
Faust Quick Reference

Grame
Centre National de Création Musicale

December 2009

2

Contents

1 Introduction 5

1.1 Design Principles . 5

1.2 Signal Processor Semantic . 6

2 Compiling and installing Faust 7

2.1 Organization of the distribution 7

2.2 Compilation . 7

2.3 Installation . 8

2.4 Compilation of the examples . 8

3 Faust syntax 9

3.1 Faust program . 9

3.2 Statements . 10

3.2.1 Declarations . 10

3.2.2 Imports . 10

3.2.3 Documentation . 11

3.3 Definitions . 12

3.3.1 Simple Definitions . 12

3.3.2 Function Definitions . 12

3.3.3 Definitions with pattern matching 13

3.4 Expressions . 13

3.4.1 Diagram Expressions . 13

3.4.2 Numerical Expressions . 16

3.4.3 Time expressions . 17

3.4.4 Environment expressions 18

3.4.5 Foreign expressions . 20

3.4.6 Applications and Abstractions 21

3.5 Primitives . 23

3

4 CONTENTS

3.5.1 Numbers . 23

3.5.2 C-equivalent primitives 24

3.5.3 math.h-equivalent primitives 24

3.5.4 Delay, Table, Selector primitives 25

3.5.5 User Interface Elements 25

4 Invoking the Faust compiler 31

5 Controlling the code generation 35

5.1 Vector Code generation . 35

5.2 Parallel Code generation . 37

5.2.1 The OpenMP code generator 38

5.2.2 Adding OpenMP directives 39

5.2.3 Example of parallel OpenMP code 41

5.2.4 The scheduler code generator 43

5.2.5 Example of parallel scheduler code 44

6 Mathematical Documentation 47

6.1 Goals of the mathdoc . 47

6.2 Installation requirements . 47

6.3 Generating the mathdoc . 48

6.3.1 Invoking the -mdoc option 48

6.3.2 Invoking faust2mathdoc 48

6.3.3 Online examples . 49

6.4 Automatic documentation . 49

6.5 Manual documentation . 49

6.5.1 Six tags . 49

6.5.2 The mdoc top-level tags 50

6.5.3 An example of manual mathdoc 50

6.5.4 The -stripmdoc option . 52

6.6 Localization of mathdoc files . 52

6.7 Summary of the mathdoc generation steps 55

7 Acknowledgments 57

Chapter 1

Introduction

Faust (Functional Audio Stream) is a functional programming language specif-
ically designed for real-time signal processing and synthesis. Faust targets
high-performance signal processing applications and audio plug-ins for a variety
of platforms and standards.

1.1 Design Principles

Various principles have guided the design of Faust:

• Faust is a specification language. It aims at providing an adequate nota-
tion to describe signal processors from a mathematical point of view. It
is, as much as possible, free from implementation details.

• Faust programs are fully compiled, not interpreted. The compiler trans-
lates Faust programs into equivalent C++ programs taking care of gener-
ating the most efficient code. The result can generally compete with, and
sometimes even outperform, C++ code written by seasoned programmers.

• The generated code works at the sample level. It is therefore suited to
implement low-level DSP functions like recursive filters. Moreover the
code can be easily embedded. It is self-contained and doesn’t depend of
any DSP library or runtime system. It has a very deterministic behavior
and a constant memory footprint.

• The semantic of Faust is simple and well defined. This is not just of aca-
demic interest. It allows the Faust compiler to be semantically driven.
Instead of compiling a program literally, it compiles the mathematical
function it denotes. This feature is useful for example to promote compo-
nents reuse while preserving optimal performance.

• Faust is a textual language but nevertheless block-diagram oriented. It
actually combines two approaches: functional programming and algebraic
block-diagrams. The key idea is to view block-diagram construction as
function composition. For that purpose, Faust relies on a block-diagram
algebra of five composition operations (: , ~ <: :>).

5

6 CHAPTER 1. INTRODUCTION

• Thanks to the notion of architecture, Faust programs can be easily de-
ployed on a large variety of audio platforms and plugin formats without
any change to the Faust code.

1.2 Signal Processor Semantic

A Faust program describes a signal processor. The role of a signal processor is
to transforms a group of (possibly empty) input signals in order to produce a
group of (possibly empty) output signals.

More precisely :

• A signal s is a discrete function of time s : N → R. The value of signal
s at time t is written s(t). The set S = N → R is the set of all possible
signals.

