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Abstract

Hunt [1996] has implemented the finite mixture model approach to
clustering in a program called Multimiz. The program is designed to
cluster multivariate data with categorical and continuous variables and
possibly containing missing values. In this paper we describe the ap-
proach taken to the design of Multimiz and how some of the statistical
problems were dealt with. As an example of the use of the program we
cluster a large medical dataset.
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1 Introduction

This paper is concerned with the statistical analysis of multivariate data from
a mixture of finitely many populations when there is no information about
membership in any component population. This is known as cluster analysis
or unsupervised learning. The goal is to partition the sample into groups so
that members of a group are as similar as possible. This is usually done by
any one of a number of deterministic algorithms the most common of which
we discuss below.

Cluster analysis is different from Discriminant Analysis where it is possible to
classify members of a random sample from a mixture of populations according
to which population they come from. See Mardia et al. [1979, Chapter 11] and
McLachlan [1992] .

There are many different methods for cluster analysis. These methods can
be broadly categorised as hierarchical or non-hierarchical. Clustering using
hierarchical methods, is generally obtained through either agglomerative al-
gorithms, which begin with a cluster for every observation and successively
merge clusters, or divisive algorithms which begin with a single cluster and
which continually split clusters.



It is possible to visualise two extremes, one in which each object is considered
to be a single member cluster, and one in which all n objects are contained
in a single cluster. Each cluster obtained at any stage in the procedure is a
combination or division of clusters at other stages. A hierarchical strategy
finds an efficient path between these two extremes.

Once an object is assigned to a cluster under a hierarchical strategy, there is
no provision for reallocation of the objects that have been poorly allocated
at an earlier stage in the process. Each stage of the analysis involves the
computation of the cluster similarity (or distance) matrix. Since the clusters
at any stage are obtained by the fusion (agglomerative methods), or division
(divisive methods) of clusters from the previous stage, these methods lead to
a hierarchical structure of the objects. This is represented by a dendogram,
also known as a tree diagram.

1.1 Similarity matrix clustering techniques

Hierarchical clustering techniques are usually implemented with the data rep-
resented by a matrix of proximities (d;;), where d;; is the proximity of obser-
vations ¢ and j. The proximity d;;, can either be a similarity or a dissimilarity
measure. To convert a dissimilarity into a similarity index we may, for exam-
ple, divide it by the greatest dissimilarity observed in the data and subtract
this from 1.

Proximities may be obtained in various ways, one method being to ask a
number of people to subjectively assess all pairs of observation in a small
set for degree of similarity, recording the answer as a number between 0 (least
similar) and 1 (most similar). The similarities for analysis can then be obtained
by averaging the subjective similarities over the panel of judges.

More often each observation has a number of measured attributes or variables,
often at differing levels of measurement (binary, nominal, ordinal, interval or
ratio), and we require some means of calculating proximities from the data.
Anderberg [1973, Chapters 4 & 5] and Gordon [1981, Chapter 2| give surveys
of many methods of calculating proximities for the case of a single variable.
Typical examples are the euclidean distance for interval variables and the
Jacard coefficient n11/(n11 + 119 + no1) for binary (0,1) data. Another binary
coefficient is the simple matching coefficient (n11 + ngo)/(n11 + nio + no1 +
ngp); indeed Anderberg lists 14 possibilities, though deprecating 5 of these.
Which notion of proximity makes the most sense depends on subject area
considerations.

Once a similarity measure s;;, comparing observation ¢ with observation j
has been selected for each attribute k£ they may be combined, essentially by
averaging over the attributes. In the case of a rare binary attribute & we may
wish to exclude s;;; from the average as uninformative about the similarity of
7 and j. Details about combining similarity measures in this way are given by



Gower [1971].

Agglomerative hierarchical techniques differ primarily in how they measure
the distance or similarity of two clusters, where a cluster may at times, consist
of a single observation only. For example, the Euclidean distance d;; between
two observations x; and x; is defined as d;; = [(x; — x;)(x; — x;)]"/2, while
the Mahalanobis distance is defined as d;; = [(x; —x;)'S 7! (x; —x;)]'/2, where
3 is the within cluster covariance matrix. Further details on the properties of
these distances and other distance measures are given by Mardia et al. [1979]
and Gordon [1981].

In single linkage (nearest neighbour) clustering, the distance between two clus-
ters is defined as the distance between their two nearest neighbours:

dap = min(d;j)
jEB
where dsp is the dissimilarity between two clusters A and B and d;; is the
dissimilarity between two observations ¢ and j. This technique can lead to
‘rod’ type elongated clusters.
With complete linkage (farthest neighbour) clustering, the distance between
two clusters is defined as the distance between their two furthest neighbours:

dAB = IIi}EaAX(dij).

JjEB

This method tends to produce compact clusters.

Other standard linkage methods replace the “min” and the “max” of the
previous methods by measures of central tendency.

Lance and Williams [1967] give a general agglomerative algorithm with which
many of the common hierarchical linkage methods can be described. If two
groups r and s amalgamate to form a new group %, the dissimilarity between
this group and any other group can be expressed in an equation form. Gordon
[1981] includes their table of the algorithm parameters for different techniques.
With hierarchical clustering, the number of clusters is obtained by selecting
one of the clusterings in the nested sequence of groupings displayed in the
dendogram. The most common method used is to examine the dendogram for
large changes in the distance or dissimilarity between adjacent fusion levels. A
“large” change when going from K to K — 1 groups might be indicative of K
groups. This criterion is somewhat subjective. Other sources of subjectivity
lie in the choice of similarity metric for each attribute and the choice of linkage
method.

These methods are widely implemented in statistical packages and can be
useful for preliminary exploration of small multivariate datasets, especially in
combination with visualization techniques such as a plot of the first two prin-
cipal component scores and a Minimal Spanning Tree [Gower and Ross, 1969].



