
The OpenCV User Guide
Release 2.3

August 17, 2011

CONTENTS

1 Operations with images 1
1.1 Input/Output . 1
1.2 Basic operations with images . 1

2 Features2d 5
2.1 Detectors . 5
2.2 Descriptors . 5
2.3 Matching keypoints . 5

3 HighGUI 9
3.1 Using Kinect sensor . 9

i

ii

CHAPTER

ONE

OPERATIONS WITH IMAGES

1.1 Input/Output

Images

Load an image from a file:

Mat img = imread(filename)

If you read a jpg file, a 3 channel image is created by default. If you need a grayscale image, use:

Mat img = imread(filename, 0);

Save an image to a file:

Mat img = imwrite(filename);

XML/YAML

TBD

1.2 Basic operations with images

Accessing pixel intensity values

In order to get pixel intensity value, you have to know the type of an image and the number of channels. Here is an
example for a single channel grey scale image (type 8UC1) and pixel coordinates x and y:

Scalar intensity = img.at<uchar>(x, y);

intensity.val[0] contains a value from 0 to 255. Now let us consider a 3 channel image with BGR color ordering
(the default format returned by imread):

Vec3b intensity = img.at<Vec3b>(x, y);
uchar blue = intensity.val[0];
uchar green = intensity.val[1];
uchar red = intensity.val[2];

1

The OpenCV User Guide, Release 2.3

You can use the same method for floating-point images (for example, you can get such an image by running Sobel on
a 3 channel image):

Vec3f intensity = img.at<Vec3f>(x, y);
float blue = intensity.val[0];
float green = intensity.val[1];
float red = intensity.val[2];

The same method can be used to change pixel intensities:

img.at<uchar>(x, y) = 128;

There are functions in OpenCV, especially from calib3d module, such as projectPoints, that take an array of 2D or
3D points in the form of Mat. Matrix should contain exactly one column, each row corresponds to a point, matrix type
should be 32FC2 or 32FC3 correspondingly. Such a matrix can be easily constructed from std::vector:

vector<Point2f> points;
//... fill the array
Mat pointsMat = Mat(points);

One can access a point in this matrix using the same method texttt{Mat::at}:

Point2f point = pointsMat.at<Point2f>(i, 0);

Memory management and reference counting

Mat is a structure that keeps matrix/image characteristics (rows and columns number, data type etc) and a pointer
to data. So nothing prevents us from having several instances of Mat corresponding to the same data. A Mat keeps
a reference count that tells if data has to be deallocated when a particular instance of Mat is destroyed. Here is an
example of creating two matrices without copying data:

std::vector<Point3f> points;
// .. fill the array
Mat pointsMat = Mat(points).reshape(1);

As a result we get a 32FC1 matrix with 3 columns instead of 32FC3 matrix with 1 column. pointsMat uses data
from points and will not deallocate the memory when destroyed. In this particular instance, however, developer has
to make sure that lifetime of points is longer than of pointsMat. If we need to copy the data, this is done using, for
example, Mat::copyTo or Mat::clone:

Mat img = imread("image.jpg");
Mat img1 = img.clone();

To the contrary with C API where an output image had to be created by developer, an empty output Mat can be supplied
to each function. Each implementation calls Mat::create for a destination matrix. This method allocates data for a
matrix if it is empty. If it is not empty and has the correct size and type, the method does nothing. If, however, size or
type are different from input arguments, the data is deallocated (and lost) and a new data is allocated. For example:

Mat img = imread("image.jpg");
Mat sobelx;
Sobel(img, sobelx, CV_32F, 1, 0);

Primitive operations

There is a number of convenient operators defined on a matrix. For example, here is how we can make a black image
from an existing greyscale image img:

2 Chapter 1. Operations with images

The OpenCV User Guide, Release 2.3

img = Scalar(0);

Selecting a region of interest:

Rect r(10, 10, 100, 100);
Mat smallImg = img(r);

A convertion from texttt{Mat} to C API data structures:

Mat img = imread("image.jpg");
IplImage img1 = img;
CvMat m = img;

Note that there is no data copying here.