• A group of n signals (a n-tuple of signals) is written (s1, . . . , sn) ∈ Sn.
The empty tuple, single element of S0 is notated ().

• A signal processors p, is a function from n-tuples of signals to m-tuples of
signals p : Sn → Sm. The set P =

⋃
n,m Sn → Sm is the set of all possible

signal processors.

As an example, let’s express the semantic of the Faust primitive +. Like any
Faust expression, it is a signal processor. Its signature is S2 → S. It takes
two input signals X0 and X1 and produce an output signal Y such that Y (t) =
X0(t) + X1(t).

Numbers are signal processors too. For example the number 3 has signature
S0 → S. It takes no input signals and produce an output signal Y such that
Y (t) = 3.

Chapter 2

Compiling and installing
Faust

The Faust source distribution faust-0.9.10.tar.gz can be downloaded from
sourceforge (http://sourceforge.net/projects/faudiostream/).

2.1 Organization of the distribution

The first thing is to decompress the downloaded archive.

tar xzf faust -0.9.10. tar.gz

The resulting faust-0.9.10/ folder should contain the following elements:

architecture/ Faust libraries and architecture files
benchmark tools to measure the efficiency of the generated code
compiler/ sources of the Faust compiler
examples/ examples of Faust programs
syntax-highlighting/ support for syntax highlighting for several editors
documentation/ Faust’s documentation, including this manual
tools/ tools to produce audio applications and plugins
COPYING license information
Makefile Makefile used to build and install Faust
README instructions on how to build and install Faust

2.2 Compilation

Faust has no dependencies outside standard libraries. Therefore the compila-
tion should be straightforward. There is no configuration phase, to compile the
Faust compiler simply do :

cd faust -0.9.10/

make

7

http://sourceforge.net/projects/faudiostream/

8 CHAPTER 2. COMPILING AND INSTALLING FAUST

If the compilation was successful you can test the compiler before installing it:

[cd faust -0.9.10/]

./ compiler/faust -v

It should output:

FAUST , DSP to C++ compiler , Version 0.9.10

Copyright (C) 2002 -2010 , GRAME - Centre ...

Then you can also try to compile one of the examples :

[cd faust -0.9.10/]

./ compiler/faust examples/noise.dsp

It should produce some C++ code on the standard output

2.3 Installation

You can install Faust with:

[cd faust -0.9.10/]

sudo make install

or

[cd faust -0.9.10/]

su

make install

depending on your system.

2.4 Compilation of the examples

Once Faust correctly installed, you can have a look at the provided examples
in the examples/ folder. This folder contains a Makefile with all the required
instructions to build these examples for various architectures1, either standalone
audio applications or plugins.

The command make help will list the available targets. Before using a specific
target, make sure you have the appropriate development tools, libraries and
headers installed. For example to compile the examples as ALSA applications
with a GTK user interface do a make alsagtk. This will create a alsagtkdir/

subfolder with all the binaries.

1an architecture file provides the code to connect a signal processor to the outside world
(audio communications and user interface)

Chapter 3

Faust syntax

This section describes the syntax of Faust. Figure 3.1 gives an overview of the
various concepts and where they are defined in this section.

3.1 Simple 3.2 Function 3.3 Pattern

4.1 Diag.

4.2.1 Math 4.2.2 Bitwise 4.2.3 Compare

4.3 Time 4.4 Lexical 4.5 Foreign 4.6 Lambda

1 Program

2 Statements 3 Definitions

4 Expressions

5 Primitives

4.2 Numericals

Figure 3.1: Overview of Faust syntax

As we will see, definitions and expressions have a central role.

3.1 Faust program

A Faust program is essentially a list of statements. These statements can be
declarations, imports, definitions and documentation tags, with optional C++
style (//... and /*...*/) comments.

〈program〉 ::=--
� �� 〈statement〉 � -�

9

10 CHAPTER 3. FAUST SYNTAX

Here is a short Faust program that implements of a simple noise generator. It
exhibits the various kind of statements : two declarations, an import, a comment
and a definition.

declare name "noise";

declare copyright "(c)GRAME 2006";

import("music.lib");

// noise level controlled by a slider

process = noise * vslider("volume", 0, 0, 1, 0.1);

The keyword process is the equivalent of main in C/C++. Any Faust program,
to be valid, must at least define process.

