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Institut für Theoretische Physik
ETH Zürich
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1 Introduction

In particular, [we] analyzes[d] seven widely used [GARCH]
packages, utilizing a recently developed benchmark. Four of the
packages are found to be unsuitable, in most cases because the
developer either does not specifically indicate which of the many
possible GARCH models is being estimated, or does not accommodate
the most common model specified in the applied literature, or
both. A principal finding is that implementation of the GARCH
procedure varies so widely that two packages ostensibly doing the
same thing actually may be estimating substantively different
models.
McCullough and Renfro 1999

GARCH, Generalized Autoregressive Conditional Heteroskedastic, models have become impor-
tant in the analysis of time series data, particularly in financial applications when the goal is
to analyze and forecast volatility. For this purpose, we describe a R-package for simulating, es-
timating and forecasting various univariate GARCH-type time series models in the conditional
variance and an ARMA specification in the conditional mean. We present a numerical imple-
mentatation of the Maximum Likelihood approach under four assumptions, Normal, Student-t,
GED or skewed Student-t errors. The parameter estimates are checked by several diagnostic
analysis tools including graphical features and hypothesis tests. One step ahead forecasts of
both the conditional mean and variance are available.

In this document we consider as a first step univariate ARMA, models with GARCH, errors.
The name GARCH is considered in a broader sense denoting a whole family of models. The
number of GARCH models is immense, but the most influential models were the first. Beside
the standard ARCH model introduced by Engle (1982) and the GARCH model introduced by
Bollerslev (10986), we consider also the more general class of asymmetric power ARCH models
(APARCH) introduced by Ding, Granger and Engle (1993). APARCH models itself include as
special cases the TS-GARCH model of Taylor (1986) and Schwert (1989), the GJR-GARCH
model of Glosten, Jaganathan, and Runkle (1993), the T-ARCH model of Zakoian (1993), the
N-ARCH model of Higgins and Bera (1992), and the Log-ARCH model of Geweke (1986) and
Pentula (1986).

Coupled with these models was a sophisticated analysis of the stochastic process of data gen-
erated by the underlying process as well as estimators for the unknown model parameters.
Theorems for the autocorrelations, moments and stationarity and ergodicity of GARCH pro-
cesses have been developed for many of the important cases. There exist a collection of review
articles by Bollerslev, Chou and Kroner(1992), Bera and Higgins(1993), Bollerslev, Engle and
Nelson(1994), Engle(2001), Engle and Patton(2001), Li, Ling and McAleer(2002) that give a
good overview of the scope of the research.

The aim of this user guide is threefold. It gives a brief introduction to the concepts of GARCH
time series modelling, it shows how the algorithms are implemented in the R environment using
the S language, and gives some useful hints and suggestions for adding your own functions.
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2 Mean and Variance Equation

We describe the mean equation of an univariate time series yt by the process

yt = E(yt|Ωt−1) + εt , (1)

where E(·|·) denotes the conditional expectation operator, Ωt−1 the information set at tine t−1,
and εt the innovations or residuals of the time series. εt describes uncorrelated disturbances
with zero mean and plays the role of the unpredictable part of the time series. In the following
we model the mean equation as an ARMA process, and the innovations are generated from a
GARCH process.

2.1 ARMA Mean Equation

The ARMA(m,n) process of autoregressive order m and moving average order n can be described
as

yt = µ +
m∑

i=1

aiyt−i +
n∑

j=1

bjεt−j ,

= µ + a(B)yt + b(B)εt , (2)

with mean µ, autoregressive coefficients ai and moving average coefficients bi. Note, that the
model can be expressed in a quite comprehensive form using the backshift operator B defined
by Bxt = xt−1. The functions a(B) and b(B) are polynomials of degree m and n respectively in
the backward shift operator B. If m = 0 we have a pure autoregressive process and if on the
other hand n = 0 we have a pure moving average process.

The ARMA time series is stationary when the series a(B), which is the generating function of
the coefficients a, converges for |B| < 1 that is, on or within the unit circle.

2.2 GARCH Variance Equation

The mean equation cannot take into account for heteroskedastic effects of the time series process
typically observed in form of fat tails, as clustering of volatilities, and the leverage effect. In this
context Engle (1982) introduced the Autoregressive Conditional Heteroskedastic model, named
ARCH, later generalized by Bollerslev (1986), named GARCH.

The εt terms in the ARMA mean equation (2) are the innovations of the time series process.
Engle (1982) defined them as an autoregressive conditional heteroscedastic process where all εt

are of the form

εt = zt σt , (3)

where zt is an iid process with zero mean and unit variance. Although εt is serially uncorrelated
by definition its conditional variance equals σ2

t and, therefore, may change over time. All
the GARCH models we consider in the following differ only in their functional form for the
conditional variance.
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The GARCH Model:

The variance equation of the GARCH(p,q) model can be expressed as:

εt = ztσt ,

zt ∼ D(0, 1) ,

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j ,

= ω + α(B)ε2
t−1 + β(B)σ2

t−1 (4)

where D(0, 1) is the probability density function of the innovations or residuals with zero mean
and unit variance. If all the coefficients β are zero the GARCH model is reduced to the ARCH
model. Like for ARMA models a GARCH specification often leads to a more parsimonious
representation of the temporal dependencies and thus provides a similar added flexibility over
the linear ARCH model when parameterizing the conditional variance.

Bolerslev (1986) has shown that the GARCH(p,q) process is wide-sense stationary with E(εt) =
0, var(εt) = ω/(1− α(1)− β(1)) and cov(εt, εs) = 0 for t 6= s if and only if α(1) + β(1) < 1.

The APARCH Model:

The variance equation of the APARCH(p,q) model can be written as:

εt = ztσt ,

zt ∼ D(0, 1) ,

σδ
t = ω +

q∑
i=1

αi(|εt−i| − γiεt−i)δ +
p∑

j=1

βjσ
δ
t−j , (5)

where δ > 0 and −1 < γi < 1. This model has been introduced by Ding, Granger, and Engle
(1993). It adds the flexibility of a varying exponent with an asymmetry coefficient to take the
leverage effect into account. A stationary solution exists if ω > 0, and Σiαiκi +Σjβj < 1, where
κi = E(|z|+ γiz)δ. Note, that if γ 6= 0 and/or δ 6= 2 the κi depend on the assumptions made on
the innovation process.

The APARCH includes seven other ARCH extensions as special cases:

• ARCH Model of Engle when δ = 2, γi = 0, and βj = 0.
• GARCH Model of Bollerslev when δ = 2, and γi = 0.
• TS-GARCH Model of Taylor and Schwert when δ = 1, and γi = 0.
• GJR-GARCH Model of Glosten, Jagannathan, and Runkle when delta = 2.
• T-ARCH Model of Zakoian when delta = 1.
• N-ARCH Model of Higgens and Bera when γi = 0, and βj = 0.
• Log-ARCH Model of Geweke and Pentula when δ → 0.
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3 GARCH Modelling Process

The modelling of a GARCH process consists of several steps: The specification of the model,
the generation of artificial time series for simulation and testing, the parameter estimation, the
diagnostic analysis, and the computation of forecasts. For each step a R-function is available.

Functions for GARCH Modelling Process:

• garchSpec - specifies the GARCH model. The function creates a GARCH specification object of class
"garchSpec".

• garchSim - simulates an artificial GARCH time series.