They are less satisfactory with large data sets (hundreds rather than tens) be-
cause of the large number of pairwise similarities which must be processed, and
because of the enhanced possibilities for unfortunate and irreversible amalga-
mations of clusters at an early stage.

An important problem with the use of these forms of cluster analysis lies in
the many ways in which the subjective decisions made by the analyst may
influence the outcome. The analyst must choose

1. the form of the proximity index
2. the linkage method, and

3. the similarity level at which to ‘cut’ the dendrogram, or equivalently, the
number of groups.

1.2 Optimisation based techniques

Nonhierarchical techniques of cluster analysis have the same extremes as hi-
erarchical techniques, that is, n clusters consisting of one observation and one
cluster with all n observations in it. However nonhierarchical techniques allow
points to be reallocated to other clusters during the clustering process. These
techniques of cluster analysis often use optimisation procedures in which ob-
servations are transferred between clusters with the aim of optimising some
clustering criterion that rewards both within-cluster similarity and between-
cluster differences. Once again, there are many different methods available
because of different optimising criteria and different optimising algorithms.
For further discussions on these procedures see for Everitt [1980] and Hand
[1981].

The k-means algorithm of Hartigan [1975] is a commonly used optimisation
technique. The means of each of the k initial clusters are found, and then each
data point is examined to see if it is closer to the mean of another cluster than
to the mean of its current cluster. If this occurs, that point is transferred and
the cluster means are recalculated. The means can be recalculated after each
data point has been reallocated, or after all the data points have been examined
and those that needed reallocating have been transferred. The means of the
k clusters are calculated and the process is repeated. In this procedure, the
cluster mean is the point that minimises the sum of squares of the distances
(to that point) of the observations in that cluster.

The “classification likelihood” approach is a nonhierarchical technique that
uses a form of likelihood function as a clustering criterion. Under this ap-
proach, a probabilistic formulation is taken in which it is assumed that the
observations x1, ..., X, each arise from any one of K possible sub-populations
with a probability density function of f(x;6y) for k = 1,..., K. This approach
differs from the discriminant analysis problem in that it is not known which



sub-population the observation comes from. Let

b — 1 if observation 7 € group k;
ik 0 if observation i ¢ group k,

and define the vector of indicator variables as z; = (2;1,...,2ix)". The likeli-
hood function is given by

n K
Lciass(Z15- - 120, 01,...,0K) = H H {f (xi; 0p,) )%

1=1k=1

Let z = (z1,...,2,) and ¢ = (01, ...,0F). Maximisation of L¢yass(z, @), the
log-likelihood for the complete data is with respect to ¢ and z. That is, the
unobservable indicator variables z1, . . ., z, are treated as unknown parameters
to be estimated along with ¢. The maximisation process can be carried out by
computing the maximum value of the likelihood over all possible partitions of
the n observations to the K groups. This approach was considered by several
authors including Scott and Symons [1971], Sclove [1977] and Symons [1981].
More recently Banfield and Raftery [1993] have extended the methods of Scott
and Symons [1971] and their approach is discussed below. Unfortunately with
this procedure, the z;; increase in number with the number of observations,
and the maximum likelihood estimates are not consistent [McLachlan and
Basford, 1988].

Using the classification likelihood approach, Scott and Symons [1971] showed
that the assumption that x; ~ N(pu;,2) for k = 1,..., K, led to the cluster
analysis procedure based on minimising | W |, the determinant of the pooled
within group dispersion matrix. This method of cluster analysis was discussed
by Friedman and Rubin [1967]. Scott and Symons [1971] found that this ap-
proach has the tendency to divide the data into clusters of equal size if the
separation between the sub populations is not large. Marriot [1975] pointed
out that the maximum (classification) likelihood estimates are not consistent
under the assumption of underlying normal distributions with a common co-
variance structure. Bryant and Williamson [1978] showed that the approach
can also be expected to give biased results. Symons [1981] and Binder [1978]
give Bayesian versions of this method.

Although usually considered as nonhierarchical clustering techniques, criterion
optimization methods may be used in a hierarchical fashion by applying the
algorithm repeatedly to subdivide clusters found earlier. Such an approach
usually leads to clusters that are not themselves optimal on the criterion.

1.3 Clustering methods based on finite mixture models

There is a vast quantity of literature available on algorithmic cluster analy-
sis. For comprehensive reviews of clustering techniques see Cormack [1971],



Everitt [1980], Jardine and Sibson [1971], and Gordon [1981]. For clustering
algorithms see Hartigan [1975] and James [1985].

There are some inescapable drawbacks shared by all these traditional ap-
proaches to clustering: any randomness in the sample is not reflected and
small perturbations in the sample may lead to quite different groups being
formed. Further, experience with real mixed populations shows that they are
quite often substantially overlapping, whereas by design most traditional clus-
tering algorithms will tend to come up with compact nonoverlapping clusters.
An alternative to algorithmic cluster analysis, is to adopt a statistical formula-
tion similar to that of discriminant analysis, and regard the observations to be
clustered as a random sample from a finite mixture of distributions. However,
unlike discriminant analysis, the observations are not identified as belonging
to a particular group, and there is often very little information about the form
of the population distributions for each group. By making generic distribu-
tional assumptions we obtain a well specified model, whose parameters can be
estimated by the method of maximum likelihood. The estimated conditional
probabilities of group membership can be estimated by Bayes rule using the
parameter estimates. These probabilities can be used when the algorithm has
converged to obtain a probabilistic assignment of observations to clusters.
Furthermore, the estimated component distributions together with the esti-
mated proportions for each component provide a concise description of what
may be a very complicated set of data.

