TRUE,
dimnames = list(c("A", "B"), c("beef", "dairy")))

pop <- matrix(data = c(550, 450, 500, 1500), nrow = 2, byrow = TRUE,
dimnames = list(c("A", "B"), c("beef", "dairy")))

epi.indirectadj(obs, pop, std = "NA", type = "rate", conf.level = 0.05)

## The crude incidence risk of tuberculosis in area A was 0.058 cases per year.
## The crude incidence risk of tuberculosis in area B was 0.065 cases per year.
## The indirectly adjusted incidence risk of tuberculosis in area A was 0.071
## cases per year. The indirectly adjusted incidence risk of tuberculosis in
## area B was 0.059 cases per year.

## Repeat the analysis, explicitly defining the standard incidence risks
## for beef, dairy, and the total population as 0.025, 0.085, and 0.060
## cases per herd per year, respectively:

std <- c(0.025, 0.085, 0.060)
epi.indirectadj(obs, pop, std = std, type = "rate", conf.level = 0.05)

## The indirectly adjusted incidence risk of tuberculosis in area A was 0.067
## cases per year. The indirectly adjusted incidence risk of tuberculosis in
## area B was 0.056 cases per year.

epi.insthaz Instantaneous hazard computed on the basis of a Kaplan-Meier sur-
vival function

Description

Compute the instantaneous hazard on the basis of a Kaplan-Meier survival function.
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Usage

epi.insthaz(survfit.obj, conf.level = 0.95)

Arguments

survfit.obj a survfit object, computed using the survival package.

conf.level magnitude of the returned confidence interval. Must be a single number between
0 and 1.

Details

Computes the instantaneous hazard of failure, equivalent to the proportion of the population failing
per unit time.

Value

A data frame with three elements: time the observed failure times, est the proportion of the
population failing per unit time, lower the lower bounds of the confidence interval, and upper
the upper bounds of the confidence interval.

References

Venables W, Ripley B (2002). Modern Applied Statistics with S, fourth edition. Springer, New
York, pp. 353 - 385.

Singer J, Willett J (2003). Applied Longitudinal Data Analysis Modeling Change and Event Oc-
currence. Oxford University Press, London, pp. 348.

Examples

library(survival)
ovarian.km <- survfit(Surv(futime,fustat) ~ 1, data = ovarian)

ovarian.haz <- epi.insthaz(ovarian.km, conf.level = 0.95)
plot(ovarian.haz$time, ovarian.haz$est, xlab = "Days",

ylab = "Instantaneous hazard", type = "b", pch = 16)

epi.interaction Relative excess risk due to interaction in a case-control study

Description

Computes the relative excess risk due to interaction, the proportion of disease among those with
both exposures attributable to interaction, and the synergy index for case-control data. Confidence
interval calculations are based on those described by Hosmer and Lemeshow (1992).

Usage

epi.interaction(model, coeff, conf.level = 0.95)
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Arguments

model an object of class glm.

coeff a vector specifying the position of the two coefficients of their interaction term
in the model.

conf.level magnitude of the returned confidence interval. Must be a single number between
0 and 1.

Details

Interaction is defined as a departure from additivity of effects in epidemiologic studies. This func-
tion calculates three indices defined by Rothman (1998): (1) the relative excess risk due to interac-
tion (RERI), (2) the proportion of disease among those with both exposures that is attributable to
their interaction (AP[AB]), and (3) the synergy index (S). The synergy index measures the inter-
action between two risk factors expressed as the ratio of the relative excess risk for the combined
effect of the risk factors and the sum of the relative excess risks for each separate effect of the two
risk factors. In the absence of interaction both RERI and AP[AB] = 0 and S = 1.

These measures can be used to assess additive interaction when the odds ratio estimates the risk
ratio. However, it is recognised that odds ratios from case-control studies that are not designed to
directly estimate the risk or rate ratio (and only do so well when the outcome is rare).

Value

A list containing the following:

reri the relative excess risk due to interaction.

apab the proportion of disease among those with both exposures that is attributable to
interaction.

S the synergy index.

References

Chen S-C, Wong R-H, Shiu L-J, Chiou M-C, Lee H (2008). Exposure to mosquito coil smoke may
be a risk factor for lung cancer in Taiwan. Journal of Epidemiology 18: 19 - 25.

Hosmer DW, Lemeshow S (1992). Confidence interval estimation of interaction. Epidemiology 3:
452 - 456.

Kalilani L, Atashili J (2006). Measuring additive interaction using odds ratios. Epidemiologic
Perspectives & Innovations doi:10.1186/1742-5573-3-5.

Rothman K, Greenland S (1998). Modern Epidemiology. Lippincott - Raven Philadelphia, USA.

Rothman K, Keller AZ (1972). The effect of joint exposure to alcohol and tabacco on risk of cancer
of the mouth and pharynx. Journal of Chronic Diseases 23: 711 - 716.

Examples

## Data from Rothman and Keller (1972) evaluating the effect of joint exposure
## to alcohol and tabacco on risk of cancer of the mouth and pharynx (cited in
## Hosmer and Lemeshow, 1992):

can <- c(rep(1, times = 231), rep(0, times = 178), rep(1, times = 11),
rep(0, times = 38))

smk <- c(rep(1, times = 225), rep(0, times = 6), rep(1, times = 166),
rep(0, times = 12), rep(1, times = 8), rep(0, times = 3), rep(1, times = 18),
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rep(0, times = 20))
alc <- c(rep(1, times = 409), rep(0, times = 49))
dat <- as.data.frame(cbind(alc, smk, can))

## Table 2 of Hosmer and Lemeshow (1992):

dat.glm01 <- glm(can ~ alc + smk + alc:smk, family = binomial, data = dat)
summary(dat.glm01)

## Rothman suggested an alternative coding scheme to be employed for
## parameterising an interaction term. Using this approach, instead of using
## two risk factors and one product term to represent the interaction (as
## above) the risk factors are combined into one variable with four levels:

## a.neg b.neg: 0 0 0
## a.pos b.neg: 1 0 0
## a.neg b.pos: 0 1 0
## a.pos b.pos: 0 0 1

dat$d <- rep(NA, times = nrow(dat))
dat$d[dat$alc == 0 & dat$smk == 0] <- 0
dat$d[dat$alc == 1 & dat$smk == 0] <- 1
dat$d[dat$alc == 0 & dat$smk == 1] <- 2
dat$d[dat$alc == 1 & dat$smk == 1] <- 3
dat$d <- factor(dat$d)

## Table 3 of Hosmer and Lemeshow (1992):

dat.glm02 <- glm(can ~ d, family = binomial, data = dat)
summary(dat.glm02)

epi.interaction(model = dat.glm02, coeff = c(2,3,4), conf.level = 0.95)

## Page 455 of Hosmer and Lemeshow (1992):
## RERI: 3.73 (95% CI -1.83 -- 9.31).
## AP[AB]: 0.41 (95% CI -0.07 -- 0.90).
## S: 1.87 (95% CI 0.54 -- 5.41).

epi.iv Fixed-effect meta-analysis of binary outcomes using the inverse vari-
ance method

Description

Computes individual study odds or risk ratios for binary outcome data. Computes the summary
odds or risk ratio using the inverse variance method. Performs a test of heterogeneity among trials.
Performs a test for the overall difference between groups (that is, after pooling the studies, do treated
groups differ significantly from controls?).

