• Main Page
  • Related Pages
  • Modules
  • Data Structures
  • Files
  • File List
  • Globals

libavcodec/rv40.c

Go to the documentation of this file.
00001 /*
00002  * RV40 decoder
00003  * Copyright (c) 2007 Konstantin Shishkov
00004  *
00005  * This file is part of FFmpeg.
00006  *
00007  * FFmpeg is free software; you can redistribute it and/or
00008  * modify it under the terms of the GNU Lesser General Public
00009  * License as published by the Free Software Foundation; either
00010  * version 2.1 of the License, or (at your option) any later version.
00011  *
00012  * FFmpeg is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00015  * Lesser General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU Lesser General Public
00018  * License along with FFmpeg; if not, write to the Free Software
00019  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
00020  */
00021 
00027 #include "avcodec.h"
00028 #include "dsputil.h"
00029 #include "mpegvideo.h"
00030 #include "golomb.h"
00031 
00032 #include "rv34.h"
00033 #include "rv40vlc2.h"
00034 #include "rv40data.h"
00035 
00036 static VLC aic_top_vlc;
00037 static VLC aic_mode1_vlc[AIC_MODE1_NUM], aic_mode2_vlc[AIC_MODE2_NUM];
00038 static VLC ptype_vlc[NUM_PTYPE_VLCS], btype_vlc[NUM_BTYPE_VLCS];
00039 
00043 static av_cold void rv40_init_tables(void)
00044 {
00045     int i;
00046 
00047     init_vlc(&aic_top_vlc, AIC_TOP_BITS, AIC_TOP_SIZE,
00048              rv40_aic_top_vlc_bits,  1, 1,
00049              rv40_aic_top_vlc_codes, 1, 1, INIT_VLC_USE_STATIC);
00050     for(i = 0; i < AIC_MODE1_NUM; i++){
00051         // Every tenth VLC table is empty
00052         if((i % 10) == 9) continue;
00053         init_vlc(&aic_mode1_vlc[i], AIC_MODE1_BITS, AIC_MODE1_SIZE,
00054                  aic_mode1_vlc_bits[i],  1, 1,
00055                  aic_mode1_vlc_codes[i], 1, 1, INIT_VLC_USE_STATIC);
00056     }
00057     for(i = 0; i < AIC_MODE2_NUM; i++){
00058         init_vlc(&aic_mode2_vlc[i], AIC_MODE2_BITS, AIC_MODE2_SIZE,
00059                  aic_mode2_vlc_bits[i],  1, 1,
00060                  aic_mode2_vlc_codes[i], 2, 2, INIT_VLC_USE_STATIC);
00061     }
00062     for(i = 0; i < NUM_PTYPE_VLCS; i++)
00063          init_vlc_sparse(&ptype_vlc[i], PTYPE_VLC_BITS, PTYPE_VLC_SIZE,
00064                          ptype_vlc_bits[i],  1, 1,
00065                          ptype_vlc_codes[i], 1, 1,
00066                          ptype_vlc_syms,     1, 1, INIT_VLC_USE_STATIC);
00067     for(i = 0; i < NUM_BTYPE_VLCS; i++)
00068          init_vlc_sparse(&btype_vlc[i], BTYPE_VLC_BITS, BTYPE_VLC_SIZE,
00069                          btype_vlc_bits[i],  1, 1,
00070                          btype_vlc_codes[i], 1, 1,
00071                          btype_vlc_syms,     1, 1, INIT_VLC_USE_STATIC);
00072 }
00073 
00080 static int get_dimension(GetBitContext *gb, const int *dim)
00081 {
00082     int t   = get_bits(gb, 3);
00083     int val = dim[t];
00084     if(val < 0)
00085         val = dim[get_bits1(gb) - val];
00086     if(!val){
00087         do{
00088             t = get_bits(gb, 8);
00089             val += t << 2;
00090         }while(t == 0xFF);
00091     }
00092     return val;
00093 }
00094 
00098 static void rv40_parse_picture_size(GetBitContext *gb, int *w, int *h)
00099 {
00100     *w = get_dimension(gb, rv40_standard_widths);
00101     *h = get_dimension(gb, rv40_standard_heights);
00102 }
00103 