Conversion from color to grey scale:

Mat img = imread("image.jpg"); // loading a 8UC3 image
Mat grey;
cvtColor(img, grey, CV_BGR2GRAY);

Change image type from 8UC1 to 32FC1:

src.convertTo(dst, CV_32F);

Visualizing images

It is very useful to see intermediate results of your algorithm during development process. OpenCV provides a conve-
nient way of visualizing images. A 8U image can be shown using:

Mat img = imread("image.jpg");

namedWindow("image", CV_WINDOW_AUTOSIZE);
imshow("image", img);
waitKey();

A call to waitKey() starts a message passing cycle that waits for a key stroke in the "image" window. A 32F image
needs to be converted to 8U type. For example:

Mat img = imread("image.jpg");
Mat grey;
cvtColor(img, grey, CV_BGR2GREY);

Mat sobelx;
Sobel(grey, sobelx, CV_32F, 1, 0);

double minVal, maxVal;
minMaxLoc(sobelx, &minVal, &maxVal); //find minimum and maximum intensities
Mat draw;
sobelx.convertTo(draw, CV_8U, 255.0/(maxVal - minVal), -minVal);

namedWindow("image", CV_WINDOW_AUTOSIZE);
imshow("image", draw);
waitKey();

1.2. Basic operations with images 3

The OpenCV User Guide, Release 2.3

4 Chapter 1. Operations with images

CHAPTER

TWO

FEATURES2D

2.1 Detectors

2.2 Descriptors

2.3 Matching keypoints

The code

We will start with a short sample opencv/samples/cpp/matcher_simple.cpp:

Mat img1 = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE);
Mat img2 = imread(argv[2], CV_LOAD_IMAGE_GRAYSCALE);
if(img1.empty() || img2.empty())
{

printf("Can’t read one of the images\n");
return -1;

}

// detecting keypoints
SurfFeatureDetector detector(400);
vector<KeyPoint> keypoints1, keypoints2;
detector.detect(img1, keypoints1);
detector.detect(img2, keypoints2);

// computing descriptors
SurfDescriptorExtractor extractor;
Mat descriptors1, descriptors2;
extractor.compute(img1, keypoints1, descriptors1);
extractor.compute(img2, keypoints2, descriptors2);

// matching descriptors
BruteForceMatcher<L2<float> > matcher;
vector<DMatch> matches;
matcher.match(descriptors1, descriptors2, matches);

// drawing the results
namedWindow("matches", 1);
Mat img_matches;
drawMatches(img1, keypoints1, img2, keypoints2, matches, img_matches);

5

The OpenCV User Guide, Release 2.3

imshow("matches", img_matches);
waitKey(0);

The code explained

Let us break the code down.

Mat img1 = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE);
Mat img2 = imread(argv[2], CV_LOAD_IMAGE_GRAYSCALE);
if(img1.empty() || img2.empty())
{

printf("Can’t read one of the images\n");
return -1;

}

We load two images and check if they are loaded correctly.:

// detecting keypoints
FastFeatureDetector detector(15);
vector<KeyPoint> keypoints1, keypoints2;
detector.detect(img1, keypoints1);
detector.detect(img2, keypoints2);

First, we create an instance of a keypoint detector. All detectors inherit the abstract FeatureDetector interface, but
the constructors are algorithm-dependent. The first argument to each detector usually controls the balance between
the amount of keypoints and their stability. The range of values is different for different detectors (For instance, FAST
threshold has the meaning of pixel intensity difference and usually varies in the region [0,40]. SURF threshold is
applied to a Hessian of an image and usually takes on values larger than 100), so use defaults in case of doubt.

// computing descriptors
SurfDescriptorExtractor extractor;
Mat descriptors1, descriptors2;
extractor.compute(img1, keypoints1, descriptors1);
extractor.compute(img2, keypoints2, descriptors2);

We create an instance of descriptor extractor. The most of OpenCV descriptors inherit DescriptorExtractor
abstract interface. Then we compute descriptors for each of the keypoints. The output Mat of the
DescriptorExtractor::compute method contains a descriptor in a row i for each i-th keypoint. Note that the
method can modify the keypoints vector by removing the keypoints such that a descriptor for them is not defined
(usually these are the keypoints near image border). The method makes sure that the ouptut keypoints and descriptors
are consistent with each other (so that the number of keypoints is equal to the descriptors row count).