3.2 Statements

The statements of a Faust program are of three kinds : metadata declarations,
file imports and definitions. All statements end with a semicolon (;).

〈statement〉 ::=-- � 〈declaration〉� 〈fileimport〉 �� 〈definition〉 �� 〈documentation〉 �
� -�

3.2.1 Declarations

Meta-data declarations (for example declare name "noise";) are optional and
typically used to document a Faust project.

〈declaration〉 ::=-- declare 〈key〉 〈string〉 ; -�

〈key〉 ::= 〈identifier〉

Contrary to regular comments, these declarations will appear in the C++ code
generated by the compiler.

3.2.2 Imports

File imports allow to import definitions from other source files.

〈fileimport〉 ::=-- import (〈filename〉) ; -�

For example import("math.lib"); imports the definitions of the math.lib

library, a set of additional mathematical functions provided as foreign functions.

3.2. STATEMENTS 11

3.2.3 Documentation

Documentation statements are optional and typically used to control the gener-
ation of the mathematical documentation of a Faust program. This documen-
tation system is detailed chapter 6. In this section we will essentially describe
the documentation statements syntax.

A documentation statement starts with an opening <mdoc> tag and ends with a
closing </mdoc> tag. Free text content, typically in LATEX format, can be placed
in between these two tags.

〈documentation〉 ::=-- <mdoc> � 〈free text〉� 〈equation〉 �� 〈diagram〉 �� 〈metadata〉 �� 〈notice〉 �� 〈listing〉 �

� </mdoc> -�

Moreover, optional sub-tags can be inserted in the text content itself to require
the generation, at the insertion point, of mathematical equations, graphical
block-diagrams, Faust source code listing and explanation notice.

〈equation〉 ::=-- <equation> 〈expression〉 </equation> -�

The generation of the mathematical equations of a Faust expression can be
requested by placing this expression between an opening <equation> and a
closing </equation> tag. The expression is evaluated within the lexical context
of the Faust program.

〈diagram〉 ::=-- <diagram> 〈expression〉 </diagram> -�

Similarly, the generation of the graphical block-diagram of a Faust expression
can be requested by placing this expression between an opening <diagram> and
a closing </diagram> tag. The expression is evaluated within the lexical context
of the Faust program.

〈diagram〉 ::=-- <metadata> 〈keyword〉 </metadata> -�

The <metadata> tags allow to reference Faust metadatas (cf. declarations),
calling the corresponding keyword.

〈notice〉 ::=-- <notice /> -�

The <notice /> empty-element tag is used to generate the conventions used in
the mathematical equations.

〈listing〉 ::=-- <listing �
� � �� 〈listingattribute〉 � �

� /> -�

12 CHAPTER 3. FAUST SYNTAX

〈listingattribute〉 ::=-- � mdoctags� dependencies �� distributed �
� = " � true� false �� " -�

The <listing /> empty-element tag is used to generate the listing of the Faust
program. Its three attributes mdoctags, dependencies and distributed en-
able or disable repectively <mdoc> tags, other files dependencies and distribution
of interleaved faust code between <mdoc> sections.

3.3 Definitions

A definition associates an identifier with an expression it stands for.

Definitions are essentially a convenient shortcut avoiding to type long expres-
sions. During compilation, more precisely during the evaluation stage, identifiers
are replaced by their definitions. It is therefore always equivalent to use an iden-
tifier or directly its definition. Please note that multiple definitions of a same
identifier are not allowed, unless it is a pattern matching based definition.

3.3.1 Simple Definitions

The syntax of a simple definition is:

〈definition〉 ::=-- 〈identifier〉 = 〈expression〉 ; -�

For example here is the definition of random, a simple pseudo-random number
generator:

random = +(12345) ~ *(1103515245);

3.3.2 Function Definitions

Definitions with formal parameters correspond to functions definitions.

〈definition〉 ::=-- 〈identifier〉 (

� , �� 〈parameter〉 �) = 〈expression〉-
- ; -�

For example the definition of linear2db, a function that converts linear values
to decibels, is :

linear2db(x) = 20* log10(x);

Please note that this notation is only a convenient alternative to the direct use
of lambda-abstractions (also called anonymous functions). The following is an
equivalent definition of linear2db using a lambda-abstraction:

linear2db = \(x).(20* log10(x));

3.4. EXPRESSIONS 13

3.3.3 Definitions with pattern matching

Moreover, formal parameters can also be full expressions representing patterns.