Usage

epi.iv(ev.trt, n.trt, ev.ctrl, n.ctrl, names, method = "odds.ratio",
conf.level = 0.95)



epi.iv 39

Arguments

ev.trt observed number of events in the treatment group.

n.trt number in the treatment group.

ev.ctrl observed number of events in the control group.

n.ctrl number in the control group.

names character string identifying each trial.

method a character string indicating the method to be used. Options are odds.ratio
or risk.ratio.

conf.level magnitude of the returned confidence interval. Must be a single number between
0 and 1.

Details

Using this method, the inverse variance weights are used to compute the pooled odds ratios and risk
ratios. The inverse variance weights should be used to indicate the weight each trial contributes to
the meta-analysis.

Value

A list containing:

OR the odds ratio for each trial, the standard error of the odds ratio for each trial,
and the lower and upper bounds of the confidence interval of the odds ratio for
each trial.

RR the risk ratio for each trial, the standard error of the risk ratio for each trial, and
the lower and upper bounds of the confidence interval of the risk ratio for each
trial.

OR.summary the inverse variance summary odds ratio, the standard error of the inverse vari-
ance summary odds ratio, the lower and upper bounds of the confidence interval
of the inverse variance summary odds ratio.

RR.summary the inverse variance summary risk ratio, the standard error of the inverse vari-
ance summary risk ratio, the lower and upper bounds of the confidence interval
of the inverse variance summary risk ratio.

weights the raw and inverse variance weights assigned to each trial.

heterogeneity
a vector containing Q the heterogeneity test statistic, df the degrees of freedom
and its associated P-value.

Hsq the relative excess of the heterogeneity test statistic Q over the degrees of free-
dom df.

Isq the percentage of total variation in study estimates that is due to heterogeneity
rather than chance.

effect a vector containing z the test statistic for overall treatment effect and its associ-
ated P-value.
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Note

The inverse variance method performs poorly when data are sparse, both in terms of event rates
being low and trials being small. The Mantel-Haenszel method (epi.mh) is more robust when
data are sparse.

Using this method, the inverse variance weights are used to compute the pooled odds ratios and risk
ratios.

The function checks each strata for cells with zero frequencies. If a zero frequency is found in any
cell, 0.5 is added to all cells within the strata.

References

Deeks JJ, Altman DG, Bradburn MJ (2001). Statistical methods for examining heterogeneity and
combining results from several studies in meta-analysis. In: Egger M, Davey Smith G, Altman
D (eds). Systematic Review in Health Care Meta-Analysis in Context. British Medical Journal,
London, 2001, pp. 291 - 299.

Higgins JP, Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Statistics in
Medicine 21: 1539 - 1558.

See Also

epi.dsl, epi.mh, epi.smd

Examples

data(epi.epidural)
epi.iv(ev.trt = epi.epidural$ev.trt, n.trt = epi.epidural$n.trt,

ev.ctrl = epi.epidural$ev.ctrl, n.ctrl = epi.epidural$n.ctrl,
names = as.character(epi.epidural$trial), method = "odds.ratio",
conf.level = 0.95)

epi.kappa Kappa statistic

Description

Computes the kappa statistic and its confidence interval.

Usage

epi.kappa(a, b, c, d, conf.level = 0.95)

Arguments

a number of observations where observer 1 positive and observer 2 positive.

b number of observations where observer 1 negative and observer 2 positive.

c number of observations where observer 1 positive and observer 2 negative.

d number of observations where observer 1 negative and observer 2 negative.

conf.level magnitude of the returned confidence interval. Must be a single number between
0 and 1.
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Details

Kappa is a measure of agreement beyond the level of agreement expected by chance alone. The
observed agreement is the proportion of samples for which both methods (or observers) agree.

Common interpretations for the kappa statistic are as follows: < 0.2 slight agreement, 0.2 - 0.4
fair agreement, 0.4 - 0.6 moderate agreement, 0.6 - 0.8 substantial agreement, > 0.8 almost perfect
agreement.

Value

A list containing the following:

kappa a data frame with the kappa statistic and the lower and upper bounds of the
confidence interval for the kappa statistic.

mcnemar a data frame containing McNemar’s test statistic and its associated P-value.

Note

Obs1 + Obs1 - Total
Obs 2 + a b a + b
Obs 2 - c c c + d
Total a + c b + c a + b + c + d

McNemar’s test is used to test for the presence of bias. Bias would be present if the proportion posi-
tive to each test differed. A non-significant McNemar’s test would indicate that the two proportions
do not differ, and that the kappa statistic is a valid measure of agreeement

References

Altman DG, Machin D, Bryant TN, Gardner MJ (2000). Statistics with Confidence, second edition.
British Medical Journal, London, pp. 116 - 118.

Dohoo I, Martin W, Stryhn H (2003). Veterinary Epidemiologic Research. AVC Inc, Charlottetown,
Prince Edward Island, Canada, pp. 92.

Examples

## Kidney samples from 291 salmon were split with one half of the
## samples sent to each of two laboratories where an IFAT test
## was run on each sample. The following results were obtained:

## Lab 1 positive, lab 2 positive: 19
## Lab 1 positive, lab 2 negative: 10
## Lab 1 negative, lab 2 positive: 6
## Lab 1 negative, lab 2 negative: 256

epi.kappa(a = 19, b = 10, c = 6, d = 256, conf.level = 0.95)

## The McNemar's chi-squared test statistic is 1.00 (P = 0.32). We
## conclude that there is little evidence that the two laboratories
## found different proportions positive.

## The proportion of agreements after chance has been excluded is
## 0.67 (95% CI 0.52 to 0.83). We conclude that, on the basis of
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## this sample, that there is substantial agreement between the two
## laboratories.

epi.ltd Lactation to date and standard lactation milk yields

Description

Calculate lactation to date and standard lactation (that is, 305 or 270 day) milk yields.

Usage

epi.ltd(dat, std = "305")

Arguments

dat an eight column data frame listing (in order) cow identifier, herd test identifier,
lactation number, herd test days in milk, lactation length (NA if lactation incom-
plete), herd test milk yield (litres), herd test fat (percent), and herd test protein
(percent).

std std = "305" returns 305-day milk volume, fat, and protein yield. std =
"270" returns 270-day milk volume, fat, and protein yield.

Details

Lactation to date yields will only be calculated if there are four or more herd test events.