• garchFit - fits the parameters to the model. This function estimates the time series coefficients and the
distributional parameters of a specified GARCH model.

• print, plot, summary, - are methods for an object returned by the function "garchFit". These functions
print and plot results, create a summary report and perform a diagnostic analysis.

• predict - forecasts one step ahead from an estimated model. This function can be used to predict future
volatility from a GARCH model.

3.1 Specification Structure

The R-function garchSpec creates a S4 object called specification structure which specifies a
GARCH process. This function maintains information that defines a model used for time series
simulation, parameter estimation and diagnostic analysis.

Class Representation for the Specification Structure:

setClass("garchSpec",

representation(

call = "call",

formula = "formula",

model = "list",

distribution = "list",

presample = "matrix",

title = "character",

description = "character"

)

)

The slots of the object include the string which matches the call of the function, a formula
expression that describes the model, a list with the model parameters, a list with the distribu-
tional specification of the innovations, and a presample matrix to initiate the GARCH process.
Additionally, a title and a short description can be added to the specification structure.

The meaning of the arguments of the function garchSpec together with the default values is
summarized in the following list:
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Function: GARCH Specification Function - garchSpec

garchSpec =

function (model = list(omega = 1e-6, alpha = 0.1, beta = 0.8),

distribution = c("norm", "snorm", "ged", "sged", "std", "sstd"),

presample = NA, title = NULL, description = NULL)

• model - a list with the model parameters as entries

– ar - a vector of autoregressive coefficients of length m for the ARMA specification,

– ma - a vector of moving average coefficients of length n for the ARMA specification,

– omega - the variance value for GARCH/APARCH specification,

– alpha - a vector of autoregressive coefficients of length p for the GARCH/APARCH specification,

– gamma - a vector of leverage coefficients of length p for the APARCH specification,

– beta - a vector of moving average coefficients of length q for the GARCH/APARCH specification,

– mu - the mean value for ARMA/GARCH specification,

– delta - the exponent value used in the variance equation,

– parm - a vector of two shape parameters measuring the degree of skewness and kurtosis.

By default a GARCH(1,1) process with ω = 10−6, α = 0.1, and β = 0.8 with normal innovations will be
created.

• distribution - a string selecting the desired distributional form of the innovations either norm for the
Normal, ged for the Generalized Error, std for the Standardized Student-t, or snorm, sged, sstd, for one
of the skewed distributions. By default the normal distribution will be selected.

• presample - a numeric "matrix" with 3 columns and at least max(m,n,p,q) rows. The first column holds
the pre-innovations, the second the pre-sigmas, and the third the pre-series. Otherwise, if presample
takes the value NA, which is the default, or is specified as a positive integer, then the presample will be
automatically created of minimal or of the specified length.

• title - a character variable associated with a title. By default NULL, which means that the title will be
automatically set.

• description - a character string associated with a description of the GARCH specification. By default
NULL, which means that a brief description will be automatically set.

The function garchSpec has a print method which produces for the GARCH(1,1) default spec-
ification the following report:

Exercise: Print Method for GARCH Specification - xmpGarchSpecification

> print(garchSpec())

Call: garchSpec()

Title: ARMA - GARCH/APARCH Specification

Formula: ~garch(1, 1)

Model:

omega: 1e-06

alpha: 0.1

beta: 0.8

delta: 2

Distribution: norm

Parameter: NA 1

Presample:

time z h y

1 0 -0.1422962187 1.000000e-05 0.000000e+00

Description:

Specification as of Wed Jan 07 20:34:51 2004
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In the following we describe in more detail the specification of the formula and model object,
the distribution object and the presample object.

The Formula and Model Specification:

The formula object describes the GARCH model and is automatically created from the model
list, e.g. ARMA(m,n) + GARCH(p,q). ARMA can be missing or specified as AR(m) or MA(n)
in the case of pure autoregressive or moving average models. GARCH(p,q) may be alternatively
specified as ARCH(p) or APARCH(p,q).

The Distribution Specification:

The distribution object selects one from six possible probability functions. The default choice
for the distribution of the innovations zt to simulate or to estimate the parameters of a GARCH
process is the Standardized Normal Probability Function1

f?(z) =
1√
2π

e−
z2

2 . (6)

The probability function or density is named standardized, marked by a star ?, because f?(z)
has zero mean and unit variance. This can easily be verified computing the moments

µ?
r =

∫ ∞

−∞
zrf?(z)dz . (7)

Note, that µ?
0 ≡ 1 is the normalization condition, that µ?

1 defines the mean µ ≡ 0, and µ?
2 the

variance σ2 ≡ 1.

An arbitrary Normal distribution located around a mean value µ and scaled by the standard
deviation σ can be obtained by introducing a location and a scale parameter through the trans-
formation

f(z)dz → 1
σ

f?
(z − µ

σ

)
dz =

1
σ
√

2π
e−

(z−µ)2

2σ2 dz . (8)

The central moments µr of f(z) can simply be expressed in terms of the moments µ?
r of the

standardized distribution f?(z). Odd central moments are zero and those of even order can be
computed from

µ2r =
∫ ∞

−∞
(z − µ)2rf(z)dz = σ2rµ?

2r = σ2r 2r

√
π

Γ
(
r +

1
2

)
, (9)

yielding µ2 = 0, and µ4 = 3. The degree of asymmetry γ1 of a probability function, named skew-
ness, and the degree of peakedness γ2, named excess kurtosis, can be measured by normalized
forms of the third and fourth central moments.

γ1 =
µ3

µ
3/2
2

= 0 , γ2 =
µ4

µ2
2

− 3 = 0 . (10)

However, if we like to model an asymmetric and/or leptokurtic shape of the innovations we have
to draw or to model zt from a standardized probability function which depends on additional

1The Normal probability function is selected by setting distribution="norm".
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shape parameters which modify the skewness and kurtosis. However, it is important that the
probability has still zero mean and unit variance. Otherwise, it would be impossible, or at
least difficult, to separate the fluctuations in the mean and variance from the fluctuations in
the shape of the density. In a first step we consider still symmetric probability functions but
with an additional shape parameter which models the kurtosis. As examples we consider the
generalized error distribution and the Student-t distribution with unit variance, both relevant
in modelling GARCH processes.

Generalized Error Distribution:

Nelson [1991] suggested to consider the family of Generalized Error Distributions2, GED, already
used by Box and Tiao [1973]3 and Harvey [1981]. f?(z|ν) can be expressed as

f?(z|ν) =
ν

λν21+1/νΓ(1/ν)
e−

1
2
| z
λν
|ν , (11)

λν =

(
2(−2/ν)Γ

(
1
ν

)
Γ
(

3
ν

) )1/2

with 0 < ν ≤ ∞. Note, that the density is standardized and thus has zero mean and unit vari-
ance. Arbitrary location and scale parameters µ and σ can be introduced via the transformation
z → z−µ

σ . Since the density is symmetric, odd central moments of the GED are zero and those
of even order can be computed from

µ2r = σ2rµ?
2r = σ2r (21/νλν)2r

Γ
(

1
ν

) Γ
(2r + 1

ν

)
. (12)

Skewness γ1 and kurtosis γ2 are given by

γ1 =
µ3

µ
3/2
2

= 0 , γ2 =
µ4

µ2
2

− 3 =
Γ
(

1
ν

)
Γ
(

5
ν

)
Γ
(

3
ν

)2 − 3 . (13)

For ν = 1 the GED reduces to the Laplace distribution, for ν = 2 to the Normal distribution,
and for ν →∞ to the uniform distribution as a special case4.