00104 static int rv40_parse_slice_header(RV34DecContext *r, GetBitContext *gb, SliceInfo *si)
00105 {
00106     int mb_bits;
00107     int w = r->s.width, h = r->s.height;
00108     int mb_size;
00109 
00110     memset(si, 0, sizeof(SliceInfo));
00111     if(get_bits1(gb))
00112         return -1;
00113     si->type = get_bits(gb, 2);
00114     if(si->type == 1) si->type = 0;
00115     si->quant = get_bits(gb, 5);
00116     if(get_bits(gb, 2))
00117         return -1;
00118     si->vlc_set = get_bits(gb, 2);
00119     skip_bits1(gb);
00120     si->pts = get_bits(gb, 13);
00121     if(!si->type || !get_bits1(gb))
00122         rv40_parse_picture_size(gb, &w, &h);
00123     if(avcodec_check_dimensions(r->s.avctx, w, h) < 0)
00124         return -1;
00125     si->width  = w;
00126     si->height = h;
00127     mb_size = ((w + 15) >> 4) * ((h + 15) >> 4);
00128     mb_bits = ff_rv34_get_start_offset(gb, mb_size);
00129     si->start = get_bits(gb, mb_bits);
00130 
00131     return 0;
00132 }
00133 
00137 static int rv40_decode_intra_types(RV34DecContext *r, GetBitContext *gb, int8_t *dst)
00138 {
00139     MpegEncContext *s = &r->s;
00140     int i, j, k, v;
00141     int A, B, C;
00142     int pattern;
00143     int8_t *ptr;
00144 
00145     for(i = 0; i < 4; i++, dst += s->b4_stride){
00146         if(!i && s->first_slice_line){
00147             pattern = get_vlc2(gb, aic_top_vlc.table, AIC_TOP_BITS, 1);
00148             dst[0] = (pattern >> 2) & 2;
00149             dst[1] = (pattern >> 1) & 2;
00150             dst[2] =  pattern       & 2;
00151             dst[3] = (pattern << 1) & 2;
00152             continue;
00153         }
00154         ptr = dst;
00155         for(j = 0; j < 4; j++){
00156             /* Coefficients are read using VLC chosen by the prediction pattern
00157              * The first one (used for retrieving a pair of coefficients) is
00158              * constructed from the top, top right and left coefficients
00159              * The second one (used for retrieving only one coefficient) is
00160              * top + 10 * left.
00161              */
00162             A = ptr[-s->b4_stride + 1]; // it won't be used for the last coefficient in a row
00163             B = ptr[-s->b4_stride];
00164             C = ptr[-1];
00165             pattern = A + (B << 4) + (C << 8);
00166             for(k = 0; k < MODE2_PATTERNS_NUM; k++)
00167                 if(pattern == rv40_aic_table_index[k])
00168                     break;
00169             if(j < 3 && k < MODE2_PATTERNS_NUM){ //pattern is found, decoding 2 coefficients
00170                 v = get_vlc2(gb, aic_mode2_vlc[k].table, AIC_MODE2_BITS, 2);
00171                 *ptr++ = v/9;
00172                 *ptr++ = v%9;
00173                 j++;
00174             }else{
00175                 if(B != -1 && C != -1)
00176                     v = get_vlc2(gb, aic_mode1_vlc[B + C*10].table, AIC_MODE1_BITS, 1);
00177                 else{ // tricky decoding
00178                     v = 0;
00179                     switch(C){
00180                     case -1: // code 0 -> 1, 1 -> 0
00181                         if(B < 2)
00182                             v = get_bits1(gb) ^ 1;
00183                         break;
00184                     case  0:
00185                     case  2: // code 0 -> 2, 1 -> 0
00186                         v = (get_bits1(gb) ^ 1) << 1;
00187                         break;