Value

A data frame with nine elements: ckey cow identifier, lact lactation number, llen lactation
length, vltdmilk volume (litres) to last herd test or dry off date (computed on the basis of lactation
length, fltd fat yield (kilograms) to last herd test or dry off date (computed on the basis of lactation
length, pltd protein yield (kilograms) to last herd test or dry off date (computed on the basis of
lactation length, vstd 305-day or 270-day milk volume yield (litres), fstd 305-day or 270-day
milk fat yield (kilograms), and pstd 305-day or 270-day milk protein yield (kilograms).

Author(s)

Nicolas Lopez-Villalobos and Mark Stevenson (IVABS, Massey University, Palmerston North New
Zealand).

References

Kirkpatrick M, Lofsvold D, Bulmer M (1990). Analysis of the inheritance, selection and evolution
of growth trajectories. Genetics 124: 979 - 993.
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Examples

## Generate herd test data:
ckey <- rep(1, times = 12)
pkey <- 1:12
lact <- rep(1:2, each = 6)
dim <- c(25, 68, 105, 145, 200, 240, 30, 65, 90, 130, 190, 220)
llen <- c(280, 280, 280, 280, 280, 280, NA, NA, NA, NA, NA, NA)
vol <- c(18, 30, 25, 22, 18, 12, 20, 32, 27, 24, 20, 14)
fat <- c(4.8, 4.3, 4.5, 4.7, 4.8, 4.9, 4.8, 4.3, 4.5, 4.7, 4.8, 4.9)/100
pro <- c(3.7, 3.5, 3.6, 3.7, 3.8, 3.9, 3.7, 3.5, 3.6, 3.7, 3.8, 3.9)/100
dat <- as.data.frame(cbind(ckey, pkey, lact, dim, llen, vol, fat, pro))

## Lactation to date and 305-day milk, fat, and protein yield:
epi.ltd(dat, std = "305")

## Lactation to date and 270-day milk, fat, and protein yield:
epi.ltd(dat, std = "270")

epi.mh Fixed-effects meta-analysis of binary outcomes using the Mantel-
Haenszel method

Description

Computes individual study odds or risk ratios for binary outcome data. Computes the summary
odds or risk ratio using the Mantel-Haenszel method. Performs a test of heterogeneity among trials.
Performs a test for the overall difference between groups (that is, after pooling the studies, do treated
groups differ significantly from controls?).

Usage

epi.mh(ev.trt, n.trt, ev.ctrl, n.ctrl, names, method = "odds.ratio",
conf.level = 0.95)

Arguments

ev.trt observed number of events in the treatment group.

n.trt number in the treatment group.

ev.ctrl observed number of events in the control group.

n.ctrl number in the control group.

names character string identifying each trial.

method a character string indicating the method to be used. Options are odds.ratio
or risk.ratio.

conf.level magnitude of the returned confidence interval. Must be a single number between
0 and 1.
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Value

A list containing the following:

OR the odds ratio for each trial, the standard error of the odds ratio for each trial,
and the lower and upper bounds of the confidence interval of the odds ratio for
each trial.

RR the risk ratio for each trial, the standard error of the risk ratio for each trial, and
the lower and upper bounds of the confidence interval of the risk ratio for each
trial.

OR.summary the Mantel-Haenszel summary odds ratio, the standard error of the Mantel-
Haenszel summary odds ratio, the lower and upper bounds of the confidence
interval of the Mantel-Haenszel summary odds ratio.

RR.summary the Mantel-Haenszel summary risk ratio, the standard error of the Mantel-Haenszel
summary risk ratio, the lower and upper bounds of the confidence interval of the
Mantel-Haenszel summary risk ratio.

weights the raw and inverse variance weights assigned to each trial.

heterogeneity
a vector containing Q the heterogeneity test statistic, df the degrees of freedom
and its associated P-value.

Hsq the relative excess of the heterogeneity test statistic Q over the degrees of free-
dom df.

Isq the percentage of total variation in study estimates that is due to heterogeneity
rather than chance.

effect a vector containing z the test statistic for overall treatment effect and its associ-
ated P-value.

Note

Using this method, the pooled odds and risk ratios are computed using the raw individual study
weights. The methodology for computing the Mantel-Haenszel summary odds ratio follows the
approach decribed in Deeks, Altman and Bradburn MJ (2001, pp 291 - 299).

The function checks each strata for cells with zero frequencies. If a zero frequency is found in any
cell, 0.5 is added to all cells within the strata.

References

Deeks JJ, Altman DG, Bradburn MJ (2001). Statistical methods for examining heterogeneity and
combining results from several studies in meta-analysis. In: Egger M, Davey Smith G, Altman
D (eds). Systematic Review in Health Care Meta-Analysis in Context. British Medical Journal,
London, 2001, pp. 291 - 299.

Higgins JP, Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Statistics in
Medicine 21: 1539 - 1558.

See Also

epi.dsl, epi.iv, epi.smd
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Examples

data(epi.epidural)
epi.mh(ev.trt = epi.epidural$ev.trt, n.trt = epi.epidural$n.trt,

ev.ctrl = epi.epidural$ev.ctrl, n.ctrl = epi.epidural$n.ctrl,
names = as.character(epi.epidural$trial), method = "odds.ratio",
conf.level = 0.95)

epi.nomogram Post-test probability of disease given sensitivity and specificity of a test

Description

Computes the post-test probability of disease given sensitivity and specificity of a test.

Usage

epi.nomogram(se, sp, pre.pos, verbose = FALSE)

Arguments

se test sensitivity (0 - 1).

sp test specificity (0 - 1).

pre.pos the pre-test probability of disease in the patient.

verbose logical, indicating whether detailed or summary results are to be returned.

Value

A list containing the following:

likelihood.ratio
the likelihood ratio of a positive and negative test.

prob the post-test probability of disease given a positive and negative test.

References

Hunink M, Glasziou P (2001). Decision Making in Health and Medicine - Integrating Evidence and
Values. Cambridge University Press, pp. 128 - 156.

Examples

## You are presented with a dog with lethargy, exercise intolerance,
## weight gain and bilaterally symmetric truncal alopecia. You are
## suspicious of hypothyroidism and take a blood sample to measure
## basal serum thyroxine (T4).

## You believe that around 5% of dogs presented to your clinic with
## a signalment of general debility have hypothyroidism. The serum T4
## has a sensitivity of 0.89 and specificity of 0.85 for diagnosing
## hypothyroidism in the dog. The laboratory reports a serum T4
## concentration of 22.0 nmol/L (reference range 19.0 to 58.0 nmol/L).
## What is the post-test probability that this dog is hypothyroid?
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epi.nomogram(se = 0.89, sp = 0.85, pre.pos = 0.05, verbose = FALSE)

## The post-test probability that this dog is hypothyroid is 24%.

epi.offset Create offset vector

Description

Creates an offset vector based on a list.