Function: GED Distribution - [dpqr]ged

In this example we show how to write a function to compute density, distribution function, quantile
function and how to generate random deviates for the generalized error distribution with mean equal
to mean, standard deviation equal to sd, and shape parameter equal to nu.

Hint: To Compute the distribution function F (x) =
∫ x

−∞ f(z)dz transform 1
2
| z
λν
|ν → z and make

use of the relationship to the Gamma distribution function which is part of R’s base package.

2The Generalized error distribution is selected by setting distribution="ged".
3Box and Tiao call the GED exponential power distribution.
4The Laplace Distribution takes the form f(z) = 1√

2
e−
√

2|z|, and the uniform distribution has range ±2
√

3
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� Figure 1: The figure shows on top the density and distribution for the GED. Three cases are considered:
The leptokurtic Laplace Distribution with ν = 1, the Normal Distribution with ν = 2, and the almost Uniform
Distribution for large ν = 10. On the lower left the ratio of two succeeding absolute moments is displayed. For the
Laplace distribution we get a straight line, for distributions with thinner tails than the Laplace distribution, the
curve bends upwards, and for distributions with thicker tails the curve bends downwards. On the lower right the
4th moment as a function of the shape parameter ν is shown. Since the distribution is standardized, the fourth
moment coincides with the value of the kurtosis. Note, to obtain the excess kurtosis we have to subtract 3. For
ν → 0 the kurtosis diverges and for ν →∞ the kurtosis tends to one. The circles mark the values for the Laplace
and Normal distributions. The code to produces these figures can be found in the example file xmpGarchDISTged.
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# Density Function:

dged = function(x, mean = 0, sd = 1, nu = 2) {

# x - Vector of quantiles

x = (x - mean ) / sd

lambda = sqrt ( 2^(-2/nu) * gamma(1/nu) / gamma(3/nu) )

g = nu / ( lambda * (2^(1+1/nu)) * gamma(1/nu) )

Density = g * exp (-0.5*(abs(x/lambda))^nu) / sd

return(Density) }

# Distribution Function:

pged = function(q, mean = 0, sd = 1, nu = 2) {

# q - Vector of quantiles

q = (q - mean ) / sd

lambda = sqrt ( 2^(-2/nu) * gamma(1/nu) / gamma(3/nu) )

g = nu / ( lambda * (2^(1+1/nu)) * gamma(1/nu) )

h = 2^(1/nu) * lambda * g * gamma(1/nu) / nu

s = 0.5 * ( abs(q) / lambda )^nu

Distribution = 0.5 + sign(q) * h * pgamma(s, 1/nu)

return(Distribution) }

# Quantile Function:

pged = function(p, mean = 0, sd = 1, nu = 2) {

# p - Vector of probabilities

lambda = sqrt ( 2^(-2/nu) * gamma(1/nu) / gamma(3/nu) )

g = nu / ( lambda * (2^(1+1/nu)) * gamma(1/nu) )

h = 2^(1/nu) * lambda * g * gamma(1/nu) / nu

s = 0.5 * ( abs(p) / lambda )^nu

Quantiles = qgamma(s, 1/nu)

return(Quantiles) }

# Random Deviates:

rged = function(n, mean = 0, sd = 1, nu = 2) {

# n - Number of random deviates to be generated

r = rgamma(n, shape = 1/nu, scale = nu)

Deviates = r^(1/nu) * sign(runif(n)-0.5)

return(Deviates) }

Student-t Distribution:

Bollerslev [1987], Hsieh [1989)], Baillie and Bollerslev [1989], Bollerslev, Chou, and Kroner
[1992], Palm [1996], Pagan [1996)], and Palm and Vlaar [1997] among others showed that the
Student-t distribution better captures the observed kurtosis in empirical log-return time series.
The density f?(z|ν) of the Standardized Student-t Distribution5 can be expressed as6

f?(z|ν) =
Γ(ν+1

2 )√
π(ν − 2)Γ(ν

2 )
1(

1 + z2

ν−2

) ν+1
2

=
1√

ν − 2 B
(

1
2 , ν

2

) 1(
1 + z2

ν−2

) ν+1
2

, (14)

where ν > 2 is the shape parameter and B(a, b) =Γ(a)Γ(b)/Γ(a + b) the Beta function. Again,
arbitrary location and scale parameters µ and σ can be introduced via the transformation

5The standardized Student-t probability function is selected by setting distribution="std".
6Note, when setting µ = 0 and σ2 = ν/(ν − 2) formula (??) results in the usual one-parameter expression for

the Student-t distribution as implemented in the R function dt.
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z → z−µ
σ . Odd central moments of the standardized Student-t distribution are zero and those

of even order can be computed from

µ2r = σ2rµ?
2r = σ2r (ν − 2)

r
2

B( r+1
2 , ν−r

2 )
B(1

2 , ν
2 )

. (15)

Skewness γ1 and kurtosis γ2 are given by

γ1 =
µ3

µ
3/2
2

= 0 , γ2 =
µ4

µ2
2

− 3 =? . (16)

Function: Student-t Distribution - [dpqr]std

In this example we show how to write a function to compute density, distribution function, quantile
function and how to generate random deviates for the Student-t distribution with mean equal to
mean, standard deviation equal to sd, and shape parameter equal to nu.

Hint: To Compute the distribution function make use of the relationship to the (non-standardized)
Student-t distribution function which is part of R’s base package.

# Density Function:

dstd = function(x, mean = 0, sd = 1, nu = 5) {

# x - Vector of quantiles

s = sqrt(nu/(nu-2))

z = (x-mean) / sd

Density = dt(x = z*s, df = nu) * sd / s)

return(Density) }

# Distribution Function:

pstd = function (q, mean = 0, sd = 1, nu = 5) {

# q - Vector of quantiles

s = sqrt(nu/(nu-2))

z = (q-mean) / sd

Distribution = pt(q = z*s, df = nu)

return(Distribution) }

# Quantile Function:

qstd = function (p, mean = 0, sd = 1, nu = 5) {

# p - vector of probabilities

s = sqrt(nu/(nu-2))

Quantiles = qt(p = p, df = nu) * sd / s + mean

return(Quantiles) }

# Random Deviates:

rstd = function(n, mean = 0, sd = 1, nu = 5) {

# n - Number of random deviates to be generated

s = sqrt(nu/(nu-2))

Deviates = rt(n = n, df = nu) * sd / s + mean

return(Deviates) }

Standardized Skewed Distributions:

Fernandez and Steel [1998] proposed a quite general approach that allows the introduction of
skewness in any continuous unimodal and symmetric distribution by changing the scale at each
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� Figure 2: The figure shows on top the density and distribution for the Student-t distribution with unit variance
for three different degrees of freedom, ν = 2.5, 5, 10. The graph for the largest value of ν is almost undistinguishable
from a normal distribution. The lower left shows a histogram of 1000 random deviates distributed for ν = 2.5.
The thick line fits the theoretical density and the thin line corresponds to a normal distribution with the same
variance. The last graph shows the kurtosis as function of the number of degrees of freedom. The kurtosis diverges
for ν → 2 and its asymptotic values for ν →∞ approaches zero, the value for the normal distribution.
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side of the mode

f(z|ξ) =
2

ξ + 1
ξ

[
f(ξz)H(−z) + f(

z

ξ
)H(z)

]
, (17)

where 0 < ξ < ∞ is a shape parameter which describes the degree of asymmetry. ξ = 1 yields
the symmetric distribution with f(z|ξ = 1) = f(z). H(z) = (1+sign(z))/2 is the Heaviside unit
step function. Mean µξ and variance σξ of f(z|ξ) depend on ξ and are given by

µξ = M1

(
ξ − 1

ξ

)
σ2

ξ = (M2 −M2
1 )
(
ξ2 +

1
ξ2

)
+ 2M2

1 −M2

Mr = 2
∫ ∞

0
xr f(x) dx , (18)

where Mr is the r-th absolute moment of f(x) on the positive real line. Note, that M2 ≡ 1 if
f(x) is a standardized distributions.