00188                     }
00189                 }
00190                 *ptr++ = v;
00191             }
00192         }
00193     }
00194     return 0;
00195 }
00196 
00200 static int rv40_decode_mb_info(RV34DecContext *r)
00201 {
00202     MpegEncContext *s = &r->s;
00203     GetBitContext *gb = &s->gb;
00204     int q, i;
00205     int prev_type = 0;
00206     int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
00207     int blocks[RV34_MB_TYPES] = {0};
00208     int count = 0;
00209 
00210     if(!r->s.mb_skip_run)
00211         r->s.mb_skip_run = svq3_get_ue_golomb(gb) + 1;
00212 
00213     if(--r->s.mb_skip_run)
00214          return RV34_MB_SKIP;
00215 
00216     if(r->avail_cache[5-1])
00217         blocks[r->mb_type[mb_pos - 1]]++;
00218     if(r->avail_cache[5-4]){
00219         blocks[r->mb_type[mb_pos - s->mb_stride]]++;
00220         if(r->avail_cache[5-2])
00221             blocks[r->mb_type[mb_pos - s->mb_stride + 1]]++;
00222         if(r->avail_cache[5-5])
00223             blocks[r->mb_type[mb_pos - s->mb_stride - 1]]++;
00224     }
00225 
00226     for(i = 0; i < RV34_MB_TYPES; i++){
00227         if(blocks[i] > count){
00228             count = blocks[i];
00229             prev_type = i;
00230         }
00231     }
00232     if(s->pict_type == FF_P_TYPE){
00233         prev_type = block_num_to_ptype_vlc_num[prev_type];
00234         q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
00235         if(q < PBTYPE_ESCAPE)
00236             return q;
00237         q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
00238         av_log(s->avctx, AV_LOG_ERROR, "Dquant for P-frame\n");
00239     }else{
00240         prev_type = block_num_to_btype_vlc_num[prev_type];
00241         q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
00242         if(q < PBTYPE_ESCAPE)
00243             return q;
00244         q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
00245         av_log(s->avctx, AV_LOG_ERROR, "Dquant for B-frame\n");
00246     }
00247     return 0;
00248 }
00249 
00250 #define CLIP_SYMM(a, b) av_clip(a, -(b), b)
00251 
00254 static inline void rv40_weak_loop_filter(uint8_t *src, const int step,
00255                                          const int filter_p1, const int filter_q1,
00256                                          const int alpha, const int beta,
00257                                          const int lim_p0q0,
00258                                          const int lim_q1, const int lim_p1,
00259                                          const int diff_p1p0, const int diff_q1q0,
00260                                          const int diff_p1p2, const int diff_q1q2)
00261 {
00262     uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
00263     int t, u, diff;
00264 
00265     t = src[0*step] - src[-1*step];
00266     if(!t)
00267         return;
00268     u = (alpha * FFABS(t)) >> 7;
00269     if(u > 3 - (filter_p1 && filter_q1))
00270         return;
00271 
00272     t <<= 2;
00273     if(filter_p1 && filter_q1)
00274         t += src[-2*step] - src[1*step];
00275     diff = CLIP_SYMM((t + 4) >> 3, lim_p0q0);
00276     src[-1*step] = cm[src[-1*step] + diff];
00277     src[ 0*step] = cm[src[ 0*step] - diff];
00278     if(FFABS(diff_p1p2) <= beta && filter_p1){
00279         t = (diff_p1p0 + diff_p1p2 - diff) >> 1;
00280         src[-2*step] = cm[src[-2*step] - CLIP_SYMM(t, lim_p1)];
00281     }