Usage

epi.offset(id.names)

Arguments

id.names a list identifying the [location] of each case. This must be a factor.

Details

This function is useful for supplying spatial data to WinBUGS.

Value

A vector of length (1 + length of id). The first element of the offset vector is 1, corresponding to
the position at which data for the first factor appears in id. The second element of the offset vector
corresponds to the position at which the second factor appears in id and so on. The last element of
the offset vector corresponds to the length of the id list.

References

Bailey TC, Gatrell AC (1995). Interactive Spatial Data Analysis. Longman Scientific & Technical.
London.

Langford IH (1994). Using empirical Bayes estimates in the geographical analysis of disease risk.
Area 26: 142 - 149.

Examples

dat <- c(1,1,1,2,2,2,2,3,3,3)
dat <- as.factor(dat)

offset <- epi.offset(dat)
offset
## [1] 1 4 8 10
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epi.pooled Estimate herd test characteristics when pooled sampling is used

Description

We may wish to designate a group of individuals (e.g. a herd) as being either diseased or non-
diseased on the basis of pooled samples. This function estimates sensitivity and specificity of this
testing regime at the group (or herd) level.

Usage

epi.pooled(se, sp, P, m, r)

Arguments

se a vector of length one defining the sensitivity of the individual test used.

sp a vector of length one defining the specificity of the individual test used.

P scalar, defining the estimated true prevalence.

m scalar, defining the number of individual samples to make up a pooled sample.

r scalar, defining the number of pooled samples per group (or herd).

Value

A list containing the following:

HAPneg the apparent prevalence in a disease negative herd.

HSe the estimated group (herd) level sensitivity.

HSp the estimated group (herd) level specificity.

References

Dohoo I, Martin W, Stryhn H (2003). Veterinary Epidemiologic Research. AVC Inc, Charlottetown,
Prince Edward Island, Canada, pp. 115 - 117 .

Christensen J, Gardner IA (2000). Herd-level interpretation of test results for epidemiologic studies
of animal diseases. Preventive Veterinary Medicine 45: 83 - 106.

Examples

## We want to test dairy herds for Johne's disease using faecal culture
## which has a sensitivity and specificity of 0.647 and 0.981, respectively.
## Suppose we pool faecal samples from five cows together and use six pooled
## samples per herd. What is the herd level sensitivity and specificity
## based on this approach (assuming homogenous mixing)?

epi.pooled(se = 0.647, sp = 0.981, P = 0.12, m = 5 , r = 6)

## Herd level sensitivity is 0.927, herd level specificity is 0.562.
## Sensitivity at the herd level is increased using the pooled sampling
## approach; herd level specificity is decreased.
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epi.popsize Estimate population size

Description

Estimates population size on the basis of capture-recapture sampling.

Usage

epi.popsize(T1, T2, T12, conf.level = 0.95, verbose = FALSE)

Arguments

T1 an integer representing the number of individuals tested in the first round.

T2 an integer representing the number of individuals tested in the second round.

T12 an integer representing the number of individuals tested in both the first and
second round.

conf.level magnitude of the returned confidence interval. Must be a single number between
0 and 1.

verbose logical indicating whether detailed or summary results are to be returned.

Value

Returns the estimated population size and an estimate of the numbers of individuals that remain
untested.

References

Cannon RM, Roe RT (1982). Livestock Disease Surveys A Field Manual for Veterinarians. Aus-
tralian Government Publishing Service, Canberra, pp. 34.

Examples

## In a field survey 400 feral pigs are captured, marked and then released.
## On a second occassion 40 of the orignal capture are found when another 400
## pigs are captured. Estimate the size of this feral pig population. Estimate
## the number of feral pigs that have not been tested.

epi.popsize(T1 = 400, T2 = 400, T12 = 40, conf.level = 0.95, verbose = FALSE)

## Estimated population size: 4000 (95% CI 3125 - 5557)
## Estimated number of untested pigs: 3240 (95% CI 2365 - 4797)
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epi.prcc Partial rank correlation coefficients

Description

Compute partial rank correlation coefficients.

Usage

epi.prcc(dat, sided.test = 2)

Arguments

dat a data frame comprised of K + 1 columns and N rows, where K represents the
number of model parameters being evaluated and N represents the number of
replications of the model. The last column of the data frame (i.e. column K +
1) provides the model output.

sided.test use a one- or two-sided test? Use a two-sided test if you wish to evaluate whether
or not the partial rank correlation coefficient is greater than or less than zero. Use
a one-sided test to evaluate whether or not the partial rank correlation coefficient
is greater than zero.

Details

If the number of parameters K is greater than the number of model replications N an error will be
returned.

Value

A data frame with three elements: gamma the partial rank corellation coefficient between each input
parameter and the outcome, test.statistic the test statistic used to determine the significance
of non-zero values of gamma, and p.value the associated P-value.

References

Blower S, Dowlatabladi H (1994). Sensitivity and uncertainty analysis of complex models of dis-
ease transmission: an HIV model, as an example. International Statistical Review 62: 229 - 243.

Sanchez M, Blower S (1997) Uncertainty and sensitivity analysis of the basic reproductive rate.
American Journal of Epidemiology, 145: 1127 - 1137.

Examples

## Create a matrix of simulation results:
x1 <- as.data.frame(rnorm(n = 10, mean = 120, sd = 10))
x2 <- as.data.frame(rnorm(n = 10, mean = 80, sd = 5))
x3 <- as.data.frame(rnorm(n = 10, mean = 40, sd = 20))
y <- 2 + (0.5 * x1) + (0.7 * x2) + (0.2 * x3)

dat <- as.data.frame(cbind(x1, x2, x3, y))
names(dat) <- c("X1", "X2", "X3", "Y")

epi.prcc(dat, sided.test = 2)
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epi.prev Estimate true prevalence

Description

Computes the true prevalence of a disease in a population on the basis of an imperfect test.

Usage

epi.prev(pos, tested, se, sp, conf.level = 0.95)

Arguments

pos the number of positives.

tested the number tested.

se test sensitivity (0 - 1).

sp test specificity (0 - 1).

conf.level magnitude of the returned confidence interval. Must be a single number between
0 and 1.

Details

Exact binomial confidence limits are calculated for apparent prevalence (see Collett 1999 for de-
tails).

Value

A list containing the following:

ap the point estimate of apparent prevalence, the standard error of the apparent
prevalence, and the lower and upper bounds of the confidence interval around
the apparent prevalence estimate.

tp the point estimate of the true prevalence, the standard error of the true preva-
lence, and the lower and upper bounds of the confidence interval around the true
prevalence estimate.

Note

This function uses apparent prevalence, test sensitivity and test specificity to estimate true preva-
lence (after Rogan and Gladen, 1978). The standard error of the Rogan Gladen true prevalence
estimate is based on Abel (1993) and discussed in Messam et al. (2008). It is assumed that test
sensitivity and specificity are known with certainty.