Function: Compute Absolute Moments - xmpGarchDISTmoments

In this example we show how to write a function which computes the absolute moments Mr for the
standardized normal, GED and Student-t distributions or any other standardized distribution.

absMoments =

function(n, density, ...) {

# "density" is a character string giving the name of a

# standardized distribution, e.g. dnorm, dged, dstd, ...

# "..." are additional arguments passed to the

# standardized distribution, e.g. nu for dged and dstd.

# norm - Normal Distribution:

if (density == "dnorm") {

return (sqrt(2)^n * gamma((n+1)/2) / sqrt(pi)) }

# ged - Generalized Error Distribution:

if (density == "ged") {

parm = function(n, nu) {

lambda = sqrt ( 2^(-2/nu) * gamma(1/nu) / gamma(3/nu) )

return ((2^(1/nu)*lambda)^n * gamma((n+1)/nu) / gamma(1/nu)) }

return(parm(n, ...)) }

# std - Student-t Distribution:

# Note: nu > 2*n

if (density == "std") {

parm = function(n, nu) {

return (beta(1/2+2*n, nu/2-2*n)/beta(1/2, nu/2) * sqrt(nu-2)) }

return(parm(n, ...)) }

# Any other standardized Distribution will be numerically integrated ...

fun = match.fun(density)

moments = function(x, n, ...) { x^n * fun(x, ...) }

M = absMoments.error <<-NULL
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for (i in n) {

I = integrate(moments, 0, Inf, n=i, ...)

M = c(M, 2*I$value)

absMoments.error <<- c(absMoments.error, 2*I$abs.error) }

return(M)

}

# Example - Try GED:

> absMoments(1:5, density = "dged", nu = 1)

[1] 0.7071068 1.0000000 2.1213203 6.0000000 21.2132034

# Example - Try Standardized Laplace Distribution:

# We expect the same results ...

> dlaplace = function(x) { exp(-sqrt(2)*abs(x)) / sqrt(2) }

> absMoments(1:5, density = "dlaplace")

[1] 0.7071068 1.0000000 2.1213203 6.0000000 21.2132034

> absMoments.error

[1] 1.7577e-07 2.728e-06 1.550e-05 3.867e-05 2.365e-06

Now we introduce a re-parametrization in such a way that the skewed distribution becomes
standardized with zero mean and unit variance7. We call a skewed distribution function with
zero mean and unit variance Standardized Skewed Distribution function.

The probability function f?(z|ξ) of a standardized skewed distribution can be expressed in a
compact form as

f(z|ξθ) =
2σ

ξ + 1
ξ

f?(zµξσµξ|θ)

zµξσµξ = ξsign(σξ z+µξ)(σξz + µξ ) , (19)

where f?(x|θ) may be any standardized symmetric unimodal distribution function, like the
Standardized Normal distribution (6), the Standardized Generalized Error distribution (11) or
the Standardized Student-t distribution (??). µξ and σξ can be calculated via equation (18).

Transforming z → z−µ
σ yields skewed distributions, where the parameters have the following

interpretation:

• µ is the mean or location parameter,
• σ is the standard deviation or the dispersion parameters,
• 0 < ξ <∞ a shape parameter that models the skewness8.
• θ an optional set of shape parameters that model higher moments of even order

like ν in the GED and Student-t distributions.

Exercise: Standardized Skewed Distributions

In this example we show how to write a function to compute density, distribution function, quantile
function and how to generate random deviates for the standardized Student-t distribution with zero
mean and unit variance, and shape parameter equal to nu.

7Lambert and Laurent (2001) have also reparametrized the density of Fernandez and Steel (1998) as a function
of the conditional mean and of the conditional variance in such a way that again the innovation process has zero
mean and unit variance.

8Setting ξ = 1 yields the symmetric distribution
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# Density Function:

.dsstd = function(x, nu, xi) {

# Standardize:

m1 = 2 * sqrt(nu-2) / (nu-1) / beta(1/2, nu/2)

mu = m1*(xi-1/xi)

sigma = sqrt((1-m1^2)*(xi^2+1/xi^2) + 2*m1^2 - 1)

z = x*sigma + mu

# Compute:

Xi = xi^sign(z)

g = 2 / (xi + 1/xi)

Density = g * dstd(x = z/Xi, nu = nu) * sigma

return(Density) }

# Distribution Function:

.psstd = function(q, nu, xi) {

# Standardize:

m1 = 2 * sqrt(nu-2) / (nu-1) / beta(1/2, nu/2)

mu = m1*(xi-1/xi)

sigma = sqrt((1-m1^2)*(xi^2+1/xi^2) + 2*m1^2 - 1)

z = q*sigma + mu

# Compute:

Xi = xi^sign(z)

g = 2 / (xi + 1/xi)

Distribution = H(z) - sign(z) * g * Xi * pstd(q = -abs(z)/Xi, nu = nu)

return(Distribution) }

# Quantile Function:

.qsstd = function(p, nu, xi) {

# Standardize:

m1 = 2 * sqrt(nu-2) / (nu-1) / beta(1/2, nu/2)

mu = m1*(xi-1/xi)

sigma = sqrt((1-m1^2)*(xi^2+1/xi^2) + 2*m1^2 - 1)

# Compute:

g = 2 / (xi + 1/xi)

sig = sign(p-1/2)

Xi = xi^sig

p = (H(p-1/2)-sig*p) / (g*Xi)

Quantiles = (-sig*qstd(p=p, sd=Xi, nu=nu) - mu ) / sigma

return(Quantiles) }

# Random Deviates:

.rsstd = function(n, nu, xi) {

# Generate Random Deviates:

weight = xi / (xi + 1/xi)

z = runif(n, -weight, 1-weight)

Xi = xi^sign(z)

Random = -abs(rstd(n, nu=nu))/Xi * sign(z)

# Scale:

m1 = 2 * sqrt(nu-2) / (nu-1) / beta(1/2, nu/2)

mu = m1*(xi-1/xi)

sigma = sqrt((1-m1^2)*(xi^2+1/xi^2) + 2*m1^2 - 1)

Deviates = (Random - mu ) / sigma

return(Deviates) }

For the skewed normal and skewed generalized error distribution we have only to change the function
names and to exchange the expression for the first absolute moment m1 with the appropriate value.
To generate skewed distributions with arbitrary mean and standard deviation, we have only to add
a shift and scale transformation, e.g.
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# Density Function:

dsstd = function (x, mean = 0, sd = 1, nu = 5, xi = 1.5) {

.dsstd(x = (x - mean)/sd, nu = nu, xi = xi)/sd }

For details of the implementation inspect the functions:

[dpqr]snorm(x, mean, sd, xi)

[dpqr]sged(x, mean, sd, nu, xi)

[dpqr]sstd(x, mean, sd, nu, xi)
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� Figure 3: The figure shows on top the density and distribution for the GED. Three cases are considered:
The leptokurtic Laplace distribution with ν = 1, the Normal distribution with ν = 2, and the almost uniform
distribution for large ν = 10. On the lower left the ratio of two succeeding absolute moments is displayed. For the
Laplace distribution we get a straight line, for distributions with thinner tails than the Laplace distribution, the
curve bends upwards, and for distributions with thicker tails the curve bends downwards. On the lower right the
4th moment as a function of the shape parameter ν is shown. Since the distribution is standardized, the fourth
moment coincides with the value of the kurtosis. Note, to obtain the excess kurtosis we have to subtract 3. For
ν → 0 the kurtosis diverges and for ν →∞ the kurtosis tends to one. The circles mark the values for the Laplace
and Normal distributions.