00282     if(FFABS(diff_q1q2) <= beta && filter_q1){
00283         t = (diff_q1q0 + diff_q1q2 + diff) >> 1;
00284         src[ 1*step] = cm[src[ 1*step] - CLIP_SYMM(t, lim_q1)];
00285     }
00286 }
00287 
00288 static inline void rv40_adaptive_loop_filter(uint8_t *src, const int step,
00289                                              const int stride, const int dmode,
00290                                              const int lim_q1, const int lim_p1,
00291                                              const int alpha,
00292                                              const int beta, const int beta2,
00293                                              const int chroma, const int edge)
00294 {
00295     int diff_p1p0[4], diff_q1q0[4], diff_p1p2[4], diff_q1q2[4];
00296     int sum_p1p0 = 0, sum_q1q0 = 0, sum_p1p2 = 0, sum_q1q2 = 0;
00297     uint8_t *ptr;
00298     int flag_strong0 = 1, flag_strong1 = 1;
00299     int filter_p1, filter_q1;
00300     int i;
00301     int lims;
00302 
00303     for(i = 0, ptr = src; i < 4; i++, ptr += stride){
00304         diff_p1p0[i] = ptr[-2*step] - ptr[-1*step];
00305         diff_q1q0[i] = ptr[ 1*step] - ptr[ 0*step];
00306         sum_p1p0 += diff_p1p0[i];
00307         sum_q1q0 += diff_q1q0[i];
00308     }
00309     filter_p1 = FFABS(sum_p1p0) < (beta<<2);
00310     filter_q1 = FFABS(sum_q1q0) < (beta<<2);
00311     if(!filter_p1 && !filter_q1)
00312         return;
00313 
00314     for(i = 0, ptr = src; i < 4; i++, ptr += stride){
00315         diff_p1p2[i] = ptr[-2*step] - ptr[-3*step];
00316         diff_q1q2[i] = ptr[ 1*step] - ptr[ 2*step];
00317         sum_p1p2 += diff_p1p2[i];
00318         sum_q1q2 += diff_q1q2[i];
00319     }
00320 
00321     if(edge){
00322         flag_strong0 = filter_p1 && (FFABS(sum_p1p2) < beta2);
00323         flag_strong1 = filter_q1 && (FFABS(sum_q1q2) < beta2);
00324     }else{
00325         flag_strong0 = flag_strong1 = 0;
00326     }
00327 
00328     lims = filter_p1 + filter_q1 + ((lim_q1 + lim_p1) >> 1) + 1;
00329     if(flag_strong0 && flag_strong1){ /* strong filtering */
00330         for(i = 0; i < 4; i++, src += stride){
00331             int sflag, p0, q0, p1, q1;
00332             int t = src[0*step] - src[-1*step];
00333 
00334             if(!t) continue;
00335             sflag = (alpha * FFABS(t)) >> 7;
00336             if(sflag > 1) continue;
00337 
00338             p0 = (25*src[-3*step] + 26*src[-2*step]
00339                 + 26*src[-1*step]
00340                 + 26*src[ 0*step] + 25*src[ 1*step] + rv40_dither_l[dmode + i]) >> 7;
00341             q0 = (25*src[-2*step] + 26*src[-1*step]
00342                 + 26*src[ 0*step]
00343                 + 26*src[ 1*step] + 25*src[ 2*step] + rv40_dither_r[dmode + i]) >> 7;
00344             if(sflag){
00345                 p0 = av_clip(p0, src[-1*step] - lims, src[-1*step] + lims);
00346                 q0 = av_clip(q0, src[ 0*step] - lims, src[ 0*step] + lims);
00347             }
00348             p1 = (25*src[-4*step] + 26*src[-3*step]
00349                 + 26*src[-2*step]
00350                 + 26*p0           + 25*src[ 0*step] + rv40_dither_l[dmode + i]) >> 7;
00351             q1 = (25*src[-1*step] + 26*q0
00352                 + 26*src[ 1*step]
00353                 + 26*src[ 2*step] + 25*src[ 3*step] + rv40_dither_r[dmode + i]) >> 7;
00354             if(sflag){
00355                 p1 = av_clip(p1, src[-2*step] - lims, src[-2*step] + lims);