The Rogan Gladen true prevalence estimate is unreliable for small sample sizes and when true
prevalence is believed to be close to zero. The algorithm implemented here makes no correction
to the Rogan Gladen estimate of true prevalence if it is less than zero or greater than one (simply
to remind the user that it provides unreliable estimates of true prevalence under these conditions).
In this situation one is advised to adopt a Bayesian approach to true prevalence estimation. See
Messam et al. (2008) for a very readable introduction.
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References

Abel U (1993). DieBewertung Diagnostischer Tests. Hippokrates, Stuttgart.

Collett D (1999). Modelling Binary Data. Chapman & Hall/CRC, Boca Raton Florida, p. 24.

Gardener IA, Greiner M (1999). Advanced Methods for Test Validation and Interpretation in Vet-
erinary Medicince. Freie Universitat Berlin, ISBN 3-929619-22-9; 80 pp.

Messam L, Branscum A, Collins M, Gardner I (2008) Frequentist and Bayesian approaches to
prevalence estimation using examples from Johne’s disease. Animal Health Research Reviews 9: 1
- 23.

Rogan W, Gladen B (1978). Estimating prevalence from results of a screening test. American
Journal of Epidemiology 107: 71 - 76.

Examples

## A simple random sample of 150 cows from a herd of 2560 is taken.
## Each cow is given a screening test for brucellosis which has a
## sensitivity of 96% and a specificity of 89%. Of the 150 cows tested
## 23 were positive to the screening test. What is the estimated prevalence
## of brucellosis in this herd (and its 95% confidence interval)?

epi.prev(pos = 23, tested = 150, se = 0.96, sp = 0.89, conf.level = 0.95)

## The estimated true prevalence of brucellosis in this herd is 5.1 cases per
## 100 cows (95% CI 0 -- 12 cases per 100 cows).

epi.RtoBUGS R to WinBUGS data conversion

Description

Writes data from an R list to a text file in WinBUGS-compatible format.

Usage

epi.RtoBUGS(datalist, towhere)

Arguments

datalist a list (normally, with named elements) which may include scalars, vectors, ma-
trices, arrays of any number of dimensions, and data frames.

towhere a character string identifying where the file is to be written.

Details

Does not check to ensure that only numbers are being produced. In particular, factor labels in a data
frame will be output to the file, which normally won’t be desired.

Author(s)

Terry Elrod (Terry.Elrod@UAlberta.ca), Kenneth Rice.



52 epi.SClip

References

Best, NG. WinBUGS 1.3.1 Short Course, Brisbane, November 2000.

epi.SClip Lip cancer in Scotland 1975 - 1980

Description

This data set provides counts of lip cancer diagnoses made in Scottish districts from 1975 to 1980.
In addition to district-level counts of disease events and estimates of the size of the population at
risk, the data set contains (for each district) an estimate of the percentage of the population involved
in outdoor industry (agriculture, fishing, and forestry). It is known that exposure to sunlight is a
risk factor for cancer of the lip and high counts are to be expected in districts where there is a high
proportion of the workforce involved in outdoor industry.

Usage

data(epi.SClip)

Format

A data frame with 56 observations on the following 6 variables.

gridcode alternative district identifier.

id numeric district identifier (1 to 56).

district district name.

cases number of lip cancer cases diagnosed 1975 - 1980.

population total person years at risk 1975 - 1980.

prop.ag percent of the population engaged in outdoor industry.

Source

This data set has been analysed by a number of authors including Clayton and Kaldor (1987),
Conlon and Louis (1999), Stern and Cressie (1999), and Carlin and Louis (2000, p 270).

References

Clayton D, Kaldor J (1987). Empirical Bayes estimates of age-standardized relative risks for use in
disease mapping. Biometrics, 43: 671 - 681.

Conlon EM, Louis TA (1999). Addressing multiple goals in evaluating region-specific risk using
Bayesian methods. In: Lawson AB (Editor), Disease Mapping and Risk Assessment for Public
Health. John Wiley & Sons, Ltd , Chichester, pp. 31 - 47.

Stern H, Cressie N (1999). Inference in extremes in disease mapping. In: Lawson AB (Editor),
Disease Mapping and Risk Assessment for Public Health. John Wiley & Sons, Ltd , Chichester, pp.
63 - 84.

Carlin BP, Louis TA (2000). Bayes and Empirical Bayes Methods for Data Analysis - Monographs
on Statistics and Applied Probability 69. Chapman and Hall, London, pp. 270.
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epi.simplesize Sample size under under simple random sampling

Description

Estimates the required sample size under under simple random sampling.

Usage

epi.simplesize(N = 1E+06, sd, Py, epsilon.a, method = "mean",
conf.level = 0.95)

Arguments

N scalar, representing the population size.

sd scalar, if method is total or mean this is the estimated standard deviation of
the sampling variable.

Py scalar, if method is proportion this is an estimate of the unknown population
proportion.

epsilon.a the maximum absolute difference between our estimate and the unknown popu-
lation value.

method a character string indicating the method to be used. Options are total, mean,
or proportion.

conf.level scalar, defining the level of confidence in the computed result.

Value

Returns an integer defining the size of the sample is required.

Note

If the calculated sample size is greater than 10% of the population, an adjusted sample size is
returned.

References

Levy PS, Lemeshow S (1999). Sampling of Populations Methods and Applications. Wiley Series
in Probability and Statistics, London, pp. 70 - 75.

Scheaffer RL, Mendenhall W, Lyman Ott R (1996). Elementary Survey Sampling. Duxbury Press,
New York, pp. 95.

Examples

## EXAMPLE 1
## We want to estimate the mean bodyweight of deer on a farm. There are 278
## animals present. We anticipate the standard deviation of body weight to be
## around 30 kg. We would like to be 95% certain that our estimate is within
## 10 kg of the true mean. How many deer should be sampled?

epi.simplesize(N = 278, sd = 30, Py = NA, epsilon.a = 10, method = "mean",
conf.level = 0.95)
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## A total of 31 deer need to be sampled to meet the survey requirements.

## EXAMPLE 2
## We want to estimate the seroprevalence of Brucella abortus in a population
## of cattle. An estimate of the unknown prevalence of B. abortus in this
## population is 0.15. We would like to be 95% certain that our estimate is
## within 20% of the true proportion of the population that is seropositive
## to B. abortus. Calculate the required sample size.

## Convert relative error into absolute error:
epsilon.r <- 0.20; Py = 0.15
epsilon.a <- epsilon.r * Py

epi.simplesize(N = 1E+06, sd = NA, Py = Py, epsilon.a = epsilon.a,
method = "proportion", conf.level = 0.95)

## A total of 544 cattle need to be sampled to meet the survey requirements.

epi.smd Fixed-effect meta-analysis of continuous outcomes using the standard-
ised mean difference method

Description

Computes the standardised mean difference and confidence intervals of the standardised mean dif-
ference for continuous outcome data.

