• Main Page
  • Related Pages
  • Modules
  • Data Structures
  • Files
  • File List
  • Globals

libavcodec/vp3.c

Go to the documentation of this file.
00001 /*
00002  * Copyright (C) 2003-2004 the ffmpeg project
00003  *
00004  * This file is part of FFmpeg.
00005  *
00006  * FFmpeg is free software; you can redistribute it and/or
00007  * modify it under the terms of the GNU Lesser General Public
00008  * License as published by the Free Software Foundation; either
00009  * version 2.1 of the License, or (at your option) any later version.
00010  *
00011  * FFmpeg is distributed in the hope that it will be useful,
00012  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00013  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00014  * Lesser General Public License for more details.
00015  *
00016  * You should have received a copy of the GNU Lesser General Public
00017  * License along with FFmpeg; if not, write to the Free Software
00018  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
00019  */
00020 
00032 #include <stdio.h>
00033 #include <stdlib.h>
00034 #include <string.h>
00035 #include <unistd.h>
00036 
00037 #include "avcodec.h"
00038 #include "dsputil.h"
00039 #include "bitstream.h"
00040 
00041 #include "vp3data.h"
00042 #include "xiph.h"
00043 
00044 #define FRAGMENT_PIXELS 8
00045 
00046 static av_cold int vp3_decode_end(AVCodecContext *avctx);
00047 
00048 typedef struct Coeff {
00049     struct Coeff *next;
00050     DCTELEM coeff;
00051     uint8_t index;
00052 } Coeff;
00053 
00054 //FIXME split things out into their own arrays
00055 typedef struct Vp3Fragment {
00056     Coeff *next_coeff;
00057     /* address of first pixel taking into account which plane the fragment
00058      * lives on as well as the plane stride */
00059     int first_pixel;
00060     /* this is the macroblock that the fragment belongs to */
00061     uint16_t macroblock;
00062     uint8_t coding_method;
00063     int8_t motion_x;
00064     int8_t motion_y;
00065 } Vp3Fragment;
00066 
00067 #define SB_NOT_CODED        0
00068 #define SB_PARTIALLY_CODED  1
00069 #define SB_FULLY_CODED      2
00070 
00071 #define MODE_INTER_NO_MV      0
00072 #define MODE_INTRA            1
00073 #define MODE_INTER_PLUS_MV    2
00074 #define MODE_INTER_LAST_MV    3
00075 #define MODE_INTER_PRIOR_LAST 4
00076 #define MODE_USING_GOLDEN     5
00077 #define MODE_GOLDEN_MV        6
00078 #define MODE_INTER_FOURMV     7
00079 #define CODING_MODE_COUNT     8
00080 
00081 /* special internal mode */
00082 #define MODE_COPY             8
00083 
00084 /* There are 6 preset schemes, plus a free-form scheme */
00085 static const int ModeAlphabet[6][CODING_MODE_COUNT] =
00086 {
00087     /* scheme 1: Last motion vector dominates */
00088     {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
00089          MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
00090          MODE_INTRA,            MODE_USING_GOLDEN,
00091          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
00092 
00093     /* scheme 2 */
00094     {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
00095          MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
00096          MODE_INTRA,            MODE_USING_GOLDEN,
00097          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
00098 
00099     /* scheme 3 */
00100     {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
00101          MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
00102          MODE_INTRA,            MODE_USING_GOLDEN,
00103          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
00104 
00105     /* scheme 4 */
00106     {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
00107          MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
00108          MODE_INTRA,            MODE_USING_GOLDEN,
00109          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
00110 
00111     /* scheme 5: No motion vector dominates */
00112     {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
00113          MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
00114          MODE_INTRA,            MODE_USING_GOLDEN,
00115          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
00116 
00117     /* scheme 6 */
00118     {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
00119          MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
00120          MODE_INTER_PLUS_MV,    MODE_INTRA,
00121          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
00122 
00123 };
00124 
00125 #define MIN_DEQUANT_VAL 2
00126 
00127 typedef struct Vp3DecodeContext {
00128     AVCodecContext *avctx;
00129     int theora, theora_tables;
00130     int version;
00131     int width, height;
00132     AVFrame golden_frame;
00133     AVFrame last_frame;
00134     AVFrame current_frame;
00135     int keyframe;
00136     DSPContext dsp;
00137     int flipped_image;
00138 
00139     int qis[3];
00140     int nqis;
00141     int quality_index;
00142     int last_quality_index;
00143 
00144     int superblock_count;
00145     int y_superblock_width;
00146     int y_superblock_height;
00147     int c_superblock_width;
00148     int c_superblock_height;
00149     int u_superblock_start;
00150     int v_superblock_start;
00151     unsigned char *superblock_coding;
00152 
00153     int macroblock_count;
00154     int macroblock_width;
00155     int macroblock_height;
00156 
00157     int fragment_count;
00158     int fragment_width;
00159     int fragment_height;
00160 
00161     Vp3Fragment *all_fragments;
00162     uint8_t *coeff_counts;
00163     Coeff *coeffs;
00164     Coeff *next_coeff;
00165     int fragment_start[3];
00166 
00167     ScanTable scantable;
00168 
00169     /* tables */
00170     uint16_t coded_dc_scale_factor[64];
00171     uint32_t coded_ac_scale_factor[64];
00172     uint8_t base_matrix[384][64];
00173     uint8_t qr_count[2][3];
00174     uint8_t qr_size [2][3][64];
00175     uint16_t qr_base[2][3][64];
00176 
00177     /* this is a list of indexes into the all_fragments array indicating
00178      * which of the fragments are coded */
00179     int *coded_fragment_list;
00180     int coded_fragment_list_index;
00181     int pixel_addresses_initialized;
00182 
00183     VLC dc_vlc[16];
00184     VLC ac_vlc_1[16];
00185     VLC ac_vlc_2[16];
00186     VLC ac_vlc_3[16];
00187     VLC ac_vlc_4[16];
00188 
00189     VLC superblock_run_length_vlc;
00190     VLC fragment_run_length_vlc;
00191     VLC mode_code_vlc;
00192     VLC motion_vector_vlc;
00193 
00194     /* these arrays need to be on 16-byte boundaries since SSE2 operations
00195      * index into them */
00196     DECLARE_ALIGNED_16(int16_t, qmat[2][4][64]);        //<qmat[is_inter][plane]
00197 
00198     /* This table contains superblock_count * 16 entries. Each set of 16
00199      * numbers corresponds to the fragment indexes 0..15 of the superblock.
00200      * An entry will be -1 to indicate that no entry corresponds to that
00201      * index. */
00202     int *superblock_fragments;
00203 
00204     /* This table contains superblock_count * 4 entries. Each set of 4
00205      * numbers corresponds to the macroblock indexes 0..3 of the superblock.
00206      * An entry will be -1 to indicate that no entry corresponds to that
00207      * index. */
00208     int *superblock_macroblocks;
00209 
00210     /* This table contains macroblock_count * 6 entries. Each set of 6
00211      * numbers corresponds to the fragment indexes 0..5 which comprise
00212      * the macroblock (4 Y fragments and 2 C fragments). */
00213     int *macroblock_fragments;
00214     /* This is an array that indicates how a particular macroblock
00215      * is coded. */
00216     unsigned char *macroblock_coding;
00217 
00218     int first_coded_y_fragment;
00219     int first_coded_c_fragment;
00220     int last_coded_y_fragment;
00221     int last_coded_c_fragment;
00222 
00223     uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
00224     int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
00225 
00226     /* Huffman decode */
00227     int hti;
00228     unsigned int hbits;
00229     int entries;
00230     int huff_code_size;
00231     uint16_t huffman_table[80][32][2];
00232 
00233     uint8_t filter_limit_values[64];
00234     DECLARE_ALIGNED_8(int, bounding_values_array[256+2]);
00235 } Vp3DecodeContext;
00236 
00237 /************************************************************************
00238  * VP3 specific functions
00239  ************************************************************************/
00240 
00241 /*
00242  * This function sets up all of the various blocks mappings:
00243  * superblocks <-> fragments, macroblocks <-> fragments,
00244  * superblocks <-> macroblocks
00245  *
00246  * Returns 0 is successful; returns 1 if *anything* went wrong.