Distributional Parameter Fits:

If the distribution of zi’s is F (z|θ) and θ is an unknown vector of distributional parameters, then
we say that the distribution is parametric. In such a setting the method of maximum likelihood
is the appropriate technique for the estimation and inference on θ. For a continuous distribution
F (z|θ) the density will be written as f(z|θ) and the joint density of a random sample {zi} is
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ΠN
i=1 f(zi|θ). The likelihood of the sample is this joint density evaluated at the observed sample

values, viewed as a function of θ. The log-likelihood function LN (θ) is its natural logarithm

LN (θ) =
N∑

i=1

ln f(zi|θ) . (20)

The maximum likelihood estimator or MLE, named θ̂, are the values of the parameter set which
maximizes the likelihood or equivalently, which maximizes the log-likelihood

θ̂ = argmax
θ

LN (θ) . (21)

Function: MLE Density Parameter Estimation - dFit

In this example we show how to write a function which returns a S4 object of ”nlmFit” with the
estimated parameters of an arbitrary probability function via the maximum log-likelihood approach.

setClass("nlmFit", representation(

call = "call", estimate = "numeric", fit = "list",

title = "character", description = "character") )

dFit =

function(x, density, parm)

{

# "x" is a numeric vector of random deviates

# "density" is a character string giving the name of the

# probability function whose parameters should be estimated

# "parm" is a vector of valued parameters passed to the

# probability function with an initial guess for the optimizer.

# Internal MLE Function:

d = match.fun(density)

if (length(parm) == 1)

d.mle = function(x, y = x) { -sum(log(d(x=y, x[1]))) }

if (length(parm) == 2)

d.mle = function(x, y = x) { -sum(log(d(x=y, x[1], x[2]))) }

if (length(parm) == 3)

d.mle = function(x, y = x) { -sum(log(d(x=y, x[1], x[2], x[3]))) }

if (length(parm) == 4)

d.mle = function(x, y = x) { -sum(log(d(x=y, x[1], x[2], x[3], x[4]))) }

# Estimate:

fit = nlm(f = dsnorm.mle, p = parm, hessian = TRUE, print.level = 0, y = x)

# Add names Attribute:

names(fit$estimate) = names(fit$gradient) = c("mean", " sd", " xi")

# Return Value:

return(new("nlmFit",

call = as.call(match.call()), estimate = fit$estimate, fit = fit,

title = as.character(paste(density, "Fit")),

description = as.character("MLE Parameter Estimation")))

}

Note, that the function dFit implemented in the finGARCH package also optionally allows to trace
the iteration path of the optimization process and to plot the results. For the print method we refer
to the source code.
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In the following example we show how to fit a simulated GED sample:

z = rsged(n = 1000, mean = 1, sd = 0.5, nu = 2.5, xi = 1.25)

dFit(z, density = "dsged", parm = c(mean(z), sqrt(var(z), 2, 1))

The Presample Specification:

Because the mean equation and the variance equation is recursive in nature, they require pre-
sample data to initiate the simulation.

For automatically generated presample data the presample is created as a three column matrix
of length max(m,n,p,q). The three columns have the time ordering t1−L, . . . , t1−`, . . . , t0, where
1 ≤ ` ≤ L counts the rows, and have the following meaning:

The Default Presample Matrix

• Column 1: holds the pre-innovations zt. The pre-innovations are random deviates generated
from the distribution as specified in the specification structure.

• Column 2: holds the pre-sigmas σt. All pre-sigmas are set to the expectation value of the
conditional variance.

• Column 3: holds the pre-series xt. All pre-series values are set to the expectation value of the
mean.

To minimize transient effects, we recommend to specify the presample long enough. For a
given value of L > max(m,n, p, q) the iteration of the ARMA/GARCH process starts at time
t−L+max(m,n,p,q) and the pre-sigmas and pre-series values ar overwritten by the iterated time
series values. Alternatively, the presample can be fully specified by the user.

Example: GARCH Presample Generation

The following lines of code show how the presample is generated

...

The next example shows how to specify a presample for a typical model from the ARMA-GARCH
family.

Example: GARCH Specification - xmpGarchSpecification:

Use the function garchSpec() to specify models from the ARMA-GARCH/APARCH family:

# 1. Specify an AR(1)-GARCH(1,1) with default presample

seed(4711)

model = list(ar=1, omega=1e-6, alpha=0.1, beta=0.3)

spec = garchSpec(model=model)

print(spec)

# 2. AR(1)-GARCH(1,1) with default presample of length 10:

seed(4711)

model = list(ar=1, omega=1e-6, alpha=0.1, beta=0.3)

spec = garchSpec(model=model, presample=10)

print(spec)

# 3. AR(1)-GARCH(1,1) with user defined presample:
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seed(4711)

model = list(ar=1, omega=1e-6, alpha=0.1, beta=0.3)

presamle.innovations = dnorm(10)

sigma = sqrt(model$omega/(1-model$alpha-model$beta))

presample.sigmas = rep(sigma, times=10)

presample.series = rep(0, times=10)

spec = garchSpec(model=model, presample=presample)

print(spec)

The third example generates the following presample,
Presample for an AR(1)-GARCH(1,1) Model

...

it is the same as the default presample from the second example.
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3.2 Simulation of Time Series

The R-function garchSim(n, spec) creates with the information provided by the specification
structure an artificial ARMA-GARCH time series. The function requires only two arguments,
the length of the time series to be simulated and the specification structure. The function
garchSim returns the sample path for the simulated return series, for the innovations, and for
the conditional standard deviations.

Function: GARCH Time Series Simulation - garchSim

This function simulates an artificial ARMA time series with GARCH/APARCH errors.

garchSim = function(n, spec)

• n - the length of the time series to be simulated,

• spec - the model specification, a S4 object of class "garchSpec" as returned from the the
function garchSpec. Only the garchSpec@model slot is required to simulate the artificial
GARCH process, the remaining arguments are optional and have default values.

The following example shows how to use the function garchSim and how to simulate some
typical GARCH Models.