Usage

epi.smd(mean.trt, sd.trt, n.trt, mean.ctrl, sd.ctrl, n.ctrl,
names, method = "cohens", conf.level = 0.95)

Arguments

mean.trt a vector, defining the mean outcome in the treatment group.

sd.trt a vector, defining the standard deviation of the outcome in the treatment group.

n.trt a vector, defining the number of subjects in the treatment group.

mean.ctrl a vector, defining the mean outcome in the control group.

sd.ctrl a vector, defining the standard deviation of the outcome in the control group.

n.ctrl a vector, defining the number of subjects in the control group.

names character string identifying each trial.

method a character string indicating the method to be used. Options are cohens or
hedges and glass.

conf.level magnitude of the returned confidence interval. Must be a single number between
0 and 1.
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Value

A list containing the following:

md standardised mean difference and its confidence interval computed for each trial.

md.invar the inverse variance (fixed effects) summary standardised mean difference.

md.dsl the DerSimonian and Laird (random effects) summary standardised mean dif-
ference.

heterogeneity
a vector containing Q the heterogeneity test statistic, df the degrees of freedom
and its associated P-value.

Note

The standardised mean difference method is used when trials assess the same outcome, but measure
it in a variety of ways. For example: a set of trials might measure depression scores in psychiatric
patients but use different methods to quantify depression. In this circumstance it is necessary to
standardise the results of the trials to a uniform scale before they can be combined. The standard-
ised mean difference method expresses the size of the treatment effect in each trial relative to the
variability observed in that trial.

References

Deeks JJ, Altman DG, Bradburn MJ (2001). Statistical methods for examining heterogeneity and
combining results from several studies in meta-analysis. In: Egger M, Davey Smith G, Altman
D (eds). Systematic Review in Health Care Meta-Analysis in Context. British Medical Journal,
London, pp. 290 - 291.

See Also

epi.dsl, epi.iv, epi.mh

Examples

## EXAMPLE 1
## A systematic review comparing assertive community treatment (ACT) for the
## severely mentally ill was compared to standard care. A systematic review
## comparing ACT to standard care found three trials that assessed mental
## status after 12 months. All three trials used a different scoring system,
## so standardisation is required before they can be compared.

names <- c("Audini", "Morse", "Lehman")
mean.trt <- c(41.4, 0.95, -4.10)
mean.ctrl <- c(42.3, 0.89, -3.80)
sd.trt <- c(14, 0.76, 0.83)
sd.ctrl <- c(12.4, 0.65, 0.87)
n.trt <- c(30, 37, 67)
n.ctrl <- c(28, 35, 58)

epi.smd(mean.trt, sd.trt, n.trt, mean.ctrl, sd.ctrl, n.ctrl,
names, method = "cohens", conf.level = 0.95)
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epi.stratasize Sample size under under stratified random sampling

Description

Estimates the required sample size under under stratified random sampling.

Usage

epi.stratasize(strata.n, strata.mean, strata.var, strata.Py, epsilon.r,
method = "mean", conf.level = 0.95)

Arguments

strata.n vector, defining the size of each strata.

strata.mean vector, representing the expected means in each strata. Only used when method
= "mean", "total" or "pps".

strata.var vector, representing the expected variance in each strata. Only used when method
= "mean", "total" or "pps".

strata.Py vector, representing the expected proportions in each strata. Only used when
method = "proportion".

epsilon.r the maximum relative difference between our estimate and the unknown popu-
lation value.

method a character string indicating the method to be used. Options are mean, total,
proportion, or pps.

conf.level scalar, defining the level of confidence in the computed result.

Value

A list containing the following:

strata.sample
the estimated sample size for each strata.

strata.total the estimated total size.

strata.stats mean the mean across all strata, sigma.bx the among-strata variance, sigma.wx
the within-strata variance, and sigma.x the among-strata variance plus the
within-strata variance, rel.var the within-strata variance divided by the square
of the mean, and gamma the ratio of among-strata variance to within-strata vari-
ance.

Note

Use method proportion to estimate sample size using stratified random sampling with equal
weights (see Levy and Lemeshow, page 176). Use method pps to estimate sample size using
proportional stratified random sampling with proportional allocation (see Levy and Lemeshow, page
179).

Where method = "proportion" the vectors strata.mean and strata.var are ignored.
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Author(s)

Mark Stevenson (EpiCentre, IVABS, Massey University, Palmerston North, New Zealand)

Javier Sanchez (Atlantic Veterinary College, University of Prince Edward Island, Charlottetown
Prince Edward Island, C1A 4P3, Canada).

References

Levy PS, Lemeshow S (1999). Sampling of Populations Methods and Applications. Wiley Series
in Probability and Statistics, London, pp. 175 - 179.

Examples

## EXAMPLE 1
## Hospital episodes (Levy and Lemeshow 1999, page 176 -- 178)
## We plan to take a sample of the members of a health maintenance
## organisation (HMO) for purposes of estimating the average number
## of hospital episodes per person per year. The sample will be selected
## from membership lists according to age (under 45 years, 45 -- 64 years,
## 65 years and over). The number of members in each strata are 600, 500,
## and 400 (respectively). Previous data estimates the mean number of
## hospital episodes per year for each strata as 0.164, 0.166, and 0.236
## (respectively). The variance of these estimates are 0.245, 0.296, and
## 0.436 (respectively). How many from each strata should be sampled to be
## 95% that the sample estimate of hospital episodes is within 20% of the
## true value?

strata.n <- c(600, 500, 400)
strata.mean <- c(0.164, 0.166, 0.236)
strata.var <- c(0.245, 0.296, 0.436)
epi.stratasize(strata.n, strata.mean, strata.var, strata.Py,

epsilon.r = 0.20, method = "mean", conf.level = 0.95)

## The number allocated to the under 45 years, 45 -- 64 years, and 65 years
## and over stratums should be 223, 186, and 149 (a total of 558). These
## results differ from the worked example provided in Levy and Lemeshow where
## certainty is set to approximately 99%.

## EXAMPLE 2
## Dairies are to be sampled to determine the proportion of herd managers
## using foot bathes. Herds are stratified according to size (small, medium,
## and large). The number of herds in each strata are 1500, 2500, and 4000
## (respectively). A review of the literature indicates that use of foot bathes
## on farms is in the order of 0.50, with the probability of usage increasing
## as herds get larger. How many dairies should be sampled?

strata.n <- c(1500, 2500, 4000)
strata.Py <- c(0.50, 0.60, 0.70)
epi.stratasize(strata.n, strata.mean, strata.var, strata.Py,

epsilon.r = 0.20, method = "proportion", conf.level = 0.95)

## A total of 54 herds should be sampled: 10 small, 17 medium, and 27 large.
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epi.studysize Estimate the sample size to compare means, proportions, and survival

Description

Computes the sample size, power, and minimum detectable difference for cohort studies (using
count data), case control studies, when comparing means and survival.