00356                 q1 = av_clip(q1, src[ 1*step] - lims, src[ 1*step] + lims);
00357             }
00358             src[-2*step] = p1;
00359             src[-1*step] = p0;
00360             src[ 0*step] = q0;
00361             src[ 1*step] = q1;
00362             if(!chroma){
00363                 src[-3*step] = (25*src[-1*step] + 26*src[-2*step] + 51*src[-3*step] + 26*src[-4*step] + 64) >> 7;
00364                 src[ 2*step] = (25*src[ 0*step] + 26*src[ 1*step] + 51*src[ 2*step] + 26*src[ 3*step] + 64) >> 7;
00365             }
00366         }
00367     }else if(filter_p1 && filter_q1){
00368         for(i = 0; i < 4; i++, src += stride)
00369             rv40_weak_loop_filter(src, step, 1, 1, alpha, beta, lims, lim_q1, lim_p1,
00370                                   diff_p1p0[i], diff_q1q0[i], diff_p1p2[i], diff_q1q2[i]);
00371     }else{
00372         for(i = 0; i < 4; i++, src += stride)
00373             rv40_weak_loop_filter(src, step, filter_p1, filter_q1,
00374                                   alpha, beta, lims>>1, lim_q1>>1, lim_p1>>1,
00375                                   diff_p1p0[i], diff_q1q0[i], diff_p1p2[i], diff_q1q2[i]);
00376     }
00377 }
00378 
00379 static void rv40_v_loop_filter(uint8_t *src, int stride, int dmode,
00380                                int lim_q1, int lim_p1,
00381                                int alpha, int beta, int beta2, int chroma, int edge){
00382     rv40_adaptive_loop_filter(src, 1, stride, dmode, lim_q1, lim_p1,
00383                               alpha, beta, beta2, chroma, edge);
00384 }
00385 static void rv40_h_loop_filter(uint8_t *src, int stride, int dmode,
00386                                int lim_q1, int lim_p1,
00387                                int alpha, int beta, int beta2, int chroma, int edge){
00388     rv40_adaptive_loop_filter(src, stride, 1, dmode, lim_q1, lim_p1,
00389                               alpha, beta, beta2, chroma, edge);
00390 }
00391 
00392 enum RV40BlockPos{
00393     POS_CUR,
00394     POS_TOP,
00395     POS_LEFT,
00396     POS_BOTTOM,
00397 };
00398 
00399 #define MASK_CUR          0x0001
00400 #define MASK_RIGHT        0x0008
00401 #define MASK_BOTTOM       0x0010
00402 #define MASK_TOP          0x1000
00403 #define MASK_Y_TOP_ROW    0x000F
00404 #define MASK_Y_LAST_ROW   0xF000
00405 #define MASK_Y_LEFT_COL   0x1111
00406 #define MASK_Y_RIGHT_COL  0x8888
00407 #define MASK_C_TOP_ROW    0x0003
00408 #define MASK_C_LAST_ROW   0x000C
00409 #define MASK_C_LEFT_COL   0x0005
00410 #define MASK_C_RIGHT_COL  0x000A
00411 
00412 static const int neighbour_offs_x[4] = { 0,  0, -1, 0 };
00413 static const int neighbour_offs_y[4] = { 0, -1,  0, 1 };
00414 
00418 static void rv40_loop_filter(RV34DecContext *r, int row)
00419 {
00420     MpegEncContext *s = &r->s;
00421     int mb_pos, mb_x;
00422     int i, j, k;
00423     uint8_t *Y, *C;
00424     int alpha, beta, betaY, betaC;
00425     int q;
00426     int mbtype[4];   
00427 
00431     int mb_strong[4];
00432     int clip[4];     
00433 
00439     int cbp[4];
00444     int uvcbp[4][2];
00450     int mvmasks[4];
00451 
00452     mb_pos = row * s->mb_stride;
00453     for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
00454         int mbtype = s->current_picture_ptr->mb_type[mb_pos];
00455         if(IS_INTRA(mbtype) || IS_SEPARATE_DC(mbtype))
00456             r->cbp_luma  [mb_pos] = r->deblock_coefs[mb_pos] = 0xFFFF;