// matching descriptors
BruteForceMatcher<L2<float> > matcher;
vector<DMatch> matches;
matcher.match(descriptors1, descriptors2, matches);

Now that we have descriptors for both images, we can match them. First, we create a matcher that for each descriptor
from image 2 does exhaustive search for the nearest descriptor in image 1 using Euclidean metric. Manhattan distance
is also implemented as well as a Hamming distance for Brief descriptor. The output vector matches contains pairs of
corresponding points indices.

// drawing the results
namedWindow("matches", 1);
Mat img_matches;
drawMatches(img1, keypoints1, img2, keypoints2, matches, img_matches);

6 Chapter 2. Features2d

The OpenCV User Guide, Release 2.3

imshow("matches", img_matches);
waitKey(0);

The final part of the sample is about visualizing the matching results.

2.3. Matching keypoints 7

The OpenCV User Guide, Release 2.3

8 Chapter 2. Features2d

CHAPTER

THREE

HIGHGUI

3.1 Using Kinect sensor

Kinect sensor is supported through VideoCapture class. Depth map, RGB image and some other formats of Kinect
output can be retrieved by using familiar interface of VideoCapture.

In order to use Kinect with OpenCV you should do the following preliminary steps:

1. Install OpenNI library (from here url{http://www.openni.org/downloadfiles}) and PrimeSensor Module for
OpenNI (from here https://github.com/avin2/SensorKinect}). The installation should be done to default folders
listed in the instructions of these products, e.g.:

OpenNI:
Linux & MacOSX:

Libs into: /usr/lib
Includes into: /usr/include/ni

Windows:
Libs into: c:/Program Files/OpenNI/Lib
Includes into: c:/Program Files/OpenNI/Include

PrimeSensor Module:
Linux & MacOSX:

Bins into: /usr/bin
Windows:

Bins into: c:/Program Files/Prime Sense/Sensor/Bin

If one or both products were installed to the other folders, the user should change corresponding CMake variables
OPENNI_LIB_DIR, OPENNI_INCLUDE_DIR or/and OPENNI_PRIME_SENSOR_MODULE_BIN_DIR.

2. Configure OpenCV with OpenNI support by setting texttt{WITH_OPENNI} flag in CMake. If OpenNI is
found in install folders OpenCV will be built with OpenNI library (see a status OpenNI in CMake log) whereas
PrimeSensor Modules can not be found (see a status OpenNI PrimeSensor Modules in CMake log). Without
PrimeSensor module OpenCV will be successfully compiled with OpenNI library, but VideoCapture object
will not grab data from Kinect sensor.

3. Build OpenCV.

VideoCapture can retrieve the following Kinect data:

1. data given from depth generator:

• OPENNI_DEPTH_MAP - depth values in mm (CV_16UC1)

• OPENNI_POINT_CLOUD_MAP - XYZ in meters (CV_32FC3)

• OPENNI_DISPARITY_MAP - disparity in pixels (CV_8UC1)

• OPENNI_DISPARITY_MAP_32F - disparity in pixels (CV_32FC1)

9

http://www.openni.org/downloadfiles
https://github.com/avin2/SensorKinect

The OpenCV User Guide, Release 2.3

• OPENNI_VALID_DEPTH_MASK - mask of valid pixels (not ocluded, not shaded etc.) (CV_8UC1)

2. data given from RGB image generator:

• OPENNI_BGR_IMAGE - color image (CV_8UC3)

• OPENNI_GRAY_IMAGE - gray image (CV_8UC1)

In order to get depth map from Kinect use VideoCapture::operator >>, e. g.

VideoCapture capture(CV_CAP_OPENNI);
for(;;)
{

Mat depthMap;
capture >> depthMap;

if(waitKey(30) >= 0)
break;

}

For getting several Kinect maps use VideoCapture::grab and VideoCapture::retrieve, e.g.