As with any clustering method, clustering by finite mixture models also im-
poses a structure on the data. It is possible to check the overall fit of the
mixture model to the data, although the individual components cannot be
checked unless the groups turn out to be well separated. The mixture like-
lihood approach can be seen as an example of a nonhierarchical clustering
technique. But a unification with the mainstream of statistical modelling is
achieved because clustering methods based on mixture models allow estima-
tion and hypothesis testing within the framework of standard statistical theory
[Aitkin et al., 1981].

2 Earlier work in mixture model clustering

The Multimiz program to be described later in this paper builds on earlier ap-
proaches and is most easily understood as an extension and unification of some
of these. The estimation problem for finite mixtures of normal distributions
has quite a lengthy history. We will describe some of this work now.

2.1 Mixtures of normal distributions

Karl Pearson put forward a solution in the case of a mixture of two univariate
distributions with unequal variances using the method of moments [Pearson,



1894]. This was a difficult problem and involved the solution of a ninth degree
polynomial equation. Later investigation showed that likelihood estimation
was more efficient than the method of moments for this problem [Tan and
Chan, 1972].

Maximum of likelihood estimation for the parameters in mixture distributions
was suggested by Rao [1948] , who used Fisher’s method of scoring for the
estimation of parameters in a mixture of two univariate normal distributions
with equal variances. This appeared to be the first use of likelihood estimation
for mixtures [Everitt and Hand, 1981]. However, Butler [1986] notes that there
was an investigation by Newcomb [1886] of the maximum likelihood estimation
of the parameters of a mixture of £ univariate normal populations with known
variances. His investigation could be interpreted as an application of the EM
algorithm [Dempster, Laird, and Rubin, 1977]. Butler also found that Jeffreys
[1932] had essentially used the EM algorithm to compute the estimates of the
means in two univariate normal populations, which had known variances and
which were mixed in unknown proportions.

With the advent of high speed computers, interest increased in the likeli-
hood estimation of the parameters of mixture distributions. Hasselblad [1966,
1969] applied maximum likelihood estimation for the parameters of a mixture
of k univariate normal distributions with equal variances, and then for mix-
tures of distributions from the exponential family. Day [1969] estimated the
components of a mixture of two multivariate normal distributions with equal
covariances. Wolfe [1967, 1970] used maximum likelihood estimation for the
parameters of a mixture of K multivariate normal distributions with unequal
covariances, and also a mixture of Bernoulli distributions. These three re-
searchers all presented their solutions in iterative forms that could be viewed
as applications of the FM algorithm.

For additional references on finite mixtures, see the monographs on finite
mixture distributions by Everitt and Hand [1981], Titterington et al. [1985],
McLachlan and Basford [1988] , the reviews by and the encyclopedia entry by
Everitt [1985]

2.2 Basford’s mixture-fitting programs

In their monograph on mixture models and their application to clustering
McLachlan and Basford [1988] focus on the use of p-variate normal distri-
butions for the component models and consider mainly continuous variables.
Included with this book are listings of the Fortran 66 source code for four
programs which estimate the parameters of normal mixture models in vari-
ous situations. The program of most relevance for cluster analysis is KMM,
which fits a mixture of multivariate normal distributions, with either arbitrary
or common covariance matrices, by maximum likelihood using the EM algo-
rithm. In designing the Multimiz program, we sought to extend and modify



KMM to enhance its suitability as a general-purpose nonhierarchical clus-
tering program. In fact Multimiz was written from scratch, but its output
was tested against that from KMM where possible. We are grateful to Kaye
Basford for making her programs available to us in electronic form.

Some development beyond KMM was necessary because of three major diffi-
culties which frustrate the application of multivariate normal mixture models
to clustering. Firstly, they are not easily adapted to cope with discrete data.
This is unfortunate because many real clustering problems involve both contin-
uous and discrete variables. Secondly, they lead to models with large numbers
of parameters: for example if p = 8 we will need to estimate 36 parameters
for even a common covariance matrix, many more if they must be estimated
separately for each group. A third consideration is the common occurrence of
missing values in multivariate data, particularly when the observations are on
humans. A variant of Multimiz accommodates observations that are missing
at random using the methodology of Little and Rubin [1987], but this is not
described here.

Highly parameterized models can lead to difficulties in several ways. As dis-
cussed by McLachlan and Basford [1988, p. 11] the likelihood function of a
mixture model can have singularities in a neighbourhood of which it is un-
bounded. Iterative methods for computing maximum likelihood estimates are
drawn towards these singularities from many starting values if the model is
highly parameterized. It is also common to find many local maxima in such
models. Even if we find the largest of the local maxima we will often find
the likelihood nearly constant in a low-dimensional set in which some of the
parameters are functions of the others.

2.3 Mixtures of discrete distributions

Latent Class analysis was developed by the mathematical sociologist Paul
Lazarsfeld who was interested in making more precise the relationship between
underlying or latent states that are not observable, and directly observable
categorical variables indicating these states.

Latent class models can be described as follows: assume the population to be
made up of K groups or sub-populations Gy, ..., Gk in proportions 7y, ..., Tx.
Let x be the vector of responses on the p variables that we observe on each
observation, where the jth variable can take on levels numbered from 1 to
M;. If the ith observation x; happens to come from G}, then its probability
function is given by

P
fre(x4i;0;) = H H{)\kjm :1<m< M; and m=uz;}
j=1'm

where 0 are the parameters of the distribution of the responses in the kth
subpopulation, in this case being the probabilities { A\, } that variable j takes



level m, conditional on the observation belonging to group k. The overall
probability function is a mixture of these conditional probability functions:

K
Fxisd) =D mrfr(xi; 0k)

k=1

so that the latent class model is a finite mixture model. The parameter vector
¢ is made up of the m; and the Agj, as k, j, and m take on all allowable
values. Note that the 7 sum to one over k and the Agj,, sum to one over m
for any fixed j, k.