Example: GARCH Simulation - xmpGarchSimulation

Use the function garchSpec to specify models from the ARMA-GARCH family:

# Specify ARCH(2):

model <- list(omega=1e-6, alpha=c(0.1, 0.3), h0=1e-7)

spec = garchSpec(model)

x <- garchSim(model)

plot(x, type="l", main="ARCH(2) Model")

# Specify GARCH(1,1):

model <- list(omega=1e-6, alpha=0.1, beta=0.8, h0=1e-7)

x <- garchSim(model)

plot(x, type="l", main="GARCH(1,1) Model")

20



Default estimation of a GARCH(1,1) model on the Bollerslev and Ghysels data

Package Parameters and t-ratios

m t(m) a t(a ) a t(a ) b t(b )0 0 1 1 1 1

E-VIEWS 20.00540 20.64 0.0096 8.01 0.143 11.09 0.821 53.83
GAUSS-FANPAC 20.00600 20.75 0.0110 3.67 0.153 5.67 0.806 23.71
LIMDEP 20.00619 20.71 0.0108 3.44 0.153 5.61 0.806 26.73
MATLAB 20.00619 20.73 0.0108 8.13 0.153 10.96 0.806 48.67
MICROFIT 20.00621 20.73 0.0108 3.78 0.153 5.78 0.806 24.02
SAS 20.00619 20.74 0.0108 8.15 0.153 10.97 0.806 48.60
SHAZAM 20.00613 20.73 0.0107 5.58 0.154 7.91 0.806 36.96
RATS 20.00625 20.71 0.0108 3.76 0.153 5.79 0.806 23.93
TSP 20.00619 20.67 0.0108 1.66 0.153 2.86 0.806 11.11

� The figure shows ... .

3.3 Parameter Estimation

Given a model for the conditional mean and variance and an observed univariate return series,
we use the maximum likelihood, estimation approach to fit the parameters for the specified
model of the return series. The procedure infers the process innovations or residuals by in-
verse filtering. Note, that this filtering transforms the observed process εt into an uncorrelated
white noise process zt. The log-likelihood function then uses the inferred innovations zt to infer
the corresponding conditional variances σt

t via recursive substitution into the model-dependent
conditional variance equations. Finally, the procedure uses the inferred innovations and condi-
tional variances to evaluate the appropriate log-likelihood objective function. The procedure is
implemented in the function garchFit().

Maximum Likelihood Estimator:

As already mentioned, the GARCH models are estimated using a maximum likelihood estima-
tion, MLE, approach. The MLE concept interprets the density as a function of the parameter
set, conditional on a set of sample outcomes. The Normal distribution is the standard dis-
tribution when estimating and forecasting GARCH models. Using ε = ztσt the log-likelihood
function of the normal distribution is given by

LN (θ) =
T∑

t=1

[log(d(εσ−1
t − logσt] (22)

= −1
2

T∑
t=1

[log(2π) + log(σ2
t ) + z2

t ] (23)

where T is the number of observations.
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Parameter Constraints:

If we use a solver for unconstrained numerical optimization to maximize the log-likelihood func-
tion with respect to the vector of parameters θ, the inspected range of the parameter space is
unlimited. However, the problem is that ω > 0 and δ have to be constrained in a semifinite
interval, that α and beta have to be constrained in a finite interval [0, 1), and γ in (−1, 1). To
impose constraints on a finite interval one can easy perform the transformation

θ? ← u +
v − u

1 + e−θ
(24)

which relates monotonously the finite interval [u, v] to the infinite one. So, applying uncon-
strained optimization of the log-likelihood function with respect to θ is equivalent to applying
constrained optimization with respect to θ?.

Optimization Algorithm:

The function garchFit uses the R solver nlm. This optimizer uses a Newton-type algorithm,
Dennis and Schnabel [1983], Schnabel, Koontz and Weiss [1985]. If the function to be optimized
has an attribute called gradient or both gradient and hessian attributes9, these will be used
in the calculation of updated parameter values, otherwise, numerical derivatives are used. The
optimizer returns the following components:

Function: Return Values of the Optimizer - nlm

• minimum - the value of the estimated minimum.

• estimate - the point at which the minimum value is obtained.

• gradient - the gradient at the estimated minimum.

• hessian - the hessian at the estimated minimum.

• code - the termination status of the optimization process

– 1 - the relative gradient is close to zero, current iterate is probably the solution.

– 2 - successive iterates within tolerance, current iterate is probably solution.

– 3 - last global step failed to locate a point lower than the estimate “estimate”. Either
“estimate” is an approximate local minimum of the function or the step tolerance “steptol’
is too small.

– 4 - the iteration limit was exceeded.

– 5 - the maximum step size “stepmax” exceeded five consecutive times. Either the function
is unbounded below, becomes asymptotic to a finite value from above in some direction
or “stepmax” is too small.

• iterations - the number of iterations performed.

The result of the optimization is added to the specification structure and globally accessible.

Initial Parameter Estimates:

The optimizer requires a vector of initial parameter estimates for the ARMA coefficients ai and
bj , for the GARCH/APARCH coefficients ω, αi, γi, and βj , and additionally for the mean µ
and exponent δ. If the parameters for the distribution function should also be estimated, these
parameters have also to be initialized. By default all parameters are automatically initialized
by the function garchFit. On the other hand all parameters can be initialized by the user, thus
the control of the initialization remains with the user.

9Analytical expressions for the gradient and hessian are not yet implemented.
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Example: GARCH Parameter Estimation - xmpGarchSpecification

Use the function garchSpec() to specify models from the ARMA-GARCH family:

# Specify ARCH(2):

model <- list(omega=1e-6, alpha=c(0.1, 0.3), h0=1e-7)

x <- garchSim(model)

plot(x, type="l", main="ARCH(2) Model")

# Specify GARCH(1,1):

model <- list(omega=1e-6, alpha=0.1, beta=0.8, h0=1e-7)

x <- garchSim(model)

plot(x, type="l", main="GARCH(1,1) Model")

Putting All Together:

3.4 Diagnostic Analysis

The R-functions print, plot, summary and print.summary are methods to print and plot the
results of the parameter estimation and to create a report summarizing the results of a diagnostic
analysis.

Print and Plot the Results from the Fit:

The print function takes as input a S4 object of class "garchFit" which is the result of a
GARCH maximum log-likelihood estimation. The report lists following aspects of the fit:

...

In the same way the plot function takes also as input a S4 object of class "garchFit" and
displays the following graphs:

...

Estimation Statistics:

Q(20), Q2(20), P(50) AIC, Log-Lik

Forecast Performance:

• Mean Squared Errors (MSE)

• Median Squared Error (MedSE)

• Mean Absolute Error (MAE)

• Adjusted Mean Absolute Percentage Error (AMAPE)

• Theil Inequality Coefficient (TIC)

• Mincer-Zarnowitz R2 (R2)

The first three criteria are well-known and self-explanatory. The AMAPE is

the TIC is

and the R2 statistic from this regression therefore provides the proportion of variances explained
by the forecast (i.e., the higher the R2 , the better the forecasts).
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Diagnostic Analysis:

The postprocessing investigates the residuals zt, and the conditional standard deviations σt.

If you plot the ACF of the squared standardized innovations, they also show no correlation:
acf(innovations/sigmas)2). Now compare the ACF of the squared standardized innovations in
this figure to the ACF of the squared returns prior to fitting the default model. The comparison
shows that the default model sufficiently explains the heteroscedasticity in the raw returns.