00457         if(IS_INTRA(mbtype))
00458             r->cbp_chroma[mb_pos] = 0xFF;
00459     }
00460     mb_pos = row * s->mb_stride;
00461     for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
00462         int y_h_deblock, y_v_deblock;
00463         int c_v_deblock[2], c_h_deblock[2];
00464         int clip_left;
00465         int avail[4];
00466         int y_to_deblock, c_to_deblock[2];
00467 
00468         q = s->current_picture_ptr->qscale_table[mb_pos];
00469         alpha = rv40_alpha_tab[q];
00470         beta  = rv40_beta_tab [q];
00471         betaY = betaC = beta * 3;
00472         if(s->width * s->height <= 176*144)
00473             betaY += beta;
00474 
00475         avail[0] = 1;
00476         avail[1] = row;
00477         avail[2] = mb_x;
00478         avail[3] = row < s->mb_height - 1;
00479         for(i = 0; i < 4; i++){
00480             if(avail[i]){
00481                 int pos = mb_pos + neighbour_offs_x[i] + neighbour_offs_y[i]*s->mb_stride;
00482                 mvmasks[i] = r->deblock_coefs[pos];
00483                 mbtype [i] = s->current_picture_ptr->mb_type[pos];
00484                 cbp    [i] = r->cbp_luma[pos];
00485                 uvcbp[i][0] = r->cbp_chroma[pos] & 0xF;
00486                 uvcbp[i][1] = r->cbp_chroma[pos] >> 4;
00487             }else{
00488                 mvmasks[i] = 0;
00489                 mbtype [i] = mbtype[0];
00490                 cbp    [i] = 0;
00491                 uvcbp[i][0] = uvcbp[i][1] = 0;
00492             }
00493             mb_strong[i] = IS_INTRA(mbtype[i]) || IS_SEPARATE_DC(mbtype[i]);
00494             clip[i] = rv40_filter_clip_tbl[mb_strong[i] + 1][q];
00495         }
00496         y_to_deblock =  mvmasks[POS_CUR]
00497                      | (mvmasks[POS_BOTTOM] << 16);
00498         /* This pattern contains bits signalling that horizontal edges of
00499          * the current block can be filtered.
00500          * That happens when either of adjacent subblocks is coded or lies on
00501          * the edge of 8x8 blocks with motion vectors differing by more than
00502          * 3/4 pel in any component (any edge orientation for some reason).
00503          */
00504         y_h_deblock =   y_to_deblock
00505                     | ((cbp[POS_CUR]                           <<  4) & ~MASK_Y_TOP_ROW)
00506                     | ((cbp[POS_TOP]        & MASK_Y_LAST_ROW) >> 12);
00507         /* This pattern contains bits signalling that vertical edges of
00508          * the current block can be filtered.
00509          * That happens when either of adjacent subblocks is coded or lies on
00510          * the edge of 8x8 blocks with motion vectors differing by more than
00511          * 3/4 pel in any component (any edge orientation for some reason).
00512          */
00513         y_v_deblock =   y_to_deblock
00514                     | ((cbp[POS_CUR]                      << 1) & ~MASK_Y_LEFT_COL)
00515                     | ((cbp[POS_LEFT] & MASK_Y_RIGHT_COL) >> 3);
00516         if(!mb_x)
00517             y_v_deblock &= ~MASK_Y_LEFT_COL;
00518         if(!row)
00519             y_h_deblock &= ~MASK_Y_TOP_ROW;
00520         if(row == s->mb_height - 1 || (mb_strong[POS_CUR] || mb_strong[POS_BOTTOM]))
00521             y_h_deblock &= ~(MASK_Y_TOP_ROW << 16);
00522         /* Calculating chroma patterns is similar and easier since there is
00523          * no motion vector pattern for them.