〈definition〉 ::=-- 〈identifier〉 (

� , �� 〈pattern〉 �) = 〈expression〉 ; -�

〈pattern〉 ::= 〈identifier〉 | 〈expression〉

This powerful mechanism allows to algorithmically create and manipulate block
diagrams expressions. Let’s say that you want to describe a function to duplicate
an expression several times in parallel:

duplicate (1,exp) = exp;

duplicate(n,exp) = exp , duplicate(n-1,exp);

Please note that this last definition is a convenient alternative to the more
verbose :

duplicate = case {

(1,exp) => exp;

(n,exp) => duplicate(n-1,exp);

};

3.4 Expressions

Despite its textual syntax, Faust is conceptually a block-diagram language.
Faust expressions represent DSP block-diagrams and are assembled from prim-
itive ones using various composition operations. More traditional numerical
expressions in infix notation are also possible. Additionally Faust provides
time based expressions, like delays, expressions related to lexical environments,
expressions to interface with foreign function and lambda expressions.

〈expression〉 ::=-- � 〈diagram〉� 〈numerical〉 �� 〈time〉 �� 〈lexical〉 �� 〈foreign〉 �� 〈lambda〉 �

� -�

3.4.1 Diagram Expressions

Diagram expressions are assembled from primitive ones using either binary com-
position operations or high level iterative constructions.

〈diagramexp〉 ::=-- �〈diagcomposition〉� 〈diagiteration〉 �� -�

14 CHAPTER 3. FAUST SYNTAX

Diagram composition operations

Five binary composition operations are available to combine block-diagrams :
recursion, parallel, sequential, split and merge composition.

〈diagcomposition〉 ::=-- 〈expression〉 � ~� , �� : �� <: �� :> �
� 〈expression〉 -�

Among these operations, recursion (~) has the highest priority and split (<:)
and merge (:>) the lowest (see table 3.1).

Syntax Pri. Description
expression ∼ expression 4 recursive composition
expression , expression 3 parallel composition
expression : expression 2 sequential composition
expression <: expression 1 split composition
expression :> expression 1 merge composition

Table 3.1: Block-Diagram composition operation priorities

Parallel Composition The parallel composition A,B (figure 3.2) is probably
the simplest one. It places the two block-diagrams one on top of the other,
without connections. The inputs of the resulting block-diagram are the inputs
of A and B. The outputs of the resulting block-diagram are the outputs of A and
B.

10

*

process

Figure 3.2: Example of parallel composition (10,*)

Sequential Composition The sequential composition A:B (figure 3.3) con-
nects the outputs of A to the inputs of B. A[0] is connected to [0]B, A[1] is
connected to [1]B, and so on.

Split Composition The split composition A<:B (figure 3.4) operator is used
to distribute the outputs of A to the inputs of B

3.4. EXPRESSIONS 15

*

/

A

+

B

process

Figure 3.3: Example of sequential composition ((*,/):+)

10

20

A
+

*

/

B

process

Figure 3.4: example of split composition ((10,20)<: (+,*,/))

Merge Composition The merge composition A:>B (figure 3.5)is used to con-
nect several outputs of A to the same inputs of B.

Recursive Composition The recursive composition A~B (figure 3.6)is used
to create cycles in the block-diagram in order to express recursive computations.

Iterations

Iterations are analog to for(...) loops and provide a convenient way to auto-
mate some complex block-diagram constructions.

〈diagiteration〉 ::=-- -
- � par (〈ident〉 , 〈numiter〉 , 〈expression〉)� seq (〈ident〉 , 〈numiter〉 , 〈expression〉) �� sum (〈ident〉 , 〈numiter〉 , 〈expression〉) �� prod (〈ident〉 , 〈numiter〉 , 〈expression〉) �

� -�

The following example shows the usage of seq to create a 10-bands filter:

16 CHAPTER 3. FAUST SYNTAX

10

20

30

40

A

*

B

process

Figure 3.5: example of merge composition ((10,20,30,40):> *)

12345
+

A

1103515245
*

B

process

Figure 3.6: example of recursive composition +(12345)~ *(1103515245)

process = seq(i, 10,

vgroup("band %i",

bandfilter(1000*(1+i))

)

);

〈numiter〉 ::= 〈expression〉

The number of iterations must be a constant expression.