00247  */
00248 static int init_block_mapping(Vp3DecodeContext *s)
00249 {
00250     int i, j;
00251     signed int hilbert_walk_mb[4];
00252 
00253     int current_fragment = 0;
00254     int current_width = 0;
00255     int current_height = 0;
00256     int right_edge = 0;
00257     int bottom_edge = 0;
00258     int superblock_row_inc = 0;
00259     int *hilbert = NULL;
00260     int mapping_index = 0;
00261 
00262     int current_macroblock;
00263     int c_fragment;
00264 
00265     signed char travel_width[16] = {
00266          1,  1,  0, -1,
00267          0,  0,  1,  0,
00268          1,  0,  1,  0,
00269          0, -1,  0,  1
00270     };
00271 
00272     signed char travel_height[16] = {
00273          0,  0,  1,  0,
00274          1,  1,  0, -1,
00275          0,  1,  0, -1,
00276         -1,  0, -1,  0
00277     };
00278 
00279     signed char travel_width_mb[4] = {
00280          1,  0,  1,  0
00281     };
00282 
00283     signed char travel_height_mb[4] = {
00284          0,  1,  0, -1
00285     };
00286 
00287     hilbert_walk_mb[0] = 1;
00288     hilbert_walk_mb[1] = s->macroblock_width;
00289     hilbert_walk_mb[2] = 1;
00290     hilbert_walk_mb[3] = -s->macroblock_width;
00291 
00292     /* iterate through each superblock (all planes) and map the fragments */
00293     for (i = 0; i < s->superblock_count; i++) {
00294         /* time to re-assign the limits? */
00295         if (i == 0) {
00296 
00297             /* start of Y superblocks */
00298             right_edge = s->fragment_width;
00299             bottom_edge = s->fragment_height;
00300             current_width = -1;
00301             current_height = 0;
00302             superblock_row_inc = 3 * s->fragment_width -
00303                 (s->y_superblock_width * 4 - s->fragment_width);
00304 
00305             /* the first operation for this variable is to advance by 1 */
00306             current_fragment = -1;
00307 
00308         } else if (i == s->u_superblock_start) {
00309 
00310             /* start of U superblocks */
00311             right_edge = s->fragment_width / 2;
00312             bottom_edge = s->fragment_height / 2;
00313             current_width = -1;
00314             current_height = 0;
00315             superblock_row_inc = 3 * (s->fragment_width / 2) -
00316                 (s->c_superblock_width * 4 - s->fragment_width / 2);
00317 
00318             /* the first operation for this variable is to advance by 1 */
00319             current_fragment = s->fragment_start[1] - 1;
00320 
00321         } else if (i == s->v_superblock_start) {
00322 
00323             /* start of V superblocks */
00324             right_edge = s->fragment_width / 2;
00325             bottom_edge = s->fragment_height / 2;
00326             current_width = -1;
00327             current_height = 0;
00328             superblock_row_inc = 3 * (s->fragment_width / 2) -
00329                 (s->c_superblock_width * 4 - s->fragment_width / 2);
00330 
00331             /* the first operation for this variable is to advance by 1 */
00332             current_fragment = s->fragment_start[2] - 1;
00333 
00334         }
00335 
00336         if (current_width >= right_edge - 1) {
00337             /* reset width and move to next superblock row */
00338             current_width = -1;
00339             current_height += 4;
00340 
00341             /* fragment is now at the start of a new superblock row */
00342             current_fragment += superblock_row_inc;
00343         }
00344 
00345         /* iterate through all 16 fragments in a superblock */
00346         for (j = 0; j < 16; j++) {
00347             current_fragment += travel_width[j] + right_edge * travel_height[j];
00348             current_width += travel_width[j];
00349             current_height += travel_height[j];
00350 
00351             /* check if the fragment is in bounds */
00352             if ((current_width < right_edge) &&
00353                 (current_height < bottom_edge)) {
00354                 s->superblock_fragments[mapping_index] = current_fragment;
00355             } else {
00356                 s->superblock_fragments[mapping_index] = -1;
00357             }
00358 
00359             mapping_index++;
00360         }
00361     }
00362 
00363     /* initialize the superblock <-> macroblock mapping; iterate through
00364      * all of the Y plane superblocks to build this mapping */
00365     right_edge = s->macroblock_width;
00366     bottom_edge = s->macroblock_height;
00367     current_width = -1;
00368     current_height = 0;
00369     superblock_row_inc = s->macroblock_width -
00370         (s->y_superblock_width * 2 - s->macroblock_width);
00371     hilbert = hilbert_walk_mb;
00372     mapping_index = 0;
00373     current_macroblock = -1;
00374     for (i = 0; i < s->u_superblock_start; i++) {
00375 
00376         if (current_width >= right_edge - 1) {
00377             /* reset width and move to next superblock row */
00378             current_width = -1;
00379             current_height += 2;
00380 
00381             /* macroblock is now at the start of a new superblock row */
00382             current_macroblock += superblock_row_inc;
00383         }
00384 
00385         /* iterate through each potential macroblock in the superblock */
00386         for (j = 0; j < 4; j++) {
00387             current_macroblock += hilbert_walk_mb[j];
00388             current_width += travel_width_mb[j];
00389             current_height += travel_height_mb[j];
00390 
00391             /* check if the macroblock is in bounds */
00392             if ((current_width < right_edge) &&
00393                 (current_height < bottom_edge)) {
00394                 s->superblock_macroblocks[mapping_index] = current_macroblock;
00395             } else {
00396                 s->superblock_macroblocks[mapping_index] = -1;
00397             }
00398 
00399             mapping_index++;
00400         }
00401     }
00402 
00403     /* initialize the macroblock <-> fragment mapping */
00404     current_fragment = 0;
00405     current_macroblock = 0;
00406     mapping_index = 0;
00407     for (i = 0; i < s->fragment_height; i += 2) {
00408 
00409         for (j = 0; j < s->fragment_width; j += 2) {
00410 
00411             s->all_fragments[current_fragment].macroblock = current_macroblock;
00412             s->macroblock_fragments[mapping_index++] = current_fragment;
00413 
00414             if (j + 1 < s->fragment_width) {
00415                 s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
00416                 s->macroblock_fragments[mapping_index++] = current_fragment + 1;
00417             } else
00418                 s->macroblock_fragments[mapping_index++] = -1;
00419 
00420             if (i + 1 < s->fragment_height) {
00421                 s->all_fragments[current_fragment + s->fragment_width].macroblock =
00422                     current_macroblock;
00423                 s->macroblock_fragments[mapping_index++] =
00424                     current_fragment + s->fragment_width;
00425             } else
00426                 s->macroblock_fragments[mapping_index++] = -1;
00427 
00428             if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
00429                 s->all_fragments[current_fragment + s->fragment_width + 1].macroblock =
00430                     current_macroblock;
00431                 s->macroblock_fragments[mapping_index++] =
00432                     current_fragment + s->fragment_width + 1;
00433             } else
00434                 s->macroblock_fragments[mapping_index++] = -1;
00435 
00436             /* C planes */
00437             c_fragment = s->fragment_start[1] +
00438                 (i * s->fragment_width / 4) + (j / 2);
00439             s->all_fragments[c_fragment].macroblock = s->macroblock_count;
00440             s->macroblock_fragments[mapping_index++] = c_fragment;
00441 
00442             c_fragment = s->fragment_start[2] +
00443                 (i * s->fragment_width / 4) + (j / 2);
00444             s->all_fragments[c_fragment].macroblock = s->macroblock_count;
00445             s->macroblock_fragments[mapping_index++] = c_fragment;
00446 
00447             if (j + 2 <= s->fragment_width)
00448                 current_fragment += 2;
00449             else
00450                 current_fragment++;
00451             current_macroblock++;
00452         }
00453 
00454         current_fragment += s->fragment_width;
00455     }
00456 
00457     return 0;  /* successful path out */
00458 }
00459 
00460 /*
00461  * This function wipes out all of the fragment data.
00462  */
00463 static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
00464 {
00465     int i;
00466 
00467     /* zero out all of the fragment information */
00468     s->coded_fragment_list_index = 0;
00469     for (i = 0; i < s->fragment_count; i++) {
00470         s->coeff_counts[i] = 0;
00471         s->all_fragments[i].motion_x = 127;
00472         s->all_fragments[i].motion_y = 127;
00473         s->all_fragments[i].next_coeff= NULL;
00474         s->coeffs[i].index=
00475         s->coeffs[i].coeff=0;
00476         s->coeffs[i].next= NULL;
00477     }
00478 }
00479 
00480 /*
00481  * This function sets up the dequantization tables used for a particular
00482  * frame.
00483  */
00484 static void init_dequantizer(Vp3DecodeContext *s)
00485 {
00486     int ac_scale_factor = s->coded_ac_scale_factor[s->quality_index];
00487     int dc_scale_factor = s->coded_dc_scale_factor[s->quality_index];
00488     int i, plane, inter, qri, bmi, bmj, qistart;
00489 
00490     for(inter=0; inter<2; inter++){
00491         for(plane=0; plane<3; plane++){
00492             int sum=0;
00493             for(qri=0; qri<s->qr_count[inter][plane]; qri++){
00494                 sum+= s->qr_size[inter][plane][qri];
00495                 if(s->quality_index <= sum)
00496                     break;
00497             }
00498             qistart= sum - s->qr_size[inter][plane][qri];
00499             bmi= s->qr_base[inter][plane][qri  ];
00500             bmj= s->qr_base[inter][plane][qri+1];
00501             for(i=0; i<64; i++){
00502                 int coeff= (  2*(sum    -s->quality_index)*s->base_matrix[bmi][i]
00503                             - 2*(qistart-s->quality_index)*s->base_matrix[bmj][i]
00504                             + s->qr_size[inter][plane][qri])
00505                            / (2*s->qr_size[inter][plane][qri]);
00506 
00507                 int qmin= 8<<(inter + !i);
00508                 int qscale= i ? ac_scale_factor : dc_scale_factor;
00509 
00510                 s->qmat[inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
00511             }
00512         }
00513     }
00514 
00515     memset(s->qscale_table, (FFMAX(s->qmat[0][0][1], s->qmat[0][1][1])+8)/16, 512); //FIXME finetune
00516 }
00517 
00518 /*
00519  * This function initializes the loop filter boundary limits if the frame's
00520  * quality index is different from the previous frame's.
00521  */
00522 static void init_loop_filter(Vp3DecodeContext *s)
00523 {
00524     int *bounding_values= s->bounding_values_array+127;
00525     int filter_limit;
00526     int x;
00527 
00528     filter_limit = s->filter_limit_values[s->quality_index];
00529 
00530     /* set up the bounding values */
00531     memset(s->bounding_values_array, 0, 256 * sizeof(int));
00532     for (x = 0; x < filter_limit; x++) {
00533         bounding_values[-x - filter_limit] = -filter_limit + x;
00534         bounding_values[-x] = -x;
00535         bounding_values[x] = x;
00536         bounding_values[x + filter_limit] = filter_limit - x;
00537     }
00538     bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
00539 }
00540 
00541 /*
00542  * This function unpacks all of the superblock/macroblock/fragment coding
00543  * information from the bitstream.