The original method of fitting these models, discussed at some length in
Lazarsfeld and Henry [1968] for the case of binary variables, was to attempt to
solve the system of equations given by equating the fitted cell probabilities to
the observed cell proportions. The solution of these equations can be difficult
and Latent Class analysis became much easier to use when Goodman [1974]
introduced a new iterative algorithm for the maximum likelihood fitting of
latent class models. It soon became clear that this algorithm was a special
case of the very general EM algorithm.

To use latent class analysis as a clustering method the probability 7;, that
the ith observation comes from the kth group is first estimated by Bayes Rule
from the estimated component distributions and the estimated proportions in
each component. In fact these probabilities are also required in the course of
the algorithm, although it is not until the algorithm has converged that we
can use them for clustering. The versatility of latent class analysis as a clus-
tering method was shown by Aitkin et al. [1981] who fitted 2-class and 3-class
models to 38 binary variables describing how each of 468 teachers organised
their classes, interpreting the classes as levels of a ‘teaching style’ factor in
subsequent analyses. An even larger data set was studied by Pickering and
Forbes [1984] using this method. It consisted of clinical and diagnostic infor-
mation about approximately 50,000 infant births. Eleven categorical variables
each having from 2 to 4 levels were used to fit models having between 1 and
6 latent classes. The analysis was feasible because only about 600 distinct
response profiles actually occurred in the data. Pickering and Forbes give
references to other studies using latent class methods.

Most applications of latent class analysis remain within the social sciences
where the method was developed. The ability to fit latent class models is
one of the capabilities of /EM, a very general program for fitting models to
categorical data written by Vermunt [1997].

2.4 Everitt’s model for ordinal variables

Everitt [1988] proposed incorporating binary and ordinal variables into mix-
ture models by means of ‘threshold’ parameters which divide the real line into



regions corresponding to outcomes of the ordinal variable. Such threshold
models have been widely used for ordinal data and a brief survey is given
by Zhaorong et al. [1992] where they are used in a continuous latent vari-
able model for the comparison of 20 ternary variables representing variants
of microbiological test methods. This data could also have been analyzed by
latent class analysis which involves a discrete latent variable. Everitt and
Mérette [1990] compare the clustering performance of Everitt’s finite mixture
method on four simulated data sets each having 3 continuous and 2 categor-
ical variables, and on Fisher’s iris data [Andrews and Herzberg, 1985, pp.
5-8] after two of the four variables had been categorised. They report good
performance of the mixture method compared with conventional hierarchical
methods. There are some severe practical limitations to the use of this method
at present. Everitt proposes the use of standard optimization algorithms ap-
plied to the log-likelihood function. The computation of the log-likelihood
function requires the numerical evaluation of a g-dimensional integral, where
q is the number of categorical variables, and Everitt and Mérette consider no
examples where ¢ > 2. Their methods would be difficult to apply to the highly
multivariate data sets to which cluster analysis has traditionally been applied.
For these reasons Multimiz makes no special provision for ordinal variables.
Depending on the circumstances it will usually be acceptable to treat them
either as categorical or continuous.

3 The Multimix model family

We will now describe our approach to mixture model clustering in detail.
We expect the data to be in the form of an n X p matrix of observations by
variables which we regard as a random sample from the distribution f(z) =
S 7wk fi (), itself a finite mixture of K component distributions fj in propor-
tions m; > 0 satisfying > 7 = 1. We suppose that the vector of variables x =
(#1,...,2j,...,xp)" has been partitioned into X, || X |...] %)
We consider component distributions that factorize fi(x) = [I; fri(x;), con-
formably with this partition. This is a weak form of ‘ocal independence’:
within each of the K subpopulations the variables in the subvector x; are in-
dependent of the variables in x; for 1 <[ <[’ < L. True ‘local independence’
is the independence of each x; within subpopulations. We can write the model
for the ith observation as

K L
Fxizd) =D m [ fru(Xa; Ox0) (2.1)
k=1 =1

where 0; consists of the parameters of the distribution fi; and the 7 are
the mixing proportions. This formulation includes the motivating examples of
Latent Class analysis [Aitkin et al., 1981] and mixtures of multivariate normals
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[McLachlan and Basford, 1988]. With one exception to be described later
subvectors will usually be formed with vectors of the same type, categorical
or continuous. When a subvector contains only a single variable, that variable
is independent of all other variables within each subpopulation.

It is convenient to assume forms for the fi;, and hence for the fi, that belong
to the exponential family. The model is then well suited for maximum like-
lihood estimation of its parameters by the EM algorithm of Dempster et al.
[1977]. This approach is followed in Multimiz with the following distributions
for the xj;:

(a) Discrete Distribution. Here x; = {z;} is a 1-dimensional discrete random
variable taking values 1,..., M; with probabilities Ag1, ..., Akia;-

(b) Multivariate Normal. Here Xx; is a p;-dimensional vector of continuous
random variables with the Ny, (py;, Xg;) distribution.

(c) Location Model. Here x; is a 1+ p; dimensional vector of random variables
with one discrete variable, z;, and p; continuous variables as elements. The dis-
crete random variable takes values 1, ..., M; with probabilities Ag1, ..., Ak -
Conditional on the discrete variable taking value m the p; continuous ran-
dom variables have the multivariate normal distribution Ny, (¢mki, Exi). See
Krzanowski [1983] for details.