3.4.2 Numerical Expressions

Numerical expressions are essentially syntactic sugar allowing to use a familiar
infix notation to express mathematical expressions, bitwise operations and to

3.4. EXPRESSIONS 17

compare signals. Please note that is this section only built-in primitives with
an infix syntax are presented. A complete description of all the build-ins is
available in the primitive section (see 3.5).

〈numerical〉 ::=-- � 〈math〉� 〈bitwise〉 �� 〈comparison〉 �
� -�

Mathematical expressions

are the familiar 4 operations as well as the modulo and power operations

〈math〉 ::=-- 〈expression〉 � +� - �� * �� / �� % �� ^ �

� 〈expression〉 -�

Bitwise expressions

are the boolean operations and the left and right arithmetic shifts.

〈bitwise〉 ::=-- 〈expression〉 � |� & �� xor �� << �� >> �
� 〈expression〉 -�

Comparison

operations allow to compare signals and result in a boolean signal that is 1 when
the condition is true and 0 when the condition is false.

〈bitwise〉 ::=-- 〈expression〉 � <� <= �� > �� >= �� == �� != �

� 〈expression〉 -�

3.4.3 Time expressions

Time expressions are used to express delays. The notation X@10 represent the
signal X delayed by 10 samples. The notation X’ represent the signal X delayed
by one sample and is therefore equivalent to X@1.

〈time〉 ::=-- �〈expression〉 @ 〈expression〉� 〈expression〉 ’ �� -�

18 CHAPTER 3. FAUST SYNTAX

The delay don’t have to be fixed, but it must be positive and bounded. The
values of a slider are perfectcly acceptable as in the following example:

process = @(hslider("delay",0, 0, 100, 1));

3.4.4 Environment expressions

Each Faust expression has an associated lexical environment : a list of dictio-
naries where to look for definitions. The following expressions allow to create
and access such environments.

〈envexp〉 ::=-- �〈expression〉 with {
� �� 〈defintion〉 � }� environment {

� �� 〈defintion〉 � } �� 〈expression〉 . 〈ident〉 �� library (〈filename〉) �� component (〈filename〉) �

� -�

With expression

allows to specify a local environment, a private list of definition that will be used
to evaluate the left hand expression

〈withexpression〉 ::=-- 〈expression〉 with {
� �� 〈defintion〉 � } -�

In the following example :

pink = f : + ~ g with {

f(x) = 0.04957526213389*x

- 0.06305581334498*x’

+ 0.01483220320740*x’’;

g(x) = 1.80116083982126*x

- 0.80257737639225*x’;

};

the definitions of f(x) and g(x) are local to the expression f : + ~ g:

Environment expression

allows to create an explicit environment: like a with, but without a left hand
expression. It is a convenient way to group together related definitions, to isolate
groups of definitions and to create a name space hierarchy.

〈environment〉 ::=-- environment {
� �� 〈defintion〉 � } -�

In the following example an environment is used to group together some constant
definitions :

3.4. EXPRESSIONS 19

constant = environment {

pi = 3.14159;

e = 2,718 ;

...

};

Access

Definitions inside an environment can be accessed using the ’.’ construction.

〈access〉 ::=-- 〈expression〉 . 〈ident〉 -�

For example constant.pi refers to the definition of pi in the environment
above.

Please note that environment don’t have to be named. We could have written
directly environment{pi = 3.14159; e = 2,718;....}.pi

Library

allows to create an environment by reading the definitions from a file.

〈library〉 ::=-- library (〈filename〉) -�

For example library("filter.lib") represents the lexical environment ob-
tained by reading the file ”filter.lib”. It works like import("filter.lib") but
all the read definitions are stored in a new separate lexical environment.

Component

is a powerful construction that allows to reuse a full Faust program as a simple
expression.

〈component〉 ::=-- component (〈filename〉) -�

For example component("freeverb.dsp") denotes the signal processor defined
in file ”freeverb.dsp”.

Components can be used within expressions like in:

... component("karplus32.dsp"):component("freeverb.dsp

")...

Please note that component("freeverb.dsp") is equivalent to library("freeverb
.dsp").process.

20 CHAPTER 3. FAUST SYNTAX

3.4.5 Foreign expressions

Reference to external C functions, variables and constants can be introduced
using the foreign function mechanism.