00544  */
00545 static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
00546 {
00547     int bit = 0;
00548     int current_superblock = 0;
00549     int current_run = 0;
00550     int decode_fully_flags = 0;
00551     int decode_partial_blocks = 0;
00552     int first_c_fragment_seen;
00553 
00554     int i, j;
00555     int current_fragment;
00556 
00557     if (s->keyframe) {
00558         memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
00559 
00560     } else {
00561 
00562         /* unpack the list of partially-coded superblocks */
00563         bit = get_bits1(gb);
00564         /* toggle the bit because as soon as the first run length is
00565          * fetched the bit will be toggled again */
00566         bit ^= 1;
00567         while (current_superblock < s->superblock_count) {
00568             if (current_run-- == 0) {
00569                 bit ^= 1;
00570                 current_run = get_vlc2(gb,
00571                     s->superblock_run_length_vlc.table, 6, 2);
00572                 if (current_run == 33)
00573                     current_run += get_bits(gb, 12);
00574 
00575                 /* if any of the superblocks are not partially coded, flag
00576                  * a boolean to decode the list of fully-coded superblocks */
00577                 if (bit == 0) {
00578                     decode_fully_flags = 1;
00579                 } else {
00580 
00581                     /* make a note of the fact that there are partially coded
00582                      * superblocks */
00583                     decode_partial_blocks = 1;
00584                 }
00585             }
00586             s->superblock_coding[current_superblock++] = bit;
00587         }
00588 
00589         /* unpack the list of fully coded superblocks if any of the blocks were
00590          * not marked as partially coded in the previous step */
00591         if (decode_fully_flags) {
00592 
00593             current_superblock = 0;
00594             current_run = 0;
00595             bit = get_bits1(gb);
00596             /* toggle the bit because as soon as the first run length is
00597              * fetched the bit will be toggled again */
00598             bit ^= 1;
00599             while (current_superblock < s->superblock_count) {
00600 
00601                 /* skip any superblocks already marked as partially coded */
00602                 if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
00603 
00604                     if (current_run-- == 0) {
00605                         bit ^= 1;
00606                         current_run = get_vlc2(gb,
00607                             s->superblock_run_length_vlc.table, 6, 2);
00608                         if (current_run == 33)
00609                             current_run += get_bits(gb, 12);
00610                     }
00611                     s->superblock_coding[current_superblock] = 2*bit;
00612                 }
00613                 current_superblock++;
00614             }
00615         }
00616 
00617         /* if there were partial blocks, initialize bitstream for
00618          * unpacking fragment codings */
00619         if (decode_partial_blocks) {
00620 
00621             current_run = 0;
00622             bit = get_bits1(gb);
00623             /* toggle the bit because as soon as the first run length is
00624              * fetched the bit will be toggled again */
00625             bit ^= 1;
00626         }
00627     }
00628 
00629     /* figure out which fragments are coded; iterate through each
00630      * superblock (all planes) */
00631     s->coded_fragment_list_index = 0;
00632     s->next_coeff= s->coeffs + s->fragment_count;
00633     s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
00634     s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
00635     first_c_fragment_seen = 0;
00636     memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
00637     for (i = 0; i < s->superblock_count; i++) {
00638 
00639         /* iterate through all 16 fragments in a superblock */
00640         for (j = 0; j < 16; j++) {
00641 
00642             /* if the fragment is in bounds, check its coding status */
00643             current_fragment = s->superblock_fragments[i * 16 + j];
00644             if (current_fragment >= s->fragment_count) {
00645                 av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
00646                     current_fragment, s->fragment_count);
00647                 return 1;
00648             }
00649             if (current_fragment != -1) {
00650                 if (s->superblock_coding[i] == SB_NOT_CODED) {
00651 
00652                     /* copy all the fragments from the prior frame */
00653                     s->all_fragments[current_fragment].coding_method =
00654                         MODE_COPY;
00655 
00656                 } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
00657 
00658                     /* fragment may or may not be coded; this is the case
00659                      * that cares about the fragment coding runs */
00660                     if (current_run-- == 0) {
00661                         bit ^= 1;
00662                         current_run = get_vlc2(gb,
00663                             s->fragment_run_length_vlc.table, 5, 2);
00664                     }
00665 
00666                     if (bit) {
00667                         /* default mode; actual mode will be decoded in
00668                          * the next phase */
00669                         s->all_fragments[current_fragment].coding_method =
00670                             MODE_INTER_NO_MV;
00671                         s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
00672                         s->coded_fragment_list[s->coded_fragment_list_index] =
00673                             current_fragment;
00674                         if ((current_fragment >= s->fragment_start[1]) &&
00675                             (s->last_coded_y_fragment == -1) &&
00676                             (!first_c_fragment_seen)) {
00677                             s->first_coded_c_fragment = s->coded_fragment_list_index;
00678                             s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
00679                             first_c_fragment_seen = 1;
00680                         }
00681                         s->coded_fragment_list_index++;
00682                         s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
00683                     } else {
00684                         /* not coded; copy this fragment from the prior frame */
00685                         s->all_fragments[current_fragment].coding_method =
00686                             MODE_COPY;
00687                     }
00688 
00689                 } else {
00690 
00691                     /* fragments are fully coded in this superblock; actual
00692                      * coding will be determined in next step */
00693                     s->all_fragments[current_fragment].coding_method =
00694                         MODE_INTER_NO_MV;
00695                     s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
00696                     s->coded_fragment_list[s->coded_fragment_list_index] =
00697                         current_fragment;
00698                     if ((current_fragment >= s->fragment_start[1]) &&
00699                         (s->last_coded_y_fragment == -1) &&
00700                         (!first_c_fragment_seen)) {
00701                         s->first_coded_c_fragment = s->coded_fragment_list_index;
00702                         s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
00703                         first_c_fragment_seen = 1;
00704                     }
00705                     s->coded_fragment_list_index++;
00706                     s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
00707                 }
00708             }
00709         }
00710     }
00711 
00712     if (!first_c_fragment_seen)
00713         /* only Y fragments coded in this frame */
00714         s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
00715     else
00716         /* end the list of coded C fragments */
00717         s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
00718 
00719     return 0;
00720 }
00721 
00722 /*
00723  * This function unpacks all the coding mode data for individual macroblocks
00724  * from the bitstream.
00725  */
00726 static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
00727 {
00728     int i, j, k;
00729     int scheme;
00730     int current_macroblock;
00731     int current_fragment;
00732     int coding_mode;
00733     int custom_mode_alphabet[CODING_MODE_COUNT];
00734 
00735     if (s->keyframe) {
00736         for (i = 0; i < s->fragment_count; i++)
00737             s->all_fragments[i].coding_method = MODE_INTRA;
00738 
00739     } else {
00740 
00741         /* fetch the mode coding scheme for this frame */
00742         scheme = get_bits(gb, 3);
00743 
00744         /* is it a custom coding scheme? */
00745         if (scheme == 0) {
00746             for (i = 0; i < 8; i++)
00747                 custom_mode_alphabet[i] = MODE_INTER_NO_MV;
00748             for (i = 0; i < 8; i++)
00749                 custom_mode_alphabet[get_bits(gb, 3)] = i;
00750         }
00751 
00752         /* iterate through all of the macroblocks that contain 1 or more
00753          * coded fragments */
00754         for (i = 0; i < s->u_superblock_start; i++) {
00755 
00756             for (j = 0; j < 4; j++) {
00757                 current_macroblock = s->superblock_macroblocks[i * 4 + j];
00758                 if ((current_macroblock == -1) ||
00759                     (s->macroblock_coding[current_macroblock] == MODE_COPY))
00760                     continue;
00761                 if (current_macroblock >= s->macroblock_count) {
00762                     av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
00763                         current_macroblock, s->macroblock_count);
00764                     return 1;
00765                 }
00766 
00767                 /* mode 7 means get 3 bits for each coding mode */
00768                 if (scheme == 7)
00769                     coding_mode = get_bits(gb, 3);
00770                 else if(scheme == 0)
00771                     coding_mode = custom_mode_alphabet
00772                         [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
00773                 else
00774                     coding_mode = ModeAlphabet[scheme-1]
00775                         [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
00776 
00777                 s->macroblock_coding[current_macroblock] = coding_mode;
00778                 for (k = 0; k < 6; k++) {
00779                     current_fragment =
00780                         s->macroblock_fragments[current_macroblock * 6 + k];
00781                     if (current_fragment == -1)
00782                         continue;
00783                     if (current_fragment >= s->fragment_count) {
00784                         av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
00785                             current_fragment, s->fragment_count);
00786                         return 1;
00787                     }
00788                     if (s->all_fragments[current_fragment].coding_method !=
00789                         MODE_COPY)
00790                         s->all_fragments[current_fragment].coding_method =
00791                             coding_mode;
00792                 }
00793             }
00794         }
00795     }
00796 
00797     return 0;
00798 }
00799 
00800 /*
00801  * This function unpacks all the motion vectors for the individual
00802  * macroblocks from the bitstream.
00803  */
00804 static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
00805 {
00806     int i, j, k, l;
00807     int coding_mode;
00808     int motion_x[6];
00809     int motion_y[6];
00810     int last_motion_x = 0;
00811     int last_motion_y = 0;
00812     int prior_last_motion_x = 0;
00813     int prior_last_motion_y = 0;
00814     int current_macroblock;
00815     int current_fragment;
00816 
00817     if (s->keyframe)
00818         return 0;
00819 
00820     memset(motion_x, 0, 6 * sizeof(int));
00821     memset(motion_y, 0, 6 * sizeof(int));
00822 
00823     /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
00824     coding_mode = get_bits1(gb);
00825 
00826     /* iterate through all of the macroblocks that contain 1 or more
00827      * coded fragments */
00828     for (i = 0; i < s->u_superblock_start; i++) {
00829 
00830         for (j = 0; j < 4; j++) {
00831             current_macroblock = s->superblock_macroblocks[i * 4 + j];
00832             if ((current_macroblock == -1) ||
00833                 (s->macroblock_coding[current_macroblock] == MODE_COPY))
00834                 continue;
00835             if (current_macroblock >= s->macroblock_count) {
00836                 av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
00837                     current_macroblock, s->macroblock_count);
00838                 return 1;
00839             }
00840 
00841             current_fragment = s->macroblock_fragments[current_macroblock * 6];
00842             if (current_fragment >= s->fragment_count) {
00843                 av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
00844                     current_fragment, s->fragment_count);
00845                 return 1;
00846             }
00847             switch (s->macroblock_coding[current_macroblock]) {
00848 
00849             case MODE_INTER_PLUS_MV:
00850             case MODE_GOLDEN_MV:
00851                 /* all 6 fragments use the same motion vector */
00852                 if (coding_mode == 0) {
00853                     motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
00854                     motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
00855                 } else {
00856                     motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
00857                     motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
00858                 }
00859 
00860                 for (k = 1; k < 6; k++) {
00861                     motion_x[k] = motion_x[0];
00862                     motion_y[k] = motion_y[0];
00863                 }
00864 
00865                 /* vector maintenance, only on MODE_INTER_PLUS_MV */
00866                 if (s->macroblock_coding[current_macroblock] ==
00867                     MODE_INTER_PLUS_MV) {
00868                     prior_last_motion_x = last_motion_x;
00869                     prior_last_motion_y = last_motion_y;
00870                     last_motion_x = motion_x[0];
00871                     last_motion_y = motion_y[0];
00872                 }
00873                 break;
00874 
00875             case MODE_INTER_FOURMV:
00876                 /* vector maintenance */
00877                 prior_last_motion_x = last_motion_x;
00878                 prior_last_motion_y = last_motion_y;
00879 
00880                 /* fetch 4 vectors from the bitstream, one for each
00881                  * Y fragment, then average for the C fragment vectors */
00882                 motion_x[4] = motion_y[4] = 0;
00883                 for (k = 0; k < 4; k++) {
00884                     for (l = 0; l < s->coded_fragment_list_index; l++)
00885                         if (s->coded_fragment_list[l] == s->macroblock_fragments[6*current_macroblock + k])
00886                             break;
00887                     if (l < s->coded_fragment_list_index) {
00888                         if (coding_mode == 0) {
00889                             motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
00890                             motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
00891                         } else {
00892                             motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
00893                             motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
00894                         }
00895                         last_motion_x = motion_x[k];
00896                         last_motion_y = motion_y[k];
00897                     } else {
00898                         motion_x[k] = 0;
00899                         motion_y[k] = 0;
00900                     }
00901                     motion_x[4] += motion_x[k];
00902                     motion_y[4] += motion_y[k];
00903                 }
00904 
00905                 motion_x[5]=
00906                 motion_x[4]= RSHIFT(motion_x[4], 2);
00907                 motion_y[5]=
00908                 motion_y[4]= RSHIFT(motion_y[4], 2);
00909                 break;
00910 
00911             case MODE_INTER_LAST_MV:
00912                 /* all 6 fragments use the last motion vector */
00913                 motion_x[0] = last_motion_x;
00914                 motion_y[0] = last_motion_y;
00915                 for (k = 1; k < 6; k++) {
00916                     motion_x[k] = motion_x[0];
00917                     motion_y[k] = motion_y[0];
00918                 }
00919 
00920                 /* no vector maintenance (last vector remains the
00921                  * last vector) */
00922                 break;
00923 
00924             case MODE_INTER_PRIOR_LAST:
00925                 /* all 6 fragments use the motion vector prior to the
00926                  * last motion vector */
00927                 motion_x[0] = prior_last_motion_x;
00928                 motion_y[0] = prior_last_motion_y;
00929                 for (k = 1; k < 6; k++) {
00930                     motion_x[k] = motion_x[0];
00931                     motion_y[k] = motion_y[0];
00932                 }
00933 
00934                 /* vector maintenance */
00935                 prior_last_motion_x = last_motion_x;
00936                 prior_last_motion_y = last_motion_y;
00937                 last_motion_x = motion_x[0];
00938                 last_motion_y = motion_y[0];
00939                 break;
00940 
00941             default:
00942                 /* covers intra, inter without MV, golden without MV */
00943                 memset(motion_x, 0, 6 * sizeof(int));
00944                 memset(motion_y, 0, 6 * sizeof(int));
00945 
00946                 /* no vector maintenance */
00947                 break;
00948             }
00949 
00950             /* assign the motion vectors to the correct fragments */
00951             for (k = 0; k < 6; k++) {
00952                 current_fragment =
00953                     s->macroblock_fragments[current_macroblock * 6 + k];
00954                 if (current_fragment == -1)
00955                     continue;
00956                 if (current_fragment >= s->fragment_count) {
00957                     av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
00958                         current_fragment, s->fragment_count);
00959                     return 1;
00960                 }
00961                 s->all_fragments[current_fragment].motion_x = motion_x[k];
00962                 s->all_fragments[current_fragment].motion_y = motion_y[k];
00963             }
00964         }
00965     }
00966 
00967     return 0;
00968 }
00969 
00970 /*
00971  * This function is called by unpack_dct_coeffs() to extract the VLCs from
00972  * the bitstream. The VLCs encode tokens which are used to unpack DCT
00973  * data. This function unpacks all the VLCs for either the Y plane or both
00974  * C planes, and is called for DC coefficients or different AC coefficient
00975  * levels (since different coefficient types require different VLC tables.