00524          */
00525         for(i = 0; i < 2; i++){
00526             c_to_deblock[i] = (uvcbp[POS_BOTTOM][i] << 4) | uvcbp[POS_CUR][i];
00527             c_v_deblock[i] =   c_to_deblock[i]
00528                            | ((uvcbp[POS_CUR] [i]                       << 1) & ~MASK_C_LEFT_COL)
00529                            | ((uvcbp[POS_LEFT][i]   & MASK_C_RIGHT_COL) >> 1);
00530             c_h_deblock[i] =   c_to_deblock[i]
00531                            | ((uvcbp[POS_TOP][i]    & MASK_C_LAST_ROW)  >> 2)
00532                            |  (uvcbp[POS_CUR][i]                        << 2);
00533             if(!mb_x)
00534                 c_v_deblock[i] &= ~MASK_C_LEFT_COL;
00535             if(!row)
00536                 c_h_deblock[i] &= ~MASK_C_TOP_ROW;
00537             if(row == s->mb_height - 1 || mb_strong[POS_CUR] || mb_strong[POS_BOTTOM])
00538                 c_h_deblock[i] &= ~(MASK_C_TOP_ROW << 4);
00539         }
00540 
00541         for(j = 0; j < 16; j += 4){
00542             Y = s->current_picture_ptr->data[0] + mb_x*16 + (row*16 + j) * s->linesize;
00543             for(i = 0; i < 4; i++, Y += 4){
00544                 int ij = i + j;
00545                 int clip_cur = y_to_deblock & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
00546                 int dither = j ? ij : i*4;
00547 
00548                 // if bottom block is coded then we can filter its top edge
00549                 // (or bottom edge of this block, which is the same)
00550                 if(y_h_deblock & (MASK_BOTTOM << ij)){
00551                     rv40_h_loop_filter(Y+4*s->linesize, s->linesize, dither,
00552                                        y_to_deblock & (MASK_BOTTOM << ij) ? clip[POS_CUR] : 0,
00553                                        clip_cur,
00554                                        alpha, beta, betaY, 0, 0);
00555                 }
00556                 // filter left block edge in ordinary mode (with low filtering strength)
00557                 if(y_v_deblock & (MASK_CUR << ij) && (i || !(mb_strong[POS_CUR] || mb_strong[POS_LEFT]))){
00558                     if(!i)
00559                         clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
00560                     else
00561                         clip_left = y_to_deblock & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
00562                     rv40_v_loop_filter(Y, s->linesize, dither,
00563                                        clip_cur,
00564                                        clip_left,
00565                                        alpha, beta, betaY, 0, 0);
00566                 }
00567                 // filter top edge of the current macroblock when filtering strength is high
00568                 if(!j && y_h_deblock & (MASK_CUR << i) && (mb_strong[POS_CUR] || mb_strong[POS_TOP])){
00569                     rv40_h_loop_filter(Y, s->linesize, dither,
00570                                        clip_cur,
00571                                        mvmasks[POS_TOP] & (MASK_TOP << i) ? clip[POS_TOP] : 0,
00572                                        alpha, beta, betaY, 0, 1);
00573                 }
00574                 // filter left block edge in edge mode (with high filtering strength)
00575                 if(y_v_deblock & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] || mb_strong[POS_LEFT])){
00576                     clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
00577                     rv40_v_loop_filter(Y, s->linesize, dither,
00578                                        clip_cur,
00579                                        clip_left,
00580                                        alpha, beta, betaY, 0, 1);
00581                 }
00582             }
00583         }