Usage

epi.studysize(treat, control, n, sigma, power, r = 1,
conf.level = 0.95, sided.test = 2, method = "means")

Arguments

treat the expected value for the treatment group (see below).

control the expected value for the control group (see below).

n scalar, defining the total number of subjects in the study (i.e. the number in the
treatment and control group).

sigma when method = "means" this is the expected standard deviation of the vari-
able of interest for both treatment and control groups. When method = "case.control"
this is the expected proportion of study subjects exposed to the risk factor of in-
terest. This argument is ignored when method = "proportions", method
= "survival", or method = "cohort.count".

power scalar, the required study power.

r scalar, the number in the treatment group divided by the number in the control
group. This argument is ignored when method = "proportions".

conf.level scalar, defining the level of confidence in the computed result.

sided.test use a one- or two-sided test? Use a two-sided test if you wish to evaluate whether
or not the treatment group is better or worse than the control group. Use a one-
sided test to evaluate whether or not the treatment group is better than the control
group.

method a character string indicating the method to be used. Options are means, proportions,
survival, cohort.count, or case.control.

Details

The methodologies adopted in this function follow closely the approach described in Chapter 8 of
Woodward (2005).

When method = "means" the argument treat defines the mean outcome for the treatment
group, control defines the mean outcome for the control group, and sigma defines the standard
deviation of the outcome, assumed to be the same across the treatment and control groups (see
Woodward pp 397 - 403).

When method = "proportions" the argument treat defines the proportion in the treat-
ment group and control defines the proportion in the control group. The arguments sigma and
r are ignored.

When method = "survival" the argument treat is the proportion of treated subjects that
will have not experienced the event of interest at the end of the study period and control is the
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proportion of control subjects that will have not experienced the event of interest at the end of the
study period. The argument sigma is ignored (see Therneau and Grambsch pp 61 - 65).

When method = "cohort.count" the argument treat defines the estimated incidence risk
(cumulative incidence) of the event of interest in the treatment group and control defines the
estimated incidence risk of the event of interest in the control group. The argument sigma is
ignored (see Woodward pp 405 - 410).

When method = "case.control" the argument treat defines the estimated incidence risk
(cumulative incidence) of the event of interest in the treatment group and control defines the
estimated incidence risk of the event of interest in the control group. The argument sigma is the
expected proportion of study subjects exposed to the risk factor of interest (see Woodward pp 410 -
412).

In case control studies sample size estimates are worked out on the basis of an expected odds (or
risk) ratio. When method = "case.control" the estimated incidence risk estimates in the
treat and control groups are used to define the expected risk ratio. See example 7 below, taken
from Woodward p 412.

For method = "proportions" it is assumed that one of the two proportions is known and we
want to test the null hypothesis that the second proportion is equal to the first. In contrast, method
= "cohort.count" relates to the two-sample problem where neither proportion is known (or
assumed, at least). Thus, there is much more uncertainty in the method = "cohort.count"
situation (compared with method = "proportions") and correspondingly a requirement for
a much larger sample size. Generally, method = "cohort.count" is more useful in practice.
method = "proportions" is used in special situations, such as when a politician claims that
at least 90% of the population use seatbelts and we want to see if the data supports this claim.

Value

A list containing one of the following:

n the total number of subjects required for the specified level of confidence and
power.

delta the minimum detectable difference given the specified level of confidence and
power.

lambda the minimum detectable risk ratio >1 and the maximum detectable risk ratio <1.

power the power of the study given the specified number of study subjects and power.

Note

The power of a study is its ability to demonstrate an association, given that an association actually
exists.

The odds ratio and the risk ratio are approximately equal when the event of interest is rare. In this
function method = "case.control" returns the sample size required to detect an approxi-
mate risk ratio in a case-control study (see Woodward p 412).

When method = "proportions" values need to be entered for control, n, and power to
return a value for delta. When method = "cohort.count" values need to be entered for
control, n, and power to return a value for lambda (see example 6 below).

References
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Examples

## EXAMPLE 1 (from Woodward pp 399 - 400)
## Women taking oral contraceptives sometimes experience anaemia due to
## impaired iron absorption. A study is planned to compare the use of iron
## tablets against a course of placebos. Oral contraceptive users are
## randomly allocated to one of the two treatment groups and mean serum
## iron concentration compared after 6 months. Data from previous studies
## indicates that the standard deviation of the increase in iron
## concentration will be around 4 micrograms% over a 6-month period.
## The average increase in serum iron concentration without supplements is
## also thought to be 4 micrograms%. The investigators wish to be 90% sure
## of detecting when the supplement doubles the serum iron concentration using
## a two-sided 5% significance test. It is decided to allocate 4 times as many
## women to the treatment group so as to obtain a better idea of its effect. How
## many women should be enrolled in this study?

epi.studysize(treat = 8, control = 4, n = NA, sigma = 4, power = 0.90,
r = 4, conf.level = 0.95, sided.test = 2, method = "means")

## The estimated sample size is 66. We round this up to the nearest multiple
## of 5, to 70. We allocate 70/5 = 14 women to the placebo group and four
## times as many (56) to the iron treatment group.

## EXAMPLE 2 (from Woodward pp 403 - 404)
## A government initiative has decided to reduce the prevalence of male
## smoking to, at most, 0.30. A sample survey is planned to test, at the
## 0.05 level, the hypothesis that the proportion of smokers in the male
## population is 0.30 against the one-sided alternative that it is greater.
## The survey should be able to find a prevalence of 0.32, when it is true,
## with 0.90 power. How many men need to be sampled?

epi.studysize(treat = 0.30, control = 0.32, n = NA, sigma = NA, power = 0.90,
r = 1, conf.level = 0.95, sided.test = 1, method = "proportions")

## ## A total of 4568 men should be sampled: 2284 in the treatment group and
## 2284 in the control group.

## EXAMPLE 3 (from Therneau and Grambsch p 63)
## The 5-year survival probability of patients receiving a standard treatment
## 0.30 and we anticipate that a new treatment will increase it to 0.45.
## Assume that a study will use a two-sided test at the 0.05 level with 0.90
## power to detect this difference. How many events are required?

epi.studysize(treat = 0.45, control = 0.30, n = NA, sigma = NA, power = 0.90,
r = 1, conf.level = 0.95, sided.test = 2, method = "survival")

## A total of 250 events are required. Assuming one event per individual,
## assign 125 individuals to the treatment group and 125 to the control group.