If all variables are of continuous type, then the f(z) = Y mfr(z) will be
a mixture of multivariate normal distributions. The way in which the set
of variables is partitioned into subvectors determines the form of the ma-
trix of covariance parameters in each fr. The form is block-diagonal with a
square block corresponding to each subvector. Extreme cases are the fully
unstructured covariance matrix case and the diagonal covariance matrix case.
Unstructured covariance matrices introduce many parameters into the model
and hence should be avoided as far as possible. A reasonable strategy for
fitting a mixture of multivariate normals for clustering purposes would be to
begin with the local independence case (diagonal covariance matrices) and
then to estimate the model parameters, assign observations to clusters and
then study the within-cluster correlation matrices. Variables that are highly
correlated in some of the clusters could be grouped into a subvector and the
whole process repeated with the model so modified.

If all the variables are of discrete type the model is the usual Latent Class
Model. In principal local independence could fail in this situation as well,
although this is not often checked for. If strong within-cluster associations
between two discrete variables are detected after a preliminary clustering then
the two variables may be combined into a single discrete variable with a level
for each cell of the two-way table (or fewer, if some cells are pooled).

The location model for a subvector in the partition is introduced in the general
Multimiz model to cope with the possibility of within-cluster associations be-
tween a discrete variable and several continuous variables. We do not expect
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this facility to be needed very often in practice.

Other types of variable models are available in other mixture modelling pro-
grams to be discussed below. It is no problem in principal to add new types
of attribute model from within the exponential family to extend the Multimiz
model.

As the model has been described, it is a mixture of K distributions, each of
which can be seen to belong to the exponential family. It is therefore well suited
for maximum likelihood estimation of its parameters by the EM algorithm of
Dempster et al. [1977] , and the Fortran 77 program Multimiz was written
by Lynette Hunt to do this.

The ‘complete data’, in EM terminology, consists of the n X p array of observed
data {z;;} and the conceptual n x K array {z;,} of class membership indica-
tors. The indicator vectors z1,...,2;,...,2z, are independently and identically
distributed according to a multinomial distribution generated by one draw on
a population made up of K categories in proportions 7y,...,7Tk.

The complete-data specification treats the z; as known leading to the log-
likelihood

n K L Zik
Lc(¢) = log (HH [W?’“{kaz(xz';%)} ])

=1

1
n K L
- ZZ{ziklogﬂ'k+Zik210gfkl(xi§0kl)}

i=1 k=1 =1
n K K

= >3 zyplogme+ Y 1k(6%)
i=1 k=1 k=1

where

it 10g [ (%3 Opr).-
1

L
1:(0)) = Z {zik > log fru(xi; 9kz)} =>.

n
=1 =1 =

=11

Maximising the complete data log-likelihood Lc(¢) is equivalent to maximis-
ing [1(0y) separately for each subvector in the partition. By substituting the
appropriate density for the fi; Hunt [1996] deduces that the complete data
sufficient statistics for the model are

1. For each class G, the sum

> ziks
i
2. For each class G, each categorical variable z;, and each value m of xz;,

the sum
E ZikOijms
i
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1 ifz;;=m
where 9, = Y ;
wm { 0 otherwise ’

3. (a) For each class G}, and each continuous variable z; belonging to a
multivariate normal subvector, the sums

2.
Z 2ikTij and Z ZikTij5
; ;

(b) For each class G, and each pair of continuous variables z; and z;,
j < j', belonging to the same multivariate normal subvector, the

sum
Z ZikTijLig;
i

4. (a) For each class G, each continuous variable z; belonging to a loca-
tion model subvector indexed by [ and each value m of the categor-
ical variable u;, the sums

2.
> ZikWimij and > Zikwim T
i i

(b) For each class Gy, each pair of continuous variables z; and z;,
j < 7', belonging to the location model subvector indexed by [ and
each value m of the categorical variable u;, the sum

Z Zik WilmTi§ T
[
1 ifuy=m

where w;p, = .
wm {0 otherwise

The EM iteration alternates between two calculations, the E-step and the M-
step. Beginning at a current value for ¢, say P the vector of all unknown
parameters, the E-step requires the calculation of Q(¢,¢®) = E{Lc(¢) |
X; ¢(p)}, the expectation of the complete data log-likelihood, conditional on
the observed data and the current value of the parameters. Because the
complete-data sufficient statistics are linear in the unobserved z;, we can cal-
culate Q(e, ¢>(7’)) from Lo (¢) by replacing z;; with

) fi(i, 0)

L (p)
= i, 0

Tie = E(zik, | xi; o)) =

in Le(p). That is, 2y is replaced by the estimate of the posterior probability
T;1 that observation ¢ belongs to group Gj.
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At the M-Step ¢(®*1) is chosen to be a value of ¢ which maximises Q(¢, ()
with respect to its first argument. For the Multimiz model the elements of
»®TY are given by

> F

LU =m

. 1< N 1
== Fik  Aim=——
n i1 nmg

R 1 & 8 1 R R R
P = o > v Sk =—— > Fau(Vit — figg) (Vir — figy)’
=1 i=

niy =
Vkim = L > Fvig Ep = ! > Fiw(Vit = Diim) (Vit — D)’
m — ~ (2 ym — - ~ (2 (2 m (2 m
nﬂ-k i,uil:m nm i,uil:m

fork=1,...,Kandl =1,...,L. Note that the level probabilities Ay, for the
categorical variables are calculated in the same way, irrespective of whether
or not the discrete variable u; belongs to a location model subvector.

The current version of the program uses a convergence criterion to cease iter-
ating when the difference in log-likelihoods at iteration ¢ and iteration ¢ — 10
is less than 0.0000001. The iteration may be started either from an initial
classification or from an initial set of parameter estimates. As the number
of parameters is quite large it is usually more convenient to begin with a
classification.