00584         for(k = 0; k < 2; k++){
00585             for(j = 0; j < 2; j++){
00586                 C = s->current_picture_ptr->data[k+1] + mb_x*8 + (row*8 + j*4) * s->uvlinesize;
00587                 for(i = 0; i < 2; i++, C += 4){
00588                     int ij = i + j*2;
00589                     int clip_cur = c_to_deblock[k] & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
00590                     if(c_h_deblock[k] & (MASK_CUR << (ij+2))){
00591                         int clip_bot = c_to_deblock[k] & (MASK_CUR << (ij+2)) ? clip[POS_CUR] : 0;
00592                         rv40_h_loop_filter(C+4*s->uvlinesize, s->uvlinesize, i*8,
00593                                            clip_bot,
00594                                            clip_cur,
00595                                            alpha, beta, betaC, 1, 0);
00596                     }
00597                     if((c_v_deblock[k] & (MASK_CUR << ij)) && (i || !(mb_strong[POS_CUR] || mb_strong[POS_LEFT]))){
00598                         if(!i)
00599                             clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
00600                         else
00601                             clip_left = c_to_deblock[k]    & (MASK_CUR << (ij-1))  ? clip[POS_CUR]  : 0;
00602                         rv40_v_loop_filter(C, s->uvlinesize, j*8,
00603                                            clip_cur,
00604                                            clip_left,
00605                                            alpha, beta, betaC, 1, 0);
00606                     }
00607                     if(!j && c_h_deblock[k] & (MASK_CUR << ij) && (mb_strong[POS_CUR] || mb_strong[POS_TOP])){
00608                         int clip_top = uvcbp[POS_TOP][k] & (MASK_CUR << (ij+2)) ? clip[POS_TOP] : 0;
00609                         rv40_h_loop_filter(C, s->uvlinesize, i*8,
00610                                            clip_cur,
00611                                            clip_top,
00612                                            alpha, beta, betaC, 1, 1);
00613                     }
00614                     if(c_v_deblock[k] & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] || mb_strong[POS_LEFT])){
00615                         clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
00616                         rv40_v_loop_filter(C, s->uvlinesize, j*8,
00617                                            clip_cur,
00618                                            clip_left,
00619                                            alpha, beta, betaC, 1, 1);
00620                     }
00621                 }
00622             }
00623         }
00624     }
00625 }
00626 
00630 static av_cold int rv40_decode_init(AVCodecContext *avctx)
00631 {
00632     RV34DecContext *r = avctx->priv_data;
00633 
00634     r->rv30 = 0;
00635     ff_rv34_decode_init(avctx);
00636     if(!aic_top_vlc.bits)
00637         rv40_init_tables();
00638     r->parse_slice_header = rv40_parse_slice_header;
00639     r->decode_intra_types = rv40_decode_intra_types;
00640     r->decode_mb_info     = rv40_decode_mb_info;
00641     r->loop_filter        = rv40_loop_filter;
00642     r->luma_dc_quant_i = rv40_luma_dc_quant[0];
00643     r->luma_dc_quant_p = rv40_luma_dc_quant[1];
00644     return 0;
00645 }
00646 
00647 AVCodec rv40_decoder = {
00648     "rv40",
00649     CODEC_TYPE_VIDEO,
00650     CODEC_ID_RV40,
00651     sizeof(RV34DecContext),
00652     rv40_decode_init,
00653     NULL,
00654     ff_rv34_decode_end,
00655     ff_rv34_decode_frame,
00656     CODEC_CAP_DR1 | CODEC_CAP_DELAY,
00657     .flush = ff_mpeg_flush,
00658     .long_name = NULL_IF_CONFIG_SMALL("RealVideo 4.0"),
00659     .pix_fmts= ff_pixfmt_list_420,
00660 };

Generated on Sat Feb 16 2013 09:23:13 for ffmpeg by  doxygen 1.7.1