00976  *
00977  * This function returns a residual eob run. E.g, if a particular token gave
00978  * instructions to EOB the next 5 fragments and there were only 2 fragments
00979  * left in the current fragment range, 3 would be returned so that it could
00980  * be passed into the next call to this same function.
00981  */
00982 static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
00983                         VLC *table, int coeff_index,
00984                         int first_fragment, int last_fragment,
00985                         int eob_run)
00986 {
00987     int i;
00988     int token;
00989     int zero_run = 0;
00990     DCTELEM coeff = 0;
00991     Vp3Fragment *fragment;
00992     uint8_t *perm= s->scantable.permutated;
00993     int bits_to_get;
00994 
00995     if ((first_fragment >= s->fragment_count) ||
00996         (last_fragment >= s->fragment_count)) {
00997 
00998         av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
00999             first_fragment, last_fragment);
01000         return 0;
01001     }
01002 
01003     for (i = first_fragment; i <= last_fragment; i++) {
01004         int fragment_num = s->coded_fragment_list[i];
01005 
01006         if (s->coeff_counts[fragment_num] > coeff_index)
01007             continue;
01008         fragment = &s->all_fragments[fragment_num];
01009 
01010         if (!eob_run) {
01011             /* decode a VLC into a token */
01012             token = get_vlc2(gb, table->table, 5, 3);
01013             /* use the token to get a zero run, a coefficient, and an eob run */
01014             if ((unsigned) token <= 6U) {
01015                 eob_run = eob_run_base[token];
01016                 if (eob_run_get_bits[token])
01017                     eob_run += get_bits(gb, eob_run_get_bits[token]);
01018                 coeff = zero_run = 0;
01019             } else if (token >= 0) {
01020                 bits_to_get = coeff_get_bits[token];
01021                 if (!bits_to_get)
01022                     coeff = coeff_tables[token][0];
01023                 else
01024                     coeff = coeff_tables[token][get_bits(gb, bits_to_get)];
01025 
01026                 zero_run = zero_run_base[token];
01027                 if (zero_run_get_bits[token])
01028                     zero_run += get_bits(gb, zero_run_get_bits[token]);
01029             } else {
01030                 av_log(s->avctx, AV_LOG_ERROR,
01031                        "Invalid token %d\n", token);
01032                 return -1;
01033             }
01034         }
01035 
01036         if (!eob_run) {
01037             s->coeff_counts[fragment_num] += zero_run;
01038             if (s->coeff_counts[fragment_num] < 64){
01039                 fragment->next_coeff->coeff= coeff;
01040                 fragment->next_coeff->index= perm[s->coeff_counts[fragment_num]++]; //FIXME perm here already?
01041                 fragment->next_coeff->next= s->next_coeff;
01042                 s->next_coeff->next=NULL;
01043                 fragment->next_coeff= s->next_coeff++;
01044             }
01045         } else {
01046             s->coeff_counts[fragment_num] |= 128;
01047             eob_run--;
01048         }
01049     }
01050 
01051     return eob_run;
01052 }
01053 
01054 /*
01055  * This function unpacks all of the DCT coefficient data from the
01056  * bitstream.
01057  */
01058 static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
01059 {
01060     int i;
01061     int dc_y_table;
01062     int dc_c_table;
01063     int ac_y_table;
01064     int ac_c_table;
01065     int residual_eob_run = 0;
01066 
01067     /* fetch the DC table indexes */
01068     dc_y_table = get_bits(gb, 4);
01069     dc_c_table = get_bits(gb, 4);
01070 
01071     /* unpack the Y plane DC coefficients */
01072     residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
01073         s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
01074 
01075     /* unpack the C plane DC coefficients */
01076     residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
01077         s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
01078     if (residual_eob_run < 0)
01079         return residual_eob_run;
01080 
01081     /* fetch the AC table indexes */
01082     ac_y_table = get_bits(gb, 4);
01083     ac_c_table = get_bits(gb, 4);
01084 
01085     /* unpack the group 1 AC coefficients (coeffs 1-5) */
01086     for (i = 1; i <= 5; i++) {
01087         residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i,
01088             s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
01089         if (residual_eob_run < 0)
01090             return residual_eob_run;
01091 
01092         residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i,
01093             s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
01094         if (residual_eob_run < 0)
01095             return residual_eob_run;
01096     }
01097 
01098     /* unpack the group 2 AC coefficients (coeffs 6-14) */
01099     for (i = 6; i <= 14; i++) {
01100         residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i,
01101             s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
01102         if (residual_eob_run < 0)
01103             return residual_eob_run;
01104 
01105         residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i,
01106             s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
01107         if (residual_eob_run < 0)
01108             return residual_eob_run;
01109     }
01110 
01111     /* unpack the group 3 AC coefficients (coeffs 15-27) */
01112     for (i = 15; i <= 27; i++) {
01113         residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i,
01114             s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
01115         if (residual_eob_run < 0)
01116             return residual_eob_run;
01117 
01118         residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i,
01119             s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
01120         if (residual_eob_run < 0)
01121             return residual_eob_run;
01122     }
01123 
01124     /* unpack the group 4 AC coefficients (coeffs 28-63) */
01125     for (i = 28; i <= 63; i++) {
01126         residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i,
01127             s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
01128         if (residual_eob_run < 0)
01129             return residual_eob_run;
01130 
01131         residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i,
01132             s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
01133         if (residual_eob_run < 0)
01134             return residual_eob_run;
01135     }
01136 
01137     return 0;
01138 }
01139 
01140 /*
01141  * This function reverses the DC prediction for each coded fragment in
01142  * the frame. Much of this function is adapted directly from the original
01143  * VP3 source code.