3. Quantify and Compare Correlation of the Standardized Innovations. Compare the results
below of the Q-test and the ARCH test with the results of these same tests in the preestimation
analysis. In the preestimation analysis, both the Q-test and the ARCH test indicate rejection
(H = 1 with pValue = 0) of their respective null hypotheses, showing significant evidence in
support of GARCH effects. In the postestimate analysis, using standardized innovations based
on the estimated model, these same tests indicate acceptance (H = 0 with highly significant
pValues) of their respective null hypotheses and confirm the explanatory power of the default
model.

Example: GARCH Specification - xmpGarchSpecification:

Use the function garchSpec() to specify models from the ARMA-GARCH family:

# Specify ARCH(2):

model = list(omega=1e-6, alpha=c(0.1, 0.3), h0=1e-7)

spec = garchSpec()

x <- garchSim(model)

plot(x, type="l", main="ARCH(2) Model")

# Specify GARCH(1,1):

model = list(omega=1e-6, alpha=0.1, beta=0.8, h0=1e-7)

spec = garchSpec()

x <- garchSim(n = 1000, spec)

plot(x, type="l", main="GARCH(1,1) Model")

# Specify AR(1)-APARCH(1,1):

model = list(omega=1e-6, alpha=0.1, beta=0.8, h0=1e-7)

spec = garchSpec()

x <- garchSim(n = 1000, spec)

plot(x, type="l", main="AR(1)-APARCH(1,1) Model")

3.5 Forecasting

One of the major aspects in the investigation of heteroskedastic time series is to produce fore-
casts. Function for forecasts of both the conditional mean and the conditional variance are
available as well as for several forecast error measures.

Forecasting the Conditional Mean:

The optimal h-step-ahead predictor of xt+h given the information up to time t is

σ̂2
t+h|t = (25)
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Forecasting the Conditional Variance:

The conditional variance can be forecasted independently from the conditional mean.

For a GARCH(p,q) process, the optimal h-step-ahead forecast of the conditional variance ω̂2
t+h|t

is computed recursively from

σ̂2
t+h|t = ω̂ +

q∑
i=1

α̂iε
2
t+h−i|t +

p∑
j=1

β̂jσ
2
t+h−j|t , (26)

where ε2
t+i|t = σ2

t+i|t for i > 0 while ε2
t+i|t = ε2

t+i and σ2
t+i|t = σ2

t+i for i ≤ 0.

For a APARCH(p,q) process the distributional of the innovations may have an effect on the fore-
cast, the optimal h-step-ahead forecast of the conditional variance ω̂2

t+h|t is computed recursively
from

σ̂δ
t+h|t = E(σδ

t+h|Ωt) (27)

= ω̂ +
q∑

i=1

α̂iE[(|εt+h−i| − γ̂iεt+h−i)δ̂|Ωt] +
p∑

j=1

β̂jσ
δ̂
t+h−j|t (28)

where ...

Example: GARCH Forecast - xmpGarchSpecification:

Use the function garchSpec() to specify models from the ARMA-GARCH family:

# Specify ARCH(2):

model <- list(omega=1e-6, alpha=c(0.1, 0.3), h0=1e-7)

x <- garchSim(model)

plot(x, type="l", main="ARCH(2) Model")

# Specify GARCH(1,1):

model <- list(omega=1e-6, alpha=0.1, beta=0.8, h0=1e-7)

x <- garchSim(model)

plot(x, type="l", main="GARCH(1,1) Model")

Forecast Error Measures:
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4 Numerical Investigations

When analyzing and forecasting GARCH models we have to implement the algorithms. Through
the complexity of the GARCH models it is evident that different software implementations have
different functionalities, drawbacks and features and may lead to differences in the numerical re-
sults. McCullough and Renfro [1999], Brooks, Burke and Persand [2001], and Laurent and Peters
[2003] compared the results of several software packages. These investigations demonstrate that
there could be major differences between estimated GARCH parameters from different software
packages. Therefore we use the benchmark suggested by Fiorentini, Calzolari, and Panattoni
[1996] to test our R-package.

4.1 GARCH(1,1) Benchmark

We use as the benchmark the GARCH(1,1) model estimated with the software10 as implemented
by Fiorentini, Calzolari, and Panattoni [1996] using analytical derivatives. For the time series
data we take the DEM/GBP daily exchange rates11 as published by Bollerslev and Ghysels
[1996]. The series contains a total of 1975 daily observations sampled during the period from
January 2, 1984, to December 31, 1991. This benchmark was also used by McCullough and
Renfro [1999], and by Brooks, Burke, and Persand [2001] in their analysis of several GARCH
software packages.

4.2 Modelling DEM/GBP Rates

Figure 4.1 shows some stylized facts of the log-returns of the daily DEM/GBP FX rates. The
distribution is leptokurtic and skewed to negative values. The log-returns have a mean value
of µ = −0.00016 of almost zero, a skewness of ς = −0.25, and an excess kurtosis of κ = 3.62.
The histogram of the density and the quantile-quantile plot graphically display this behavior.
Furthermore, the autocorrelation function of the absolute values of the returns, which measure
volatility, decay slowly.

Example: GARCH(1,1) - Stylized Facts xmpGarchDEMGBP:

# Load Data Set:

data(dem2gbp)

demgbp = dem2gbp[, 1]/100

# Plot Log-Return Series:

ts.plot(demgbp, xlab = "index", ylab = "log Return", col = "steelblue3")

title(main = "DEM/GBP FX Rate")

# Histogram Plot:

hist(demgbp, n= 20, col = "steelblue", probability = TRUE,

border = "white", xlim = c(-0.02, 0.02) )

x = seq(-0.02, 0.02, length = 201)

lines(x, dnorm(x = x, mean = mean(demgbp), sd = sqrt(var(demgbp))))

10http : //qed.econ.queensu.ca/jae/1996− v11.4/fiorentini− calzolari− panattoni/ SOFTWARE
11ftp : //www.amstat.orgJBESV iew/96− 2−APR/bollerslevghysels/bollerslev.sec41.dat. DATA
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� The figure shows the returns, their distribution, the quantile-quantile plot, and the autocorrelation function of
the volatility.

# Quantile - Quantile Plot:

qqnorm(demgbp, xlab = "Normal Quantiles", ylab = "Empirical Quantiles",

col = "steelblue3")

qqline(demgbp)

# Partial Autocorrelation:

acf(abs(demgbp))

We use the default GARCH(1,1) model to fit the parameters of the time series and compare
later the results with the benchmark.

Example: GARCH(1,1) Benchmark - xxx:

# Get the Data:

data(demgpb)

# Specify the Model:

spec = garchSpec()

# Estimate the Parameters:

fit = garchFit(x, spec)

print(fit)

# Diagnostic Analysis:

summary(fit)

# Predict one Step Ahead:

predict(fit)
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The result are the following:

4.3 Benchmark Comparison

Brooks, Burke, and Persand [2001] used the GARCH benchmark to compare the accuracy of
GARCH(1,1) model estimations among several econometric software packages. The results of
the default estimation of the GARCH(1,1) model in each package is shown in figure XX.