〈foreignexp〉 ::=-- -
- �ffunction (〈signature〉 , 〈includefile〉 , 〈comment〉)� fvariable (〈type〉 〈identifier〉 , 〈includefile〉) �� fconstant (〈type〉 〈identifier〉 , 〈includefile〉) �

�-
- -�

function

An external C function is declared by indicating its name and signature as well
as the required include file. The file "math.lib" of the Faust distribution
contains several foreign function definitions, for example the inverse hyperbolic
sine function asinh:

asinh = ffunction(float asinhf (float), <math.h>, "");

Foreign functions with input parameters are considered pure math functions.
They are therefore considered free of side effects and called only when their
parameters change (that is at the rate of the fastest parameter).

Exceptions are functions with no input parameters. A typical example is the C
rand() function. In this case the compiler generate code to call the function at
sample rate.

signature

The signature part (float asinhf (float) in our previous example) describes
the prototype of the C function : return type, function name and list of param-
eter types.

〈signature〉 ::=-- 〈type〉 〈identifier〉 (

� , �� 〈type〉 �) -�

types

Note that currently only numerical functions involving simple int and float pa-
rameters are allowed. No vectors, tables or data structures can be passed as
parameters or returned.

〈type〉 ::= 〈int〉 | 〈float〉

variables and constants

External variables and constants can also be declared with a similar syntax.
In the same "math.lib" file we can found the definition of the sampling rate
constant SR and the definition of the block-size variable BS :

3.4. EXPRESSIONS 21

SR = fconstant(int fSamplingFreq , <math.h>);

BS = fvariable(int count , <math.h>);

Foreign constants are not supposed to vary. Therefore expressions involving
only foreign constants are only computed once, during the initialization period.

Variable are considered to vary at block speed. This means that expressions
depending of external variables are computed every block.

include file

In declaring foreign functions one as also to specify the include file. It allows the
Faust compiler to add the corresponding #include... in the generated code.

〈includefile〉 ::=-- � <

� �� 〈char〉 � >� "

� �� 〈char〉 � " �
� -�

3.4.6 Applications and Abstractions

Abstractions and applications are fundamental programming constructions di-
rectly inspired by the Lambda-Calculus. These constructions provide powerful
ways to describe and transform block-diagrams algorithmically.

〈progexp〉 ::=-- � 〈abstraction〉� 〈application〉 �� -�

Abstractions

Abstractions correspond to functions definitions and allow to generalize a block-
diagram by making variable some of its parts.

〈abstraction〉 ::=-- � 〈lambdaabstraction〉� 〈patternabstraction〉 �� -�

〈lambdaabstraction〉 ::=-- \ (

� , �� 〈ident〉 �) . (〈expression〉) -�

Let’s say you want to transform a stereo reverb, freeverb for instance, into a
mono effect. You can write the following expression:

_ <: freeverb :> _

The incoming mono signal is splitted to feed the two input channels of the reverb,
while the two output channels of the reverb are mixed together to produce the
resulting mono output.

Imagine now that you are interested in transforming other stereo effects. It can
be interesting to generalize this principle by making freeverb a variable:

22 CHAPTER 3. FAUST SYNTAX

\(freeverb).(_ <: freeverb :> _)

The resulting abstraction can then be applied to transform other effects. Note
that if freeverb is a perfectly valid variable name, a more neutral name would
probably be easier to read like:

\(fx).(_ <: fx :> _)

Moreover it could be convenient to give a name to this abstraction:

mono = \(fx).(_ <: fx :> _);

Or even use a more traditional, but equivalent, notation:

mono(fx) = _ <: fx :> _;

Applications

Applications correspond to function calls and allow to replace the variable parts
of an abstraction with the specified arguments.

〈application〉 ::=-- 〈expression〉 (

� , �� 〈expression〉 �) -�

For example you can apply the previous abstraction to transform your stereo
harmonizer:

mono(harmonizer)

The compiler will start by replacing mono by its definition:

\(fx).(_ <: fx :> _)(harmonizer)

Whenever the Faust compiler find an application of an abstraction it replaces
the variable part with the argument 1. The resulting expression is as expected:

(_ <: harmonizer :> _)

Pattern Matching

Pattern matching rules provide an effective way to analyze and transform block-
diagrams algorithmically.