4 Example: Byar prostate cancer data

We consider the clustering of cases on the basis of pre-trial covariates alone for
the Prostate Cancer clinical trial data of Byar and Green [1980] reproduced
in Andrews and Herzberg [1985, pp 261-274]. This data set was obtained
from a randomized clinical trial comparing four treatments for 506 patients
with prostatic cancer grouped on clinical criteria into stages 3 and 4 of the
disease. As reported by Byar and Green Stage 3 represents local extension of
the disease without evidence of distant metastasis, while Stage 4 represents
distant metastasis as evidenced by elevated acid phosphatase, x-ray evidence,
or both. We will compare the clusters obtained by Multimixz with the clinical
stages, and also consider the trial outcomes for patients in different clusters.
The treatments consisted of estrogen therapy at differing rates. Daily pills
containing 0.0 (placebo), 0.2, 1.0, and 5.0 mg of diethylstilbestrol were ad-
ministered in the four treatments. As Byar and Green noted little difference
between the effects of the first two treatments and also between the effects of
the last two treatments, we will call patients in either of the first two treat-
ments ‘Untreated’ and in either of the last two treatments ‘Treated’.

There are twelve pre-trial covariates (Table 1) measured on each patient, seven
may be taken to be continuous, four to be discrete, and one variable (SG) is
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an index nearly all of whose values lie between 7 and 15, and which could be
considered either discrete or continuous. We will treat SG as a continuous
variable. A preliminary inspection of the data showed that the size of the
primary tumour (SZ) and serum prostatic acid phosphatase (AP) were both
skewed variables. These variables have therefore been transformed, S7Z under
a square root transformation, and AP using a logarithmic transformation,
to make their distributions more symmetric. Observations that had missing
values in any of the twelve pretreatment covariates were omitted from further
analysis, leaving 475 out of the original 506 observations available. In fact
several of the analyses to be described were also carried out using a version of
the program which allows for missing observations, treating them as missing
at random in the sense of Little and Rubin [1987] There was little variation
from the results using only the complete observations.

We will consider the fitting of 2-class models (K = 2). The simplest model
is the model [LInd] of complete local independence in which the component
densities take the form

12
Fe(xi508) = [ fra (%5 0n),

=1

where 0j; is the parameter vector for group k, subvector I; and k£ = 1,2.
Note that fe(Xi; 0ki) is N(pgr, 07;) for each of the 8 continuous variables, and
D(Xkiis - - -y Mkim, ) for each of the 4 categorical variables.

The fitting strategy used was a form of forward selection of covariances, be-
ginning with [LInd] and progressively adding local associations to the model
by taking coarser and coarser partitions of the set of 12 variables. The mod-
ifications to the current model were determined by examining correlations,
scatterplots and two-way tables within each of the two clusters formed by al-
locating each observation according to the current model. Table 2 summarises
the results of this fitting process and a description of some of the steps follows.
When the data had been grouped into two classes following the fitting of [LInd],
correlations between SBP and DBP of about 0.62 were observed within both
of the classes, and these appeared to be the strongest associations. The fact
that one would expect such a correlation within any naturally formed group of
patients made it compelling to fit a model [BPr| in which SBP and DBP had a
bivariate normal distribution within clusters. The partition of the variables for
this model placed these two variables together in a subvector, the remaining
subvectors being singletons. Thus [BPr] contains 2 more parameters than
[LInd].

The next group of variables chosen was the triple {BM, WtI, HG}, giving a
location model factor to the mixture densities as BM is dichotomous while WtI
and HG are continuous. The resultant model is denoted by [3,2], referring to
the size of these variable groups. Six extra parameters are introduced in this
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change: there are four new mean parameters, as the fitted means of W+tI and
HG are now specific to each level of BM within each subpopulation, and two
new covariance parameters. Model [5] combines these two variable groups at
a cost of introducing 12 new parameters and Model [9] has one large variable
group combining BM with all 8 continuous variables. Table 2 also includes the
log-likelihoods obtained. In the case of [LInd], [BPr], [3,2] and [5] these log-
likelihoods were obtained from several initial configurations including random
groupings of the observations; however [9] proved to be sensitive to the choice
of starting configuration and the greatest log-likelihood over 4 runs is shown
for this model. Convergence was usually obtained after 60 to 70 iterations
although one run for model [9] reached 200 iterations without converging.
There was little difference between the group allocations determined by [LInd],
[BPr], [3,2] and [5], with the allocation of only 4 patients out of 475 changing
between these models. Model [9] allocations were sensitive to the initial classi-
fication and did not agree so closely with each other nor with the classifications
of the more parsimonious models. Comparing the [BPr] allocation with the
clinical grouping into Stages 3 and 4 of the disease we find one cluster with
252 Stage 3 and 21 Stage 4 patients and the other cluster with 21 Stage 3 and
181 Stage 4 patients.

It is of interest to examine the post-trial survival status of patients in the
four Stage/ cluster combinations, which have been arrived at using pre-trial
information only. This information is presented in Table 3 for the [BPr] model,
and it will be noticed that while model cluster 1 and clinical Stage 3 are
associated with a better chance of survival, the patterns of outcomes for the 42
patients whose model and clinical classifications conflict show that the model
classifications are better indications of prognosis than the clinical criteria used.
This is especially noticeable among the treated patients.

Hunt [1996] analyses this data set in more detail, also fitting 3-class and 4-class
models yielding classifications with distinctively different outcome patterns
suggesting that the models were detecting real features of the population. She
also develops the methods of Little and Rubin [1987] for use with the model
of this paper and applies this to the complete data set of 506 Prostate Cancer
patients.