Default estimation of a GARCH(1,1) model on the Bollerslev and Ghysels data

Package Parameters and t-ratios

m t(m) a t(a ) a t(a ) b t(b )0 0 1 1 1 1

E-VIEWS 20.00540 20.64 0.0096 8.01 0.143 11.09 0.821 53.83
GAUSS-FANPAC 20.00600 20.75 0.0110 3.67 0.153 5.67 0.806 23.71
LIMDEP 20.00619 20.71 0.0108 3.44 0.153 5.61 0.806 26.73
MATLAB 20.00619 20.73 0.0108 8.13 0.153 10.96 0.806 48.67
MICROFIT 20.00621 20.73 0.0108 3.78 0.153 5.78 0.806 24.02
SAS 20.00619 20.74 0.0108 8.15 0.153 10.97 0.806 48.60
SHAZAM 20.00613 20.73 0.0107 5.58 0.154 7.91 0.806 36.96
RATS 20.00625 20.71 0.0108 3.76 0.153 5.79 0.806 23.93
TSP 20.00619 20.67 0.0108 1.66 0.153 2.86 0.806 11.11

� The figure shows ... .

We have added to the table the results as obtained from our finGARCH package, from the SPlus
software package and from the GARCH Ox software package. In addition we have reinvestigated
the FX rates with the GARCH toolbox from matlab.

Also listed is the benchmark result obtained by Fiorentini, Calzolari, and Panattoni [1996].
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aAccuracy of estimates

Package Parameter Coefficient Standard error

Hessian OPG QMLE IM BW

LIMDEP m 6.0 – – – – 6.0
a 6.0 – – – – 6.00

a 6.0 – – – – 6.01

b 6.0 – – – – 6.01

MATLAB m 4.6 – 4.7 – – –
a 6.0 – 5.1 – – –0

a 4.9 – 5.1 – – –1

b 5.6 – 5.2 – – –1

MICROFIT m 2.5 2.9 – – – –
a 4.2 3.5 – – – –0

a 2.7 2.7 – – – –1

b 3.8 4.0 – – – –1

RATS m 1.9 1.4 3.4 1.1 – –
a 4.1 2.5 2.3 2.8 – –0

a 4.4 2.8 2.3 2.5 – –1

b 3.8 2.4 2.6 2.4 – –1

SAS m 2.6 3.1 5.0 2.8 – –
a 4.4 4.5 4.7 4.8 – –0

a 4.6 4.9 4.6 5.0 – –1

b 5.2 4.8 4.9 5.1 – –1

SHAZAM m 3.2 – 3.1 – 4.3 5.0
a 3.4 – 3.0 – 3.4 3.60

a 4.1 – 3.5 – 3.9 4.21

b 4.5 – 3.3 – 3.7 4.01

TSP m 6.0 6.0 6.0 6.0 – –
a 6.0 6.0 6.0 6.0 – –0

a 6.0 6.0 6.0 6.0 – –1

b 6.0 6.0 6.0 6.0 – –1

a Cell entries are errors measured relative to the FCP benchmark values from FCP using the same method for estimating
the first and second derivatives. 6.0 is the maximum possible score for any given package in this exercise since only six
digits of accuracy are given in the FCP paper.

� The figure shows ... .

.
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5 Summary and Next Steps

This is the first approach to an educational software implementation of the GARCH modelling
process. Much value was put to show how to use the S language and how to implement functions
to the R environment.

The aim was to implement the whole software in R without using any partial implementations
in Fortran, C, or C++. Although this would speed up the execution time for the parameter
estimation essentially, we did not make use of this opportunity. This keeps the software more
transparent for everybody who is interested in the code and applied algorithms and would learn
programming techniques under R.

The next steps we will follow are,

• to implement analytical derivatives for the gradient vector and hessian matrix,
• to add long memory behavior in the mean equation, and
• to add further volatility models for the variance equation.

Analytical derivatives for GARCH model were derived by, for the APARCH mode by , and for
the FIGARCH model by . The long memory behavior in the mean equation will be modelled
by ... The volatility models we like to include are ...

Everybody who likes to contribute to this package will be welcome.
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6 GARCH Function Summary

The GARCH functions are part of Rmetrics fSeries package All functions are entirely written
in S. So it becomes very easy to inspect the code which is especially useful for teaching financial
engineers and for teaching computational finance.

The fSeries package can be downloaded from the Rmetrics website www.rmetrics.org.

6.1 List of R Functions

The following summary gives an overview over the GARCH functions available in the fSeries
package. The functions can be grouped according to their purpose in Distribution Functions,
GARCH Modelling Functions, and Utility Functions.

Distribution Functions

The collection of distribution functions adds the Generalized Error Distribution and a re-parameter-
ized Student-t Distribution to the library. Both distributions have parameterizations where the
location parameter has the meaning of the mean, and the squared scale parameter has the meaning
of the variance. Furthermore, a function is added which allows to create skewed distributions
from any standardized probability function. In addition the collection includes a program which
computes absolute moments for standardized distributions, and a function which fits the parameters
of a density vie the max log likelihood estimation approach.

[dpqr]ged Generalized Error Distribution

[dpqr]std Modified Student-t Duistribution

[dpqr]skew Skewed Distributions from a Standardized PDF

absMoments Compute absolute Moments

nlmFit MLE Fit of distributional parameters

ARMA-GARCH Modelling Functions

The collection of ARMA-GARCH modelling functions includes functions to simulate artificial GARCH/APARCH
processes, to estimate the parameters for a specified model from empirical time series data, to per-
form a diagnostic analysis of the fit and to forecast one step ahead in time.

garchSpec Specify an ARMA-GARCH/APARCH model

garchFit Fit the GARCH parameters from empirical data

garchDiag Perform a diagnostic analysis

garchPredict Predict one step ahead

Utility Functions

The collection of utility functions includes a function to compute the Heaviside unit step function
and some related functions.

H Heaviside unit step function

Sign Just another signum function

boxcar The boxcar function

ramp The ramp function
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6.2 List of Data Sets

The fSeries package includes for GARCH modelling three data sets used in examples and for
benchmarks.

DEM/GBP Exchange Rate Data: A price and return series which’ contains daily observations of the
German Mark versus British Pound foreign exchange rates. The sample period is from January 2,
1984, to December 31,1991, for a total of 1975 daily observations of. The data can be downloaded
from the JBES FTP site12.

NASDAQ Composite Index Data: The series contains daily closing values of the NASDAQ Com-
posite Index. The sample period is from January 2, 1990, to December 31, 2001, for a total of 3028
daily equity index observations. The data can be downloaded from the Market Data section of the
NASDAQ Web site13.

NYSE Composite Index Data: The series contains daily closing values of the New York Stock
Exchange Composite Index. The sample period is from January 2, 1990, to December 31, 2001, for
a total of 3028 daily equity index observations of the NYSE Composite Index. The data can be
downloaded from the NYSE web site14.

CAC40 French Index: The series contains daily values for the CAC40 French Index ranging from
January, 1995 up to December, 1999, in total 1249 observations. The data were used in examples of
the GARCH Ox package, Laurent and Peters [2002], and are part of their software distribution15.

demgbp.csv DEM-GBP Foreign exchange rates

cac40.csv CAC-40 log-returns and volume data

nasdaq NASDAQ Index

6.3 List of Examples

The fSeries package includes several example and demonstration files for GARCH modelling, which
show how to use the functions:

xmpDist Distribution Examples

xmpGarch Garch modelling examples

6.4 Software Licence

12ftp : //www.amstat.orgJBESV iew/96− 2−APR/bollerslevghysels/bollerslev.sec41.dat.
13http : //www.marketdata.nasdaq.com/mr4b.html
14http : //www.nyse.com/marketinfo/marketinfo.html
15http : //www.core.ucl.ac.be/ laurent/G@RCH/site/download.htm
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