01144  */
01145 #define COMPATIBLE_FRAME(x) \
01146   (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
01147 #define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
01148 #define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
01149 
01150 static void reverse_dc_prediction(Vp3DecodeContext *s,
01151                                   int first_fragment,
01152                                   int fragment_width,
01153                                   int fragment_height)
01154 {
01155 
01156 #define PUL 8
01157 #define PU 4
01158 #define PUR 2
01159 #define PL 1
01160 
01161     int x, y;
01162     int i = first_fragment;
01163 
01164     int predicted_dc;
01165 
01166     /* DC values for the left, up-left, up, and up-right fragments */
01167     int vl, vul, vu, vur;
01168 
01169     /* indexes for the left, up-left, up, and up-right fragments */
01170     int l, ul, u, ur;
01171 
01172     /*
01173      * The 6 fields mean:
01174      *   0: up-left multiplier
01175      *   1: up multiplier
01176      *   2: up-right multiplier
01177      *   3: left multiplier
01178      */
01179     int predictor_transform[16][4] = {
01180         {  0,  0,  0,  0},
01181         {  0,  0,  0,128},        // PL
01182         {  0,  0,128,  0},        // PUR
01183         {  0,  0, 53, 75},        // PUR|PL
01184         {  0,128,  0,  0},        // PU
01185         {  0, 64,  0, 64},        // PU|PL
01186         {  0,128,  0,  0},        // PU|PUR
01187         {  0,  0, 53, 75},        // PU|PUR|PL
01188         {128,  0,  0,  0},        // PUL
01189         {  0,  0,  0,128},        // PUL|PL
01190         { 64,  0, 64,  0},        // PUL|PUR
01191         {  0,  0, 53, 75},        // PUL|PUR|PL
01192         {  0,128,  0,  0},        // PUL|PU
01193        {-104,116,  0,116},        // PUL|PU|PL
01194         { 24, 80, 24,  0},        // PUL|PU|PUR
01195        {-104,116,  0,116}         // PUL|PU|PUR|PL
01196     };
01197 
01198     /* This table shows which types of blocks can use other blocks for
01199      * prediction. For example, INTRA is the only mode in this table to
01200      * have a frame number of 0. That means INTRA blocks can only predict
01201      * from other INTRA blocks. There are 2 golden frame coding types;
01202      * blocks encoding in these modes can only predict from other blocks
01203      * that were encoded with these 1 of these 2 modes. */
01204     unsigned char compatible_frame[8] = {
01205         1,    /* MODE_INTER_NO_MV */
01206         0,    /* MODE_INTRA */
01207         1,    /* MODE_INTER_PLUS_MV */
01208         1,    /* MODE_INTER_LAST_MV */
01209         1,    /* MODE_INTER_PRIOR_MV */
01210         2,    /* MODE_USING_GOLDEN */
01211         2,    /* MODE_GOLDEN_MV */
01212         1     /* MODE_INTER_FOUR_MV */
01213     };
01214     int current_frame_type;
01215 
01216     /* there is a last DC predictor for each of the 3 frame types */
01217     short last_dc[3];
01218 
01219     int transform = 0;
01220 
01221     vul = vu = vur = vl = 0;
01222     last_dc[0] = last_dc[1] = last_dc[2] = 0;
01223 
01224     /* for each fragment row... */
01225     for (y = 0; y < fragment_height; y++) {
01226 
01227         /* for each fragment in a row... */
01228         for (x = 0; x < fragment_width; x++, i++) {
01229 
01230             /* reverse prediction if this block was coded */
01231             if (s->all_fragments[i].coding_method != MODE_COPY) {
01232 
01233                 current_frame_type =
01234                     compatible_frame[s->all_fragments[i].coding_method];
01235 
01236                 transform= 0;
01237                 if(x){
01238                     l= i-1;
01239                     vl = DC_COEFF(l);
01240                     if(FRAME_CODED(l) && COMPATIBLE_FRAME(l))
01241                         transform |= PL;
01242                 }
01243                 if(y){
01244                     u= i-fragment_width;
01245                     vu = DC_COEFF(u);
01246                     if(FRAME_CODED(u) && COMPATIBLE_FRAME(u))
01247                         transform |= PU;
01248                     if(x){
01249                         ul= i-fragment_width-1;
01250                         vul = DC_COEFF(ul);
01251                         if(FRAME_CODED(ul) && COMPATIBLE_FRAME(ul))
01252                             transform |= PUL;
01253                     }
01254                     if(x + 1 < fragment_width){
01255                         ur= i-fragment_width+1;
01256                         vur = DC_COEFF(ur);
01257                         if(FRAME_CODED(ur) && COMPATIBLE_FRAME(ur))
01258                             transform |= PUR;
01259                     }
01260                 }
01261 
01262                 if (transform == 0) {
01263 
01264                     /* if there were no fragments to predict from, use last
01265                      * DC saved */
01266                     predicted_dc = last_dc[current_frame_type];
01267                 } else {
01268 
01269                     /* apply the appropriate predictor transform */
01270                     predicted_dc =
01271                         (predictor_transform[transform][0] * vul) +
01272                         (predictor_transform[transform][1] * vu) +
01273                         (predictor_transform[transform][2] * vur) +
01274                         (predictor_transform[transform][3] * vl);
01275 
01276                     predicted_dc /= 128;
01277 
01278                     /* check for outranging on the [ul u l] and
01279                      * [ul u ur l] predictors */
01280                     if ((transform == 13) || (transform == 15)) {
01281                         if (FFABS(predicted_dc - vu) > 128)
01282                             predicted_dc = vu;
01283                         else if (FFABS(predicted_dc - vl) > 128)
01284                             predicted_dc = vl;
01285                         else if (FFABS(predicted_dc - vul) > 128)
01286                             predicted_dc = vul;
01287                     }
01288                 }
01289 
01290                 /* at long last, apply the predictor */
01291                 if(s->coeffs[i].index){
01292                     *s->next_coeff= s->coeffs[i];
01293                     s->coeffs[i].index=0;
01294                     s->coeffs[i].coeff=0;
01295                     s->coeffs[i].next= s->next_coeff++;
01296                 }
01297                 s->coeffs[i].coeff += predicted_dc;
01298                 /* save the DC */
01299                 last_dc[current_frame_type] = DC_COEFF(i);
01300                 if(DC_COEFF(i) && !(s->coeff_counts[i]&127)){
01301                     s->coeff_counts[i]= 129;
01302 //                    s->all_fragments[i].next_coeff= s->next_coeff;
01303                     s->coeffs[i].next= s->next_coeff;
01304                     (s->next_coeff++)->next=NULL;
01305                 }
01306             }
01307         }
01308     }
01309 }
01310 
01311 /*
01312  * Perform the final rendering for a particular slice of data.
01313  * The slice number ranges from 0..(macroblock_height - 1).
01314  */
01315 static void render_slice(Vp3DecodeContext *s, int slice)
01316 {
01317     int x;
01318     int16_t *dequantizer;
01319     DECLARE_ALIGNED_16(DCTELEM, block[64]);
01320     int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
01321     int motion_halfpel_index;
01322     uint8_t *motion_source;
01323     int plane;
01324     int current_macroblock_entry = slice * s->macroblock_width * 6;
01325 
01326     if (slice >= s->macroblock_height)
01327         return;
01328 
01329     for (plane = 0; plane < 3; plane++) {
01330         uint8_t *output_plane = s->current_frame.data    [plane];
01331         uint8_t *  last_plane = s->   last_frame.data    [plane];
01332         uint8_t *golden_plane = s-> golden_frame.data    [plane];
01333         int stride            = s->current_frame.linesize[plane];
01334         int plane_width       = s->width  >> !!plane;
01335         int plane_height      = s->height >> !!plane;
01336         int y =        slice *  FRAGMENT_PIXELS << !plane ;
01337         int slice_height = y + (FRAGMENT_PIXELS << !plane);
01338         int i = s->macroblock_fragments[current_macroblock_entry + plane + 3*!!plane];
01339 
01340         if (!s->flipped_image) stride = -stride;
01341 
01342 
01343         if(FFABS(stride) > 2048)
01344             return; //various tables are fixed size
01345 
01346         /* for each fragment row in the slice (both of them)... */
01347         for (; y < slice_height; y += 8) {
01348 
01349             /* for each fragment in a row... */
01350             for (x = 0; x < plane_width; x += 8, i++) {
01351 
01352                 if ((i < 0) || (i >= s->fragment_count)) {
01353                     av_log(s->avctx, AV_LOG_ERROR, "  vp3:render_slice(): bad fragment number (%d)\n", i);
01354                     return;
01355                 }
01356 
01357                 /* transform if this block was coded */
01358                 if ((s->all_fragments[i].coding_method != MODE_COPY) &&
01359                     !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
01360 
01361                     if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
01362                         (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
01363                         motion_source= golden_plane;
01364                     else
01365                         motion_source= last_plane;
01366 
01367                     motion_source += s->all_fragments[i].first_pixel;
01368                     motion_halfpel_index = 0;
01369 
01370                     /* sort out the motion vector if this fragment is coded
01371                      * using a motion vector method */
01372                     if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
01373                         (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
01374                         int src_x, src_y;
01375                         motion_x = s->all_fragments[i].motion_x;
01376                         motion_y = s->all_fragments[i].motion_y;
01377                         if(plane){
01378                             motion_x= (motion_x>>1) | (motion_x&1);
01379                             motion_y= (motion_y>>1) | (motion_y&1);
01380                         }
01381 
01382                         src_x= (motion_x>>1) + x;
01383                         src_y= (motion_y>>1) + y;
01384                         if ((motion_x == 127) || (motion_y == 127))
01385                             av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
01386 
01387                         motion_halfpel_index = motion_x & 0x01;
01388                         motion_source += (motion_x >> 1);
01389 
01390                         motion_halfpel_index |= (motion_y & 0x01) << 1;
01391                         motion_source += ((motion_y >> 1) * stride);
01392 
01393                         if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
01394                             uint8_t *temp= s->edge_emu_buffer;
01395                             if(stride<0) temp -= 9*stride;
01396                             else temp += 9*stride;
01397 
01398                             ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
01399                             motion_source= temp;
01400                         }
01401                     }
01402 
01403 
01404                     /* first, take care of copying a block from either the
01405                      * previous or the golden frame */
01406                     if (s->all_fragments[i].coding_method != MODE_INTRA) {
01407                         /* Note, it is possible to implement all MC cases with
01408                            put_no_rnd_pixels_l2 which would look more like the
01409                            VP3 source but this would be slower as
01410                            put_no_rnd_pixels_tab is better optimzed */
01411                         if(motion_halfpel_index != 3){
01412                             s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
01413                                 output_plane + s->all_fragments[i].first_pixel,
01414                                 motion_source, stride, 8);
01415                         }else{