## EXAMPLE 4 (from Therneau and Grambsch p 63)
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## What is the minimum detectable hazard in a study involving 500 subjects where
## the treatment to control ratio is 1:1, assuming a power of 0.90 and a
## 2-sided test at the 0.05 level?

epi.studysize(treat = NA, control = NA, n = 500, sigma = NA, power = 0.90,
r = 1, conf.level = 0.95, sided.test = 2, method = "survival")

## Assuming treatment increases time to event (compared with controls), the
## minimum detectable hazard of a study involving 500 subjects (250 in the
## treatment group and 250 in the controls) is 1.33.

## EXAMPLE 5 (from Woodward p 406)
## A cohort study of smoking and coronary heart disease (CHD) in middle aged men
## is planned. A sample of men will be selected at random from the population
## and will be asked to complete a questionnaire. The follow-up period will be
## 5 years. The investigators would like to be 0.90 sure of being able to
## detect when the risk ratio of CHD is 1.4 for smokers, using a 0.05
## significance test. Previous evidence suggests that the death rate in
## non-smokers is 413 per 100000 per year. Assuming equal numbers of smokers
## and non-smokers are sampled, how many should be sampled overall?

treat = 1.4 * (5 * 413)/100000
control = (5 * 413)/100000
epi.studysize(treat = treat, control = control, n = NA, sigma = NA,

power = 0.90, r = 1, conf.level = 0.95, sided.test = 1, method = "cohort.count")

## A total of 12130 men need to be sampled (6065 smokers and 6065 non-smokers).

## EXAMPLE 6 (from Woodward p 406)
## Say, for example, we are only able to enrol 5000 subjects into the study
## described above. What is the minimum and maximum detectable risk ratio?

control = (5 * 413)/100000
epi.studysize(treat = NA, control = control, n = 5000, sigma = NA, power = 0.90,

r = 1, conf.level = 0.95, sided.test = 1, method = "cohort.count")

## The minimum detectable risk ratio >1 is 1.65. The maximum detectable
## risk ratio <1 is 0.50.

## EXAMPLE 7 (from Woodward p 412)
## A case-control study of the relationship between smoking and CHD is
## planned. A sample of men with newly diagnosed CHD will be compared for
## smoking status with a sample of controls. Assuming an equal number of
## cases and controls, how many are needed to detect an approximate risk
## ratio of 2.0 with 0.90 power using a two-sided 0.05 test? Previous surveys
## indicate that 0.30 of the male population are smokers.

epi.studysize(treat = 2/100, control = 1/100, n = NA, sigma = 0.30,
power = 0.90, r = 1, conf.level = 0.95, sided.test = 2,
method = "case.control")

## A total of 376 men need to be sampled: 188 cases and 188 controls.

## EXAMPLE 8 (from Woodward p 414)
## Suppose we wish to determine the power to detect an approximate risk
## ratio of 2.0 using a two-sided 0.05 test when 188 cases and 940 controls
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## are available (that is, the ratio of cases to controls is 1:5). Assume
## a 0.30 prevalence of smoking in the male population.

n <- 188 + 940
epi.studysize(treat = 2/100, control = 1/100, n = n, sigma = 0.30,

power = NA, r = 0.2, conf.level = 0.95, sided.test = 2,
method = "case.control")

## The power of this study, with the given sample size allocation is 0.99.

epi.tests Sensitivity, specificity and predictive value of a diagnostic test

Description

Computes true and apparent prevalence, sensitivity, specificity, positive and negative predictive
values, and positive and negative likelihood ratios from count data provided in a 2 by 2 table.

Usage

epi.tests(a, b, c, d, conf.level = 0.95)

Arguments

a number of observations where true disease status positive and test is positive.

b number of observations where true disease status negative and test is positive.

c number of observations where true disease status positive and test is negative.

d number of observations where true disease status is negative and test is negative.

conf.level magnitude of the returned confidence interval. Must be a single number between
0 and 1.

Details

Exact binomial confidence limits are calculated for test sensitivity, specificity, and positive and
negative predictive value (see Collett 1999 for details).

Confidence intervals for positive and negative likelihood ratios are based on formulae provided by
Simel et al. (1991).

Diagnostic accuracy is defined as the proportion of all tests that give a correct result. Diagnostic
odds ratio is defined as how much more likely will the test make a correct diagnosis than an incorrect
diagnosis in patients with the disease (Scott et al. 2008). The number needed to diagnose is defined
as the number of paitents that need to be tested to give one correct positive test. Youden’s index is
the difference between the true positive rate and the false positive rate. Youden’s index ranges from
-1 to +1 with values closer to 1 if both sensitivity and specificity are high (i.e. close to 1).

Value

A list containing the following:

aprev apparent prevalence.

tprev true prevalence.
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se test sensitivity.

sp test specificity.

da diagnostic accuracy.

dor diagnostic odds ratio.

nnd number needed to diagnose.

youden Youden’s index.

ppv positive predictive value.

npv negative predictive value.

lr.pos likelihood ratio of a positive test.

lr.neg likelihood ratio of a negative test.

Note

Disease + Disease - Total
Test + a b a + b
Test - c d c + d
Total a + c b + d a + b + c + d

References

Altman DG, Machin D, Bryant TN, and Gardner MJ (2000). Statistics with Confidence, second
edition. British Medical Journal, London, pp. 28 - 29.

Bangdiwala SI, Haedo AS, Natal ML (2008). The agreement chart as an alternative to the receiver-
operating characteristic curve for diagnostic tests. Journal of Clinical Epidemiology 61: 866 - 874.

Collett D (1999). Modelling Binary Data. Chapman & Hall/CRC, Boca Raton Florida, p. 24.

Scott IA, Greenburg PB, Poole PJ (2008). Cautionary tales in the clinical interpretation of studies
of diagnostic tests. Internal Medicine Journal 38: 120 - 129.

Simel D, Samsa G, Matchar D (1991). Likelihood ratios with confidence: Sample size estimation
for diagnostic test studies. Journal of Clinical Epidemiology 44: 763 - 770.

Greg Snow (2008) Need help in calculating confidence intervals for sensitivity, specificity, PPV &
NPV. R-sig-Epi Digest 23(1): 3March 2008.

Examples

## Scott et al. 2008, Table 1:
## A new diagnostic test was trialled on 1586 patients. Of 744 patients
## that were disease positive, 670 tested positive. Of 842 patients that
## were disease negative, 640 tested negative. What is the likeliood
## ratio of a positive test? What is the number needed to diagnose?

a <- 670; b <- 202; c <- 74; d <- 640
epi.tests(a = a, b = b, c = c, d = d, conf.level = 0.95)

## Test sensitivity is 0.90 (95% CI 0.88 -- 0.92). Test specificity is
## 0.76 (95% CI 0.73 -- 0.79). The likelihood ratio of a positive test
## is 3.75 (95% CI 3.32 to 4.24). The number needed to diagnose is
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## 1.51 (95% CI 1.41 to 1.65). Around 15 persons need to be tested
## to return 10 positive tests.
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