VideoCapture capture(0); // or CV_CAP_OPENNI
for(;;)
{

Mat depthMap;
Mat rgbImage

capture.grab();

capture.retrieve(depthMap, OPENNI_DEPTH_MAP);
capture.retrieve(bgrImage, OPENNI_BGR_IMAGE);

if(waitKey(30) >= 0)
break;

}

For setting and getting some property of Kinect data generators use VideoCapture::set and VideoCapture::get
methods respectively, e.g.

VideoCapture capture(CV_CAP_OPENNI);
capture.set(CV_CAP_OPENNI_IMAGE_GENERATOR_OUTPUT_MODE, CV_CAP_OPENNI_VGA_30HZ);
cout << "FPS " << capture.get(CV_CAP_OPENNI_IMAGE_GENERATOR+CV_CAP_PROP_FPS) << endl;

Since two types of Kinect’s data generators are supported (image generator and depth generator), there are two flags
that should be used to set/get property of the needed generator:

• CV_CAP_OPENNI_IMAGE_GENERATOR – A flag for access to the image generator properties.

• CV_CAP_OPENNI_DEPTH_GENERATOR – A flag for access to the depth generator properties. This flag
value is assumed by default if neither of the two possible values of the property is not set.

Flags specifing the needed generator type must be used in combination with particular generator property. The follow-
ing properties of cameras available through OpenNI interfaces are supported:

• For image generator:

– CV_CAP_PROP_OPENNI_OUTPUT_MODE – Two output modes are supported: CV_CAP_OPENNI_VGA_30HZ
used by default (image generator returns images in VGA resolution with 30 FPS) or
CV_CAP_OPENNI_SXGA_15HZ (image generator returns images in SXGA resolution with 15 FPS);
depth generator’s maps are always in VGA resolution.

• For depth generator:

10 Chapter 3. HighGUI

The OpenCV User Guide, Release 2.3

– CV_CAP_PROP_OPENNI_REGISTRATION – Flag that synchronizes the remapping depth map to image map
by changing depth generator’s view point (if the flag is "on") or sets this view point to its normal one (if
the flag is "off").

Next properties are available for getting only:

– CV_CAP_PROP_OPENNI_FRAME_MAX_DEPTH – A maximum supported depth of Kinect in mm.

– CV_CAP_PROP_OPENNI_BASELINE – Baseline value in mm.

– CV_CAP_PROP_OPENNI_FOCAL_LENGTH – A focal length in pixels.

– CV_CAP_PROP_FRAME_WIDTH – Frame width in pixels.

– CV_CAP_PROP_FRAME_HEIGHT – Frame height in pixels.

– CV_CAP_PROP_FPS – Frame rate in FPS.

• Some typical flags combinations “generator type + property” are defined as single flags:

– CV_CAP_OPENNI_IMAGE_GENERATOR_OUTPUT_MODE = CV_CAP_OPENNI_IMAGE_GENERATOR +
CV_CAP_PROP_OPENNI_OUTPUT_MODE

– CV_CAP_OPENNI_DEPTH_GENERATOR_BASELINE = CV_CAP_OPENNI_DEPTH_GENERATOR +
CV_CAP_PROP_OPENNI_BASELINE

– CV_CAP_OPENNI_DEPTH_GENERATOR_FOCAL_LENGTH = CV_CAP_OPENNI_DEPTH_GENERATOR +
CV_CAP_PROP_OPENNI_FOCAL_LENGTH

– CV_CAP_OPENNI_DEPTH_GENERATOR_REGISTRATION_ON = CV_CAP_OPENNI_DEPTH_GENERATOR +
CV_CAP_PROP_OPENNI_REGISTRATION_ON

For more information please refer to a Kinect example of usage kinect_maps.cpp in opencv/samples/cpp folder.

3.1. Using Kinect sensor 11

	Operations with images
	Input/Output
	Basic operations with images

	Features2d
	Detectors
	Descriptors
	Matching keypoints

	HighGUI
	Using Kinect sensor