〈patternabstraction〉 ::=-- case {
� �� 〈rule〉 � } -�

〈rule〉 ::=-- (

� , �� 〈pattern〉 �) => 〈expression〉 ; -�

1This is called β-reduction in Lambda-Calculus

3.5. PRIMITIVES 23

〈pattern〉 ::= 〈ident〉 | 〈expression〉

For example case{ (x:y)=> y:x; (x)=> x; } contains two rules. The first
one will match a sequential expression and invert the two part. The second
one will match all remaining expressions and leave it untouched. Therefore the
application:

case{(x:y) => y:x; (x) => x;}(freeverb:harmonizer)

will produce:

(harmonizer:freeverb)

Please note that patterns are evaluated before the pattern matching operation.
Therefore only variables that appear free in the pattern are binding variables
during pattern matching.

3.5 Primitives

The primitive signal processing operations represent the built-in functionalities
of Faust, that is the atomic operations on signals provided by the language. All
these primitives denote signal processors, functions transforming input signals
into output signals.

3.5.1 Numbers

Faust considers two types of numbers : integers and floats. Integers are im-
plemented as 32-bits integers, and floats are implemented either with a simple,
double or extended precision depending of the compiler options.

〈int〉 ::=-- �� + �� - �
�� �� 〈digit〉 � -�

〈float〉 ::=-- �� + �� - �
�� � �� 〈digit〉 � . �� �� 〈digit〉 �� ��
� �� �� 〈digit〉 �� �� .

� �� 〈digit〉 � �
� -�

〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Like any other Faust expression, numbers are signal processors. For example
the number 0.95 is a signal processor of type S0 → S1 that transforms an empty
tuple of signals () into a 1-tuple of signals (y) such that ∀t ∈ N, y(t) = 0.95.

24 CHAPTER 3. FAUST SYNTAX

3.5.2 C-equivalent primitives

Most Faust primitives are analogue to their C counterpart but lifted to signal
processing. For example + is a function of type S2 → S1 that transforms a pair of
signals (x1, x2) into a 1-tuple of signals (y) such that ∀t ∈ N, y(t) = x1(t)+x2(t).

Syntax Type Description
n S0 → S1 integer number: y(t) = n
n.m S0 → S1 floating point number: y(t) = n.m

S1 → S1 identity function: y(t) = x(t)
! S1 → S0 cut function: ∀x ∈ S, (x)→ ()
int S1 → S1 cast into an int signal: y(t) = (int)x(t)
float S1 → S1 cast into an float signal: y(t) = (float)x(t)
+ S2 → S1 addition: y(t) = x1(t) + x2(t)
- S2 → S1 subtraction: y(t) = x1(t)− x2(t)
* S2 → S1 multiplication: y(t) = x1(t) ∗ x2(t)
∧ S2 → S1 power: y(t) = x1(t)x2(t)

/ S2 → S1 division: y(t) = x1(t)/x2(t)
% S2 → S1 modulo: y(t) = x1(t)%x2(t)
& S2 → S1 logical AND: y(t) = x1(t)&x2(t)
| S2 → S1 logical OR: y(t) = x1(t)|x2(t)
xor S2 → S1 logical XOR: y(t) = x1(t) ∧ x2(t)
<< S2 → S1 arith. shift left: y(t) = x1(t) << x2(t)
>> S2 → S1 arith. shift right: y(t) = x1(t) >> x2(t)
< S2 → S1 less than: y(t) = x1(t) < x2(t)
<= S2 → S1 less or equal: y(t) = x1(t) <= x2(t)
> S2 → S1 greater than: y(t) = x1(t) > x2(t)
>= S2 → S1 greater or equal: y(t) = x1(t) >= x2(t)
== S2 → S1 equal: y(t) = x1(t) == x2(t)
!= S2 → S1 different: y(t) = x1(t)! = x2(t)

3.5.3 math.h-equivalent primitives

Most of the C math.h functions are also built-in as primitives (the others are
defined as external functions in file math.lib).

3.5. PRIMITIVES 25

Syntax Type Description
acos S1 → S1 arc cosine: y(t) = acosf(x(t))
asin S1 → S1 arc sine: y(t) = asinf(x(t))
atan S1 → S1 arc tangent: y(t) = atanf(x(t))
atan2 S2 → S1 arc tangent of 2 signals: y(t) = atan2f(x1(t), x2(t))
cos S1 → S1 cosine: y(t) = cosf(x(t))
sin S1 → S1 sine: y(t) = sinf(x(t))
tan S1 → S1 tangent: y(t) = tanf(x(t))
exp S1 → S1 base-e exponential: y(t) = expf(x(t))
log S1 → S1 base-e logarithm: y(t) = logf(x(t))
log10 S1 → S1 base-10 logarithm: y(t) = log10f(x(t))
pow S2 → S1 power: y(t) = powf(x1(t), x2(t))
sqrt S1 → S1 square root: y(t) = sqrtf(x(t))
abs S1 → S1 absolute value (int): y(t) = abs(x(t))