01416                             int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
01417                             s->dsp.put_no_rnd_pixels_l2[1](
01418                                 output_plane + s->all_fragments[i].first_pixel,
01419                                 motion_source - d,
01420                                 motion_source + stride + 1 + d,
01421                                 stride, 8);
01422                         }
01423                         dequantizer = s->qmat[1][plane];
01424                     }else{
01425                         dequantizer = s->qmat[0][plane];
01426                     }
01427 
01428                     /* dequantize the DCT coefficients */
01429                     if(s->avctx->idct_algo==FF_IDCT_VP3){
01430                         Coeff *coeff= s->coeffs + i;
01431                         s->dsp.clear_block(block);
01432                         while(coeff->next){
01433                             block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
01434                             coeff= coeff->next;
01435                         }
01436                     }else{
01437                         Coeff *coeff= s->coeffs + i;
01438                         s->dsp.clear_block(block);
01439                         while(coeff->next){
01440                             block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
01441                             coeff= coeff->next;
01442                         }
01443                     }
01444 
01445                     /* invert DCT and place (or add) in final output */
01446 
01447                     if (s->all_fragments[i].coding_method == MODE_INTRA) {
01448                         if(s->avctx->idct_algo!=FF_IDCT_VP3)
01449                             block[0] += 128<<3;
01450                         s->dsp.idct_put(
01451                             output_plane + s->all_fragments[i].first_pixel,
01452                             stride,
01453                             block);
01454                     } else {
01455                         s->dsp.idct_add(
01456                             output_plane + s->all_fragments[i].first_pixel,
01457                             stride,
01458                             block);
01459                     }
01460                 } else {
01461 
01462                     /* copy directly from the previous frame */
01463                     s->dsp.put_pixels_tab[1][0](
01464                         output_plane + s->all_fragments[i].first_pixel,
01465                         last_plane + s->all_fragments[i].first_pixel,
01466                         stride, 8);
01467 
01468                 }
01469 #if 0
01470                 /* perform the left edge filter if:
01471                  *   - the fragment is not on the left column
01472                  *   - the fragment is coded in this frame
01473                  *   - the fragment is not coded in this frame but the left
01474                  *     fragment is coded in this frame (this is done instead
01475                  *     of a right edge filter when rendering the left fragment
01476                  *     since this fragment is not available yet) */
01477                 if ((x > 0) &&
01478                     ((s->all_fragments[i].coding_method != MODE_COPY) ||
01479                      ((s->all_fragments[i].coding_method == MODE_COPY) &&
01480                       (s->all_fragments[i - 1].coding_method != MODE_COPY)) )) {
01481                     horizontal_filter(
01482                         output_plane + s->all_fragments[i].first_pixel + 7*stride,
01483                         -stride, s->bounding_values_array + 127);
01484                 }
01485 
01486                 /* perform the top edge filter if:
01487                  *   - the fragment is not on the top row
01488                  *   - the fragment is coded in this frame
01489                  *   - the fragment is not coded in this frame but the above
01490                  *     fragment is coded in this frame (this is done instead
01491                  *     of a bottom edge filter when rendering the above
01492                  *     fragment since this fragment is not available yet) */
01493                 if ((y > 0) &&
01494                     ((s->all_fragments[i].coding_method != MODE_COPY) ||
01495                      ((s->all_fragments[i].coding_method == MODE_COPY) &&
01496                       (s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) {
01497                     vertical_filter(
01498                         output_plane + s->all_fragments[i].first_pixel - stride,
01499                         -stride, s->bounding_values_array + 127);
01500                 }
01501 #endif
01502             }
01503         }
01504     }
01505 
01506      /* this looks like a good place for slice dispatch... */
01507      /* algorithm:
01508       *   if (slice == s->macroblock_height - 1)
01509       *     dispatch (both last slice & 2nd-to-last slice);
01510       *   else if (slice > 0)
01511       *     dispatch (slice - 1);
01512       */
01513 
01514     emms_c();
01515 }
01516 
01517 static void apply_loop_filter(Vp3DecodeContext *s)
01518 {
01519     int plane;
01520     int x, y;
01521     int *bounding_values= s->bounding_values_array+127;
01522 
01523 #if 0
01524     int bounding_values_array[256];
01525     int filter_limit;
01526 
01527     /* find the right loop limit value */
01528     for (x = 63; x >= 0; x--) {
01529         if (vp31_ac_scale_factor[x] >= s->quality_index)
01530             break;
01531     }
01532     filter_limit = vp31_filter_limit_values[s->quality_index];
01533 
01534     /* set up the bounding values */
01535     memset(bounding_values_array, 0, 256 * sizeof(int));
01536     for (x = 0; x < filter_limit; x++) {
01537         bounding_values[-x - filter_limit] = -filter_limit + x;
01538         bounding_values[-x] = -x;
01539         bounding_values[x] = x;
01540         bounding_values[x + filter_limit] = filter_limit - x;
01541     }
01542 #endif
01543 
01544     for (plane = 0; plane < 3; plane++) {
01545         int width           = s->fragment_width  >> !!plane;
01546         int height          = s->fragment_height >> !!plane;
01547         int fragment        = s->fragment_start        [plane];
01548         int stride          = s->current_frame.linesize[plane];
01549         uint8_t *plane_data = s->current_frame.data    [plane];
01550         if (!s->flipped_image) stride = -stride;
01551 
01552         for (y = 0; y < height; y++) {
01553 
01554             for (x = 0; x < width; x++) {
01555                 /* do not perform left edge filter for left columns frags */
01556                 if ((x > 0) &&
01557                     (s->all_fragments[fragment].coding_method != MODE_COPY)) {
01558                     s->dsp.vp3_h_loop_filter(
01559                         plane_data + s->all_fragments[fragment].first_pixel,
01560                         stride, bounding_values);
01561                 }
01562 
01563                 /* do not perform top edge filter for top row fragments */
01564                 if ((y > 0) &&
01565                     (s->all_fragments[fragment].coding_method != MODE_COPY)) {
01566                     s->dsp.vp3_v_loop_filter(
01567                         plane_data + s->all_fragments[fragment].first_pixel,
01568                         stride, bounding_values);
01569                 }
01570 
01571                 /* do not perform right edge filter for right column
01572                  * fragments or if right fragment neighbor is also coded
01573                  * in this frame (it will be filtered in next iteration) */
01574                 if ((x < width - 1) &&
01575                     (s->all_fragments[fragment].coding_method != MODE_COPY) &&
01576                     (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
01577                     s->dsp.vp3_h_loop_filter(
01578                         plane_data + s->all_fragments[fragment + 1].first_pixel,
01579                         stride, bounding_values);
01580                 }
01581 
01582                 /* do not perform bottom edge filter for bottom row
01583                  * fragments or if bottom fragment neighbor is also coded
01584                  * in this frame (it will be filtered in the next row) */
01585                 if ((y < height - 1) &&
01586                     (s->all_fragments[fragment].coding_method != MODE_COPY) &&
01587                     (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
01588                     s->dsp.vp3_v_loop_filter(
01589                         plane_data + s->all_fragments[fragment + width].first_pixel,
01590                         stride, bounding_values);
01591                 }
01592 
01593                 fragment++;
01594             }
01595         }
01596     }
01597 }
01598 
01599 /*
01600  * This function computes the first pixel addresses for each fragment.
01601  * This function needs to be invoked after the first frame is allocated
01602  * so that it has access to the plane strides.
01603  */
01604 static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s)
01605 {
01606 #define Y_INITIAL(chroma_shift)  s->flipped_image ? 1  : s->fragment_height >> chroma_shift
01607 #define Y_FINISHED(chroma_shift) s->flipped_image ? y <= s->fragment_height >> chroma_shift : y > 0
01608 
01609     int i, x, y;
01610     const int y_inc = s->flipped_image ? 1 : -1;
01611 
01612     /* figure out the first pixel addresses for each of the fragments */
01613     /* Y plane */
01614     i = 0;
01615     for (y = Y_INITIAL(0); Y_FINISHED(0); y += y_inc) {
01616         for (x = 0; x < s->fragment_width; x++) {
01617             s->all_fragments[i++].first_pixel =
01618                 s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
01619                     s->golden_frame.linesize[0] +
01620                     x * FRAGMENT_PIXELS;
01621         }
01622     }
01623 
01624     /* U plane */
01625     i = s->fragment_start[1];
01626     for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
01627         for (x = 0; x < s->fragment_width / 2; x++) {
01628             s->all_fragments[i++].first_pixel =
01629                 s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
01630                     s->golden_frame.linesize[1] +
01631                     x * FRAGMENT_PIXELS;
01632         }
01633     }
01634 
01635     /* V plane */
01636     i = s->fragment_start[2];
01637     for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
01638         for (x = 0; x < s->fragment_width / 2; x++) {
01639             s->all_fragments[i++].first_pixel =
01640                 s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
01641                     s->golden_frame.linesize[2] +
01642                     x * FRAGMENT_PIXELS;
01643         }
01644     }
01645 }
01646 
01647 /*
01648  * This is the ffmpeg/libavcodec API init function.
01649  */
01650 static av_cold int vp3_decode_init(AVCodecContext *avctx)
01651 {
01652     Vp3DecodeContext *s = avctx->priv_data;
01653     int i, inter, plane;
01654     int c_width;
01655     int c_height;
01656     int y_superblock_count;
01657     int c_superblock_count;
01658 
01659     if (avctx->codec_tag == MKTAG('V','P','3','0'))
01660         s->version = 0;
01661     else
01662         s->version = 1;
01663 
01664     s->avctx = avctx;
01665     s->width = (avctx->width + 15) & 0xFFFFFFF0;
01666     s->height = (avctx->height + 15) & 0xFFFFFFF0;
01667     avctx->pix_fmt = PIX_FMT_YUV420P;
01668     if(avctx->idct_algo==FF_IDCT_AUTO)
01669         avctx->idct_algo=FF_IDCT_VP3;
01670     dsputil_init(&s->dsp, avctx);
01671 
01672     ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
01673 
01674     /* initialize to an impossible value which will force a recalculation
01675      * in the first frame decode */
01676     s->quality_index = -1;
01677 
01678     s->y_superblock_width = (s->width + 31) / 32;
01679     s->y_superblock_height = (s->height + 31) / 32;
01680     y_superblock_count = s->y_superblock_width * s->y_superblock_height;
01681 
01682     /* work out the dimensions for the C planes */
01683     c_width = s->width / 2;
01684     c_height = s->height / 2;