5 Model comparison tests

5.1 Number of components in the mixture

McLachlan and Basford [1988] devote their section 1.10 to the question of
testing for the number of components in a mixture. The problem is difficult
because although a model with K; components is nested within a model with
K5 > K components the usual regularity conditions are not met. These con-
ditions are required to conclude that if A is the likelihood ratio, —2log A is
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asymptotically distributed as x? with degrees of freedom equal to the differ-
ence in the number of parameters in the two models. In fact the asymptotic
distribution may depend on the true values of the parameters of the compo-
nent distributions, so there will be no general result. McLachlan and Basford
discuss a number of bootstrap approaches to the problem. Feng and McCul-
loch [1992, 1994, 1996] have studied several aspects of this problem. In their
most recent paper they recommend a bootstrap procedure. Bootstrap proce-
dures would be very costly to apply to the clustering of data sets with many
observations on many variables. Wolfe [1971] investigated the distribution of
—2log A when comparing nested mixtures of multivariate normal distributions
and recommended treating the distribution as x?, but with double the nomi-
nal degrees of freedom. Banfield and Raftery [1993] developed an approximate
Bayesian approzimate weight of evidence criterion as a guide for choosing the
number of components in the mixture. Wallace and Dowe [1998] use a ‘mini-
mum message length’ criterion as a basis for their parameter estimation. This
method unifies model selection and parameter estimation and leads to a choice
for the number of components.

A specific example provides an illustration of how it may not be realistic to
expect to choose a value for K on sample evidence alone. Consider the problem
of estimating growth and age structure in a stock of fish from length-frequency
data. Suppose that £k = 1... K indexes K subpopulations I (age classes) of
fish and that the fish in II; all have age t; years, where ¢, = ¢, +k — 1. Let
7, be the proportion of the population in IT; and u and of be the mean and
standard deviation of II. Schnute and Fournier [1980] discuss the maximum
likelihood fitting of a model of this kind where the parameters p; and oy
are modelled parametrically as functions of #;. In the fisheries application
discussed by Schnute and Fournier the u; and o tend to limiting values as &
increases and the 7 vary because of annual recruitment variations but tend
to diminish geometrically because of cumulative mortality, both natural and
fishing. Thus as k increases the II; become closer together but are represented
in the sample by smaller and smaller proportions. This kind of situation seems
very natural but would appear to resist any form of statistical inference for the
value of K. In view of the complexities of this question it seems best to regard
the number of components K as a choice to be made by the modeller, in much
the same way as a functional form for a distribution is selected arbitrarily. This
does not mean that model comparison statistics of the —2log A kind cannot
be used heuristically. There remains the possibility that a small number of
observations from unmodelled components will upset the fit of the model to the
bulk of the data. Jorgensen [1990] discussed a number of diagnostic statistics
that may be used to detect these points.
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5.2 Number of within-cluster associations

In contrast to the determination of the number of classes K, the standard
likelihood ratio tests for two nested models based on an approximate distribu-
tion for —2log A of x? with degrees of freedom equal to the difference in the
number of parameters in the two models are not likely to mislead. The most
troublesome regularity condition requiring checking is that the third order
derivatives of log f with respect to the parameters are bounded (in a neigh-
bourhood of the true parameter vector) by functions of the data with finite
expectation [Lehmann, 1983, p. 429] . This can be shown to be the case,
roughly, if the partial derivatives of the component densities fi, with respect
to all parameters and up to third order, are not too large in comparison with
the mixture density f. Even for the simple case of a mixture of two bivariate
normals, a model with 11 parameters we have 63 + 63 third order derivatives
of component densities to check, although many of these coincide. Checking
some of these by hand suggests that all will be well unless a true variance
parameter is zero or a correlation is £1, that is, unless a component density
is degenerate. We also need neither proportion to be close to zero. A natural
conjecture in the case of a finite mixture of multivariate normals is that the
regularity conditions will be satisfied as long as the smallest eigenvalue of the
true variance/covariance matrix for each group is not close to zero. In practi-
cal terms, the suggestion is that when a ‘Reduced’ model is being compared
with a ‘Full’ model (having the same number of components, but with extra
association parameters) that we may base a model comparison test on the
assumption that —2log A has an approximate distribution of y? with degrees
of freedom equal to the difference in the number of parameters in the two
models when the Reduced model is operating, unless the fit obtained under
the Reduced model has any degeneracies either in the number of components
or in the form of any of the components. Similar model selection problems
are considered by Dempster [1972] and Wermuth [1976a,b], but in the case
of a single multivariate normal component, rather than a mixture of these.
Wermuth also considers loglinear contingency table models. These authors
parameterise the multivariate normal using the inverse of the covariance ma-
trix, called the concentration matrix, rather than the covariance matrix. They
test for the vanishing of a set of elements of the concentration matrix, which is
equivalent to the vanishing of the corresponding set of partial correlations. As
we restrict ourselves to models with block-diagonal covariance structure, and
the inverses may be calculated block by block, tests involving the splitting or
combining of blocks may be formulated either in terms of the covariances or
the concentrations.
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6 Other programs for mixture model clustering

6.1 AutoClass

AutoClass [Cheeseman and Stutz, 1996] is a Bayesian clustering program de-
veloped by Peter Cheeseman and colleagues at NASA Ames Research Center.
The models fitted by AutoClass are very similar to those fitted by Multimiz,
although both programs were developed independently. Two obvious differ-
ences are

1. AutoClass has automated the process of model selection as well as that
of parameter estimation but Multimiz leaves model-specification to the
user;

2. AutoClass uses Maximum Posterior estimation in place of Maximum
Likelihood estimation.

In fact the first is the more crucial difference, because the EM algorithm at
the basis of both programs accommodates both ML and MAP estimation.
AutoClass compares different models by calculating an approximation to the
marginal density of the observed data after the model parameters have been
integrated out. In usual EM language the approximation used is analogous to
taking observed data likelihood to be proportional to complete data likelihood
with the constant of proportionality to be evaluated at the maximum likelihood
estimates.