01685     s->c_superblock_width = (c_width + 31) / 32;
01686     s->c_superblock_height = (c_height + 31) / 32;
01687     c_superblock_count = s->c_superblock_width * s->c_superblock_height;
01688 
01689     s->superblock_count = y_superblock_count + (c_superblock_count * 2);
01690     s->u_superblock_start = y_superblock_count;
01691     s->v_superblock_start = s->u_superblock_start + c_superblock_count;
01692     s->superblock_coding = av_malloc(s->superblock_count);
01693 
01694     s->macroblock_width = (s->width + 15) / 16;
01695     s->macroblock_height = (s->height + 15) / 16;
01696     s->macroblock_count = s->macroblock_width * s->macroblock_height;
01697 
01698     s->fragment_width = s->width / FRAGMENT_PIXELS;
01699     s->fragment_height = s->height / FRAGMENT_PIXELS;
01700 
01701     /* fragment count covers all 8x8 blocks for all 3 planes */
01702     s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
01703     s->fragment_start[1] = s->fragment_width * s->fragment_height;
01704     s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4;
01705 
01706     s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
01707     s->coeff_counts = av_malloc(s->fragment_count * sizeof(*s->coeff_counts));
01708     s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
01709     s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
01710     s->pixel_addresses_initialized = 0;
01711     if (!s->superblock_coding || !s->all_fragments || !s->coeff_counts ||
01712         !s->coeffs || !s->coded_fragment_list) {
01713         vp3_decode_end(avctx);
01714         return -1;
01715     }
01716 
01717     if (!s->theora_tables)
01718     {
01719         for (i = 0; i < 64; i++) {
01720             s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
01721             s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
01722             s->base_matrix[0][i] = vp31_intra_y_dequant[i];
01723             s->base_matrix[1][i] = vp31_intra_c_dequant[i];
01724             s->base_matrix[2][i] = vp31_inter_dequant[i];
01725             s->filter_limit_values[i] = vp31_filter_limit_values[i];
01726         }
01727 
01728         for(inter=0; inter<2; inter++){
01729             for(plane=0; plane<3; plane++){
01730                 s->qr_count[inter][plane]= 1;
01731                 s->qr_size [inter][plane][0]= 63;
01732                 s->qr_base [inter][plane][0]=
01733                 s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
01734             }
01735         }
01736 
01737         /* init VLC tables */
01738         for (i = 0; i < 16; i++) {
01739 
01740             /* DC histograms */
01741             init_vlc(&s->dc_vlc[i], 5, 32,
01742                 &dc_bias[i][0][1], 4, 2,
01743                 &dc_bias[i][0][0], 4, 2, 0);
01744 
01745             /* group 1 AC histograms */
01746             init_vlc(&s->ac_vlc_1[i], 5, 32,
01747                 &ac_bias_0[i][0][1], 4, 2,
01748                 &ac_bias_0[i][0][0], 4, 2, 0);
01749 
01750             /* group 2 AC histograms */
01751             init_vlc(&s->ac_vlc_2[i], 5, 32,
01752                 &ac_bias_1[i][0][1], 4, 2,
01753                 &ac_bias_1[i][0][0], 4, 2, 0);
01754 
01755             /* group 3 AC histograms */
01756             init_vlc(&s->ac_vlc_3[i], 5, 32,
01757                 &ac_bias_2[i][0][1], 4, 2,
01758                 &ac_bias_2[i][0][0], 4, 2, 0);
01759 
01760             /* group 4 AC histograms */
01761             init_vlc(&s->ac_vlc_4[i], 5, 32,
01762                 &ac_bias_3[i][0][1], 4, 2,
01763                 &ac_bias_3[i][0][0], 4, 2, 0);
01764         }
01765     } else {
01766         for (i = 0; i < 16; i++) {
01767 
01768             /* DC histograms */
01769             if (init_vlc(&s->dc_vlc[i], 5, 32,
01770                 &s->huffman_table[i][0][1], 4, 2,
01771                 &s->huffman_table[i][0][0], 4, 2, 0) < 0)
01772                 goto vlc_fail;
01773 
01774             /* group 1 AC histograms */
01775             if (init_vlc(&s->ac_vlc_1[i], 5, 32,
01776                 &s->huffman_table[i+16][0][1], 4, 2,
01777                 &s->huffman_table[i+16][0][0], 4, 2, 0) < 0)
01778                 goto vlc_fail;
01779 
01780             /* group 2 AC histograms */
01781             if (init_vlc(&s->ac_vlc_2[i], 5, 32,
01782                 &s->huffman_table[i+16*2][0][1], 4, 2,
01783                 &s->huffman_table[i+16*2][0][0], 4, 2, 0) < 0)
01784                 goto vlc_fail;
01785 
01786             /* group 3 AC histograms */
01787             if (init_vlc(&s->ac_vlc_3[i], 5, 32,
01788                 &s->huffman_table[i+16*3][0][1], 4, 2,
01789                 &s->huffman_table[i+16*3][0][0], 4, 2, 0) < 0)
01790                 goto vlc_fail;
01791 
01792             /* group 4 AC histograms */
01793             if (init_vlc(&s->ac_vlc_4[i], 5, 32,
01794                 &s->huffman_table[i+16*4][0][1], 4, 2,
01795                 &s->huffman_table[i+16*4][0][0], 4, 2, 0) < 0)
01796                 goto vlc_fail;
01797         }
01798     }
01799 
01800     init_vlc(&s->superblock_run_length_vlc, 6, 34,
01801         &superblock_run_length_vlc_table[0][1], 4, 2,
01802         &superblock_run_length_vlc_table[0][0], 4, 2, 0);
01803 
01804     init_vlc(&s->fragment_run_length_vlc, 5, 30,
01805         &fragment_run_length_vlc_table[0][1], 4, 2,
01806         &fragment_run_length_vlc_table[0][0], 4, 2, 0);
01807 
01808     init_vlc(&s->mode_code_vlc, 3, 8,
01809         &mode_code_vlc_table[0][1], 2, 1,
01810         &mode_code_vlc_table[0][0], 2, 1, 0);
01811 
01812     init_vlc(&s->motion_vector_vlc, 6, 63,
01813         &motion_vector_vlc_table[0][1], 2, 1,
01814         &motion_vector_vlc_table[0][0], 2, 1, 0);
01815 
01816     /* work out the block mapping tables */
01817     s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
01818     s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
01819     s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
01820     s->macroblock_coding = av_malloc(s->macroblock_count + 1);
01821     if (!s->superblock_fragments || !s->superblock_macroblocks ||
01822         !s->macroblock_fragments || !s->macroblock_coding) {
01823         vp3_decode_end(avctx);
01824         return -1;
01825     }
01826     init_block_mapping(s);
01827 
01828     for (i = 0; i < 3; i++) {
01829         s->current_frame.data[i] = NULL;
01830         s->last_frame.data[i] = NULL;
01831         s->golden_frame.data[i] = NULL;
01832     }
01833 
01834     return 0;
01835 
01836 vlc_fail:
01837     av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
01838     return -1;
01839 }
01840 
01841 /*
01842  * This is the ffmpeg/libavcodec API frame decode function.
01843  */
01844 static int vp3_decode_frame(AVCodecContext *avctx,
01845                             void *data, int *data_size,
01846                             const uint8_t *buf, int buf_size)
01847 {
01848     Vp3DecodeContext *s = avctx->priv_data;
01849     GetBitContext gb;
01850     static int counter = 0;
01851     int i;
01852 
01853     init_get_bits(&gb, buf, buf_size * 8);
01854 
01855     if (s->theora && get_bits1(&gb))
01856     {
01857         av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
01858         return -1;
01859     }
01860 
01861     s->keyframe = !get_bits1(&gb);
01862     if (!s->theora)
01863         skip_bits(&gb, 1);
01864     s->last_quality_index = s->quality_index;
01865 
01866     s->nqis=0;
01867     do{
01868         s->qis[s->nqis++]= get_bits(&gb, 6);
01869     } while(s->theora >= 0x030200 && s->nqis<3 && get_bits1(&gb));
01870 
01871     s->quality_index= s->qis[0];
01872 
01873     if (s->avctx->debug & FF_DEBUG_PICT_INFO)
01874         av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
01875             s->keyframe?"key":"", counter, s->quality_index);
01876     counter++;
01877 
01878     if (s->quality_index != s->last_quality_index) {
01879         init_dequantizer(s);
01880         init_loop_filter(s);
01881     }
01882 
01883     if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
01884         return buf_size;
01885 
01886     if (s->keyframe) {
01887         if (!s->theora)
01888         {
01889             skip_bits(&gb, 4); /* width code */
01890             skip_bits(&gb, 4); /* height code */
01891             if (s->version)
01892             {
01893                 s->version = get_bits(&gb, 5);
01894                 if (counter == 1)
01895                     av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
01896             }
01897         }
01898         if (s->version || s->theora)
01899         {
01900                 if (get_bits1(&gb))
01901                     av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
01902             skip_bits(&gb, 2); /* reserved? */
01903         }
01904 
01905         if (s->last_frame.data[0] == s->golden_frame.data[0]) {
01906             if (s->golden_frame.data[0])
01907                 avctx->release_buffer(avctx, &s->golden_frame);
01908             s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
01909         } else {
01910             if (s->golden_frame.data[0])
01911                 avctx->release_buffer(avctx, &s->golden_frame);
01912             if (s->last_frame.data[0])
01913                 avctx->release_buffer(avctx, &s->last_frame);
01914         }
01915 
01916         s->golden_frame.reference = 3;
01917         if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
01918             av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
01919             return -1;
01920         }
01921 
01922         /* golden frame is also the current frame */
01923         s->current_frame= s->golden_frame;
01924 
01925         /* time to figure out pixel addresses? */
01926         if (!s->pixel_addresses_initialized)
01927         {
01928             vp3_calculate_pixel_addresses(s);
01929             s->pixel_addresses_initialized = 1;
01930         }
01931     } else {
01932         /* allocate a new current frame */
01933         s->current_frame.reference = 3;
01934         if (!s->pixel_addresses_initialized) {
01935             av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n");
01936             return -1;
01937         }
01938         if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
01939             av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
01940             return -1;
01941         }
01942     }
01943 
01944     s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
01945     s->current_frame.qstride= 0;
01946 
01947     init_frame(s, &gb);
01948 
01949     if (unpack_superblocks(s, &gb)){
01950         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
01951         return -1;
01952     }
01953     if (unpack_modes(s, &gb)){
01954         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
01955         return -1;
01956     }
01957     if (unpack_vectors(s, &gb)){
01958         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
01959         return -1;
01960     }
01961     if (unpack_dct_coeffs(s, &gb)){
01962         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
01963         return -1;
01964     }
01965 
01966     reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
01967     if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
01968         reverse_dc_prediction(s, s->fragment_start[1],
01969             s->fragment_width / 2, s->fragment_height / 2);
01970         reverse_dc_prediction(s, s->fragment_start[2],
01971             s->fragment_width / 2, s->fragment_height / 2);
01972     }
01973 
01974     for (i = 0; i < s->macroblock_height; i++)
01975         render_slice(s, i);
01976 
01977     apply_loop_filter(s);
01978 
01979     *data_size=sizeof(AVFrame);
01980     *(AVFrame*)data= s->current_frame;
01981 
01982     /* release the last frame, if it is allocated and if it is not the
01983      * golden frame */
01984     if ((s->last_frame.data[0]) &&
01985         (s->last_frame.data[0] != s->golden_frame.data[0]))
01986         avctx->release_buffer(avctx, &s->last_frame);
01987 
01988     /* shuffle frames (last = current) */
01989     s->last_frame= s->current_frame;
01990     s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
01991 
01992     return buf_size;
01993 }
01994 
01995 /*
01996  * This is the ffmpeg/libavcodec API module cleanup function.
01997  */
01998 static av_cold int vp3_decode_end(AVCodecContext *avctx)
01999 {
02000     Vp3DecodeContext *s = avctx->priv_data;
02001     int i;
02002 
02003     av_free(s->superblock_coding);
02004     av_free(s->all_fragments);
02005     av_free(s->coeff_counts);
02006     av_free(s->coeffs);
02007     av_free(s->coded_fragment_list);
02008     av_free(s->superblock_fragments);
02009     av_free(s->superblock_macroblocks);
02010     av_free(s->macroblock_fragments);
02011     av_free(s->macroblock_coding);
02012 
02013     for (i = 0; i < 16; i++) {
02014         free_vlc(&s->dc_vlc[i]);
02015         free_vlc(&s->ac_vlc_1[i]);
02016         free_vlc(&s->ac_vlc_2[i]);
02017         free_vlc(&s->ac_vlc_3[i]);
02018         free_vlc(&s->ac_vlc_4[i]);
02019     }
02020 
02021     free_vlc(&s->superblock_run_length_vlc);
02022     free_vlc(&s->fragment_run_length_vlc);
02023     free_vlc(&s->mode_code_vlc);
02024     free_vlc(&s->motion_vector_vlc);
02025 
02026     /* release all frames */
02027     if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
02028         avctx->release_buffer(avctx, &s->golden_frame);
02029     if (s->last_frame.data[0])
02030         avctx->release_buffer(avctx, &s->last_frame);
02031     /* no need to release the current_frame since it will always be pointing
02032      * to the same frame as either the golden or last frame */
02033 
02034     return 0;
02035 }
02036 
02037 static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
02038 {
02039     Vp3DecodeContext *s = avctx->priv_data;
02040 
02041     if (get_bits1(gb)) {
02042         int token;
02043         if (s->entries >= 32) { /* overflow */
02044             av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
02045             return -1;
02046         }
02047         token = get_bits(gb, 5);
02048         //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
02049         s->huffman_table[s->hti][token][0] = s->hbits;
02050         s->huffman_table[s->hti][token][1] = s->huff_code_size;
02051         s->entries++;
02052     }
02053     else {
02054         if (s->huff_code_size >= 32) {/* overflow */
02055             av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
02056             return -1;
02057         }
02058         s->huff_code_size++;
02059         s->hbits <<= 1;
02060         if (read_huffman_tree(avctx, gb))
02061             return -1;
02062         s->hbits |= 1;
02063         if (read_huffman_tree(avctx, gb))
02064             return -1;
02065         s->hbits >>= 1;
02066         s->huff_code_size--;
02067     }
02068     return 0;
02069 }
02070 
02071 #if CONFIG_THEORA_DECODER
02072 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
02073 {
02074     Vp3DecodeContext *s = avctx->priv_data;
02075     int visible_width, visible_height;
02076 
02077     s->theora = get_bits_long(gb, 24);
02078     av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
02079 
02080     /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
02081     /* but previous versions have the image flipped relative to vp3 */
02082     if (s->theora < 0x030200)
02083     {
02084         s->flipped_image = 1;
02085         av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
02086     }
02087 
02088     visible_width  = s->width  = get_bits(gb, 16) << 4;
02089     visible_height = s->height = get_bits(gb, 16) << 4;
02090 
02091     if(avcodec_check_dimensions(avctx, s->width, s->height)){
02092         av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
02093         s->width= s->height= 0;
02094         return -1;
02095     }
02096 
02097     if (s->theora >= 0x030400)
02098     {
02099         skip_bits(gb, 32); /* total number of superblocks in a frame */
02100         // fixme, the next field is 36bits long
02101         skip_bits(gb, 32); /* total number of blocks in a frame */
02102         skip_bits(gb, 4); /* total number of blocks in a frame */
02103         skip_bits(gb, 32); /* total number of macroblocks in a frame */
02104     }
02105 
02106     if (s->theora >= 0x030200) {
02107         visible_width  = get_bits_long(gb, 24);
02108         visible_height = get_bits_long(gb, 24);
02109 
02110         skip_bits(gb, 8); /* offset x */
02111         skip_bits(gb, 8); /* offset y */
02112     }
02113 
02114     skip_bits(gb, 32); /* fps numerator */
02115     skip_bits(gb, 32); /* fps denumerator */
02116     skip_bits(gb, 24); /* aspect numerator */
02117     skip_bits(gb, 24); /* aspect denumerator */
02118 
02119     if (s->theora < 0x030200)
02120         skip_bits(gb, 5); /* keyframe frequency force */
02121     skip_bits(gb, 8); /* colorspace */
02122     if (s->theora >= 0x030400)
02123         skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
02124     skip_bits(gb, 24); /* bitrate */
02125 
02126     skip_bits(gb, 6); /* quality hint */
02127 
02128     if (s->theora >= 0x030200)
02129     {
02130         skip_bits(gb, 5); /* keyframe frequency force */
02131 
02132         if (s->theora < 0x030400)
02133             skip_bits(gb, 5); /* spare bits */
02134     }
02135 
02136 //    align_get_bits(gb);
02137 
02138     if (   visible_width  <= s->width  && visible_width  > s->width-16
02139         && visible_height <= s->height && visible_height > s->height-16)
02140         avcodec_set_dimensions(avctx, visible_width, visible_height);
02141     else
02142         avcodec_set_dimensions(avctx, s->width, s->height);
02143 
02144     return 0;
02145 }
02146 
02147 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
02148 {
02149     Vp3DecodeContext *s = avctx->priv_data;
02150     int i, n, matrices, inter, plane;
02151 
02152     if (s->theora >= 0x030200) {
02153         n = get_bits(gb, 3);
02154         /* loop filter limit values table */
02155         for (i = 0; i < 64; i++)
02156             s->filter_limit_values[i] = get_bits(gb, n);
02157     }
02158 
02159     if (s->theora >= 0x030200)
02160         n = get_bits(gb, 4) + 1;
02161     else
02162         n = 16;
02163     /* quality threshold table */
02164     for (i = 0; i < 64; i++)
02165         s->coded_ac_scale_factor[i] = get_bits(gb, n);
02166 
02167     if (s->theora >= 0x030200)
02168         n = get_bits(gb, 4) + 1;
02169     else
02170         n = 16;
02171     /* dc scale factor table */
02172     for (i = 0; i < 64; i++)
02173         s->coded_dc_scale_factor[i] = get_bits(gb, n);
02174 
02175     if (s->theora >= 0x030200)
02176         matrices = get_bits(gb, 9) + 1;
02177     else
02178         matrices = 3;
02179 
02180     if(matrices > 384){
02181         av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
02182         return -1;
02183     }
02184 
02185     for(n=0; n<matrices; n++){
02186         for (i = 0; i < 64; i++)
02187             s->base_matrix[n][i]= get_bits(gb, 8);
02188     }
02189 
02190     for (inter = 0; inter <= 1; inter++) {
02191         for (plane = 0; plane <= 2; plane++) {
02192             int newqr= 1;
02193             if (inter || plane > 0)
02194                 newqr = get_bits1(gb);
02195             if (!newqr) {
02196                 int qtj, plj;
02197                 if(inter && get_bits1(gb)){
02198                     qtj = 0;
02199                     plj = plane;
02200                 }else{
02201                     qtj= (3*inter + plane - 1) / 3;
02202                     plj= (plane + 2) % 3;
02203                 }
02204                 s->qr_count[inter][plane]= s->qr_count[qtj][plj];
02205                 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
02206                 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
02207             } else {
02208                 int qri= 0;
02209                 int qi = 0;
02210 
02211                 for(;;){
02212                     i= get_bits(gb, av_log2(matrices-1)+1);
02213                     if(i>= matrices){
02214                         av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
02215                         return -1;
02216                     }
02217                     s->qr_base[inter][plane][qri]= i;
02218                     if(qi >= 63)
02219                         break;
02220                     i = get_bits(gb, av_log2(63-qi)+1) + 1;
02221                     s->qr_size[inter][plane][qri++]= i;
02222                     qi += i;
02223                 }
02224 
02225                 if (qi > 63) {
02226                     av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
02227                     return -1;
02228                 }
02229                 s->qr_count[inter][plane]= qri;
02230             }
02231         }
02232     }
02233 
02234     /* Huffman tables */
02235     for (s->hti = 0; s->hti < 80; s->hti++) {
02236         s->entries = 0;
02237         s->huff_code_size = 1;
02238         if (!get_bits1(gb)) {
02239             s->hbits = 0;
02240             if(read_huffman_tree(avctx, gb))
02241                 return -1;
02242             s->hbits = 1;
02243             if(read_huffman_tree(avctx, gb))
02244                 return -1;
02245         }
02246     }
02247 
02248     s->theora_tables = 1;
02249 
02250     return 0;
02251 }
02252 
02253 static av_cold int theora_decode_init(AVCodecContext *avctx)
02254 {
02255     Vp3DecodeContext *s = avctx->priv_data;
02256     GetBitContext gb;
02257     int ptype;
02258     uint8_t *header_start[3];
02259     int header_len[3];
02260     int i;
02261 
02262     s->theora = 1;
02263 
02264     if (!avctx->extradata_size)
02265     {
02266         av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
02267         return -1;
02268     }
02269 
02270     if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
02271                               42, header_start, header_len) < 0) {
02272         av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
02273         return -1;
02274     }
02275 
02276   for(i=0;i<3;i++) {
02277     init_get_bits(&gb, header_start[i], header_len[i] * 8);
02278 
02279     ptype = get_bits(&gb, 8);
02280 
02281      if (!(ptype & 0x80))
02282      {
02283         av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
02284 //        return -1;
02285      }
02286 
02287     // FIXME: Check for this as well.
02288     skip_bits(&gb, 6*8); /* "theora" */
02289 
02290     switch(ptype)
02291     {
02292         case 0x80:
02293             theora_decode_header(avctx, &gb);
02294                 break;
02295         case 0x81:
02296 // FIXME: is this needed? it breaks sometimes
02297 //            theora_decode_comments(avctx, gb);
02298             break;
02299         case 0x82:
02300             if (theora_decode_tables(avctx, &gb))
02301                 return -1;
02302             break;
02303         default:
02304             av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
02305             break;
02306     }
02307     if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
02308         av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
02309     if (s->theora < 0x030200)
02310         break;
02311   }
02312 
02313     vp3_decode_init(avctx);
02314     return 0;
02315 }
02316 
02317 AVCodec theora_decoder = {
02318     "theora",
02319     CODEC_TYPE_VIDEO,
02320     CODEC_ID_THEORA,
02321     sizeof(Vp3DecodeContext),
02322     theora_decode_init,
02323     NULL,
02324     vp3_decode_end,
02325     vp3_decode_frame,
02326     0,
02327     NULL,
02328     .long_name = NULL_IF_CONFIG_SMALL("Theora"),
02329 };
02330 #endif
02331 
02332 AVCodec vp3_decoder = {
02333     "vp3",
02334     CODEC_TYPE_VIDEO,
02335     CODEC_ID_VP3,
02336     sizeof(Vp3DecodeContext),
02337     vp3_decode_init,
02338     NULL,
02339     vp3_decode_end,
02340     vp3_decode_frame,
02341     0,
02342     NULL,
02343     .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
02344 };

Generated on Sat Feb 16 2013 09:23:14 for ffmpeg by  doxygen 1.7.1