The models currently available in AutoClass for attributes within a compo-
nent are as follows. Categorical attributes are modelled by general discrete
distributions (multi-category Bernoulli) as in Multimiz. Continuous attributes
may be taken to have uniform or normal distributions, possibly after transfor-
mation. Poisson distributions are available for count attributes. Cheeseman
and Stutz [1996] report that von Mises-Fisher distributions for circular and
spherical attributes are under development. At present it appears that Auto-
Class does not offer facilities for modelling within cluster dependencies, that
is, all models assume within-cluster independence of attributes. Missing val-
ues are treated as a special kind of value in some attribute models, but there
has been no implementation of the Little and Rubin [1987] methodology for
data missing at random.

Cheeseman and Stutz claim that the AutoClass method of model comparison
introduces an ‘Occam factor’ which penalizes overfitting. However Edwards
and Dowe [1998] describe the Minimum Message Length (see below) fitting of
a model that combined a continuous latent factor with a number of classes to
a set of 5425 infrared spectra from astronomical point sources. Edwards and
Dowe found 12 classes where AutoClass had found 77 [Goebel et al., 1989]. It
is not clear whether the difference in the number of classes in the fit is due
to the explicit penalty on overfitting built into the Minimum Message Length
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criterion or whether it is the introduction of the continuous factor which is
responsible.

6.2 Snob

Snob [Wallace and Dowe, 1998] is a clustering program developed by Chris
Wallace and co-workers at the Monash University Department of Computer
Science, beginning in the late sixties. [Wallace and Boulton, 1968]. Snob has
a home page at http://www.cs.monash.edu.au/~dld/Snob.html. Snob is a
mixture model similar in structure to AutoClass and offering local indepen-
dence models based on discrete, Normal, Poisson and von Mises distributions.
In fact Snob is the older program. A novel feature of Snob is that inference
is by the principal of Minimum Message Length [Wallace and Freeman, 1987].
This form of inference takes discrete variables as fundamental and seeks to
minimise the negative logarithm of the probability of the model and param-
eter values plus the negative logarithm of the probability of the data given
the model and parameter values. A continuous analogue of this estimation
principle is similar to Maximum Posterior estimation (MAP) but introduces
an additional factor of (F(G))fé to the prior, where F(0) is the determinant
of the Fisher information matrix at the parameter vector 6.

In contrast to Multimiz, where the user must specify the number of classes,
Snob selects the number of classes automatically using the Minimum Message
Length criterion. Thus the MML criterion is used for all aspects of model
selection and parameter estimation in the Snob approach.

6.3 DMclust

Banfield and Raftery [1993] have developed the classification likelihood ap-
proach of Scott and Symons further to introduce a controlled amount of flex-
ibility to criterion-based cluster analysis for continuous data. Although this
approach suffers from the disadvantages mentioned in Section 1.2, it does lead
similar optimization problems to those faced in traditional cluster analysis,
and hence the model fitting may be done by algorithms similar to those used
to solve those problems. Wallace and Dowe [1998] point out that in the case
of a substantially overlapping pair of normal distributions having equal abun-
dance and common o this kind of estimation is likely to overestimate the
difference in means and underestimate o.

Bamfield and Raftery characterize the dispersion matrices of multivariate nor-
mal clusters by their orientation, size, and shape. They mainly consider models
where the shape is the same in each component of the mixture, but orientation
and size are permitted to vary. They also consider an approach to robustifying
cluster analysis by allowing a very dispersed ‘noise’ component in addition to
the multivariate normal components.
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A Fortran program called Mclust has been written by Chris Fraley to fit
these models and others. It is available from StatLib either as a Fortran
program or as an S-PLUS function. Although criterion-based, rather than
being based on a distance matrix, Mclust is written to proceed initially as an
agglomerative hierarchical program. However once the number of clusters has
been determined by the user Mclust can proceed by reallocating points to seek
a minimum of the criterion in a fashion similar to the k-means algorithm of
Hartigan [1975]. In recent versions of S-PLUS Mclust now forms the core of
the clustering functions provided.

7 The place of Multimiz in mixture modelling

The brief survey of other related programs helps to clarify the role of Multimiz
as a mixture modelling tool. In contrast to Snob and AutoClass it automates
only parameter estimation, leaving model selection to the control of the user.
It appears to be unique in offering a maximum likelihood approach to a class
of models extending mixtures of multivariate normals and latent class models.
(Although it is possible that AutoClass and Snob might be coaxed into produc-
ing similar output for at least some models by appropriate prior specification
and the switching off of their model search facilities).

A natural further development for Multimiz would be to introduce new types of
attribute distribution such as the Poisson and circular von Mises distributions.
To the extent that robust estimation is appropriate for a particular dataset
it seems that it would be better to add a very small proportion of a highly
dispersed component to the mixture than to follow Banfield and Raftery [1993]
in modifying the likelihood criterion to gain robustness.

There are no present plans to automate model selection in Multimiz, but it
must be acknowledged that more needs to be done in the way of graphical diag-
nostic output to assist the user with the refinement of the models. Eventually
some form of automation of model selection will be necessary if Multimixz is to
be used on extremely large data sets, but we would feel happier about adopt-
ing any proposal for model selection if we could compare it with human-driven
procedures over a range of datasets.

The availability of the four programs AutoClass, Mclust, Multimiz and Snob
offering similar ranges of models but using different inferential principles pro-
vides an opportunity to learn more about the strengths and weaknesses of
these principles in the practical data analysis context of large multivariate
data sets. Currently Multimiz is available as Fortran 77 source code from
the URL ftp://ftp.math.waikato.ac.nz/pub/maj/. Some documentation,
data sets and auxiliary programs are available at the same location.
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