absolute value (float): y(t) = fabsf(x(t))
min S2 → S1 minimum: y(t) = min(x1(t), x2(t))
max S2 → S1 maximum: y(t) = max(x1(t), x2(t))
fmod S2 → S1 float modulo: y(t) = fmodf(x1(t), x2(t))
remainder S2 → S1 float remainder: y(t) = remainderf(x1(t), x2(t))
floor S1 → S1 largest int ≤: y(t) = floorf(x(t))
ceil S1 → S1 smallest int ≥: y(t) = ceilf(x(t))
rint S1 → S1 closest int: y(t) = rintf(x(t))

3.5.4 Delay, Table, Selector primitives

The following primitives allow to define fixed delays, read-only and read-write
tables and 2 or 3-ways selectors (see figure 3.7).

Syntax Type Description
mem S1 → S1 1-sample delay: y(t + 1) = x(t), y(0) = 0
prefix S2 → S1 1-sample delay: y(t + 1) = x2(t), y(0) = x1(0)
@ S2 → S1 fixed delay: y(t + x2(t)) = x1(t), y(t < x2(t)) = 0
rdtable S3 → S1 read-only table: y(t) = T [r(t)]
rwtable S5 → S1 read-write table: T [w(t)] = c(t); y(t) = T [r(t)]
select2 S3 → S1 select between 2 signals: T [] = {x0(t), x1(t)}; y(t) = T [s(t)]
select3 S4 → S1 select between 3 signals: T [] = {x0(t), x1(t), x2(t)}; y(t) = T [s(t)]

3.5.5 User Interface Elements

Faust user interface widgets allow an abstract description of the user interface
from within the Faust code. This description is independent of any GUI toolk-
its. It is based on buttons, checkboxes, sliders, etc. that are grouped together
vertically and horizontally using appropriate grouping schemes.

All these GUI elements produce signals. A button for example (see figure 3.8)
produces a signal which is 1 when the button is pressed and 0 otherwise. These
signals can be freely combined with other audio signals.

26 CHAPTER 3. FAUST SYNTAX

prefix

prefix (1sample delay)

a

b
y

y(0)=a(0)
y(t)=b(t1)

@

@ (nsamples delay)

a

b
y

t < b(0) : y(t)=0
t >=b(0) : y(t)=a(tb(0))

mem

mem (1sample delay)

a y

y(0)=0
y(t)=a(t1)

s rdtable

rdtable (readonly table)

n

r

y

y(t) = T(t,r(t))
T(t,i) = s(i)

s

rwtable (readwrite table)

n

w y

y(t) = T(t,r(t))
T(0,i) = c(0) (i == w(0))
T(0,i) = s(i) (i != w(0))
T(t,i) = c(t) (i == w(t))
T(t,i) = T(t1,i) (i != w(t))

c

r

rwtable

a[0] select2

select2 (twoways selector)

s

a[1]

y

y(t) = a[s(t)](t)

a[0]

select3 (threeways selector)

s

a[1]
y

a[2]

select3

y(t) = a[s(t)](t)

Figure 3.7: Delays, tables and selectors primitives

3.5. PRIMITIVES 27

Figure 3.8: User Interface Button

Syntax Example
button(str) button("play")

checkbox(str) checkbox("mute")

vslider(str,cur,min,max,step) vslider("vol",50,0,100,1)

hslider(str,cur,min,max,step) hslider("vol",0.5,0,1,0.01)

nentry(str,cur,min,max,step) nentry("freq",440,0,8000,1)

vgroup(str,block-diagram) vgroup("reverb", ...)

hgroup(str,block-diagram) hgroup("mixer", ...)

tgroup(str,block-diagram) vgroup("parametric", ...)

vbargraph(str,min,max) vbargraph("input",0,100)

hbargraph(str,min,max) hbargraph("signal",0,1.0)

Labels

Every user interface widget has a label (a string) that identifies it and informs
the user of its purpose. There are three important mechanisms associated with
labels : variable parts, pathnames and metadata.

Variable parts. Labels can contain variable parts. These variable parts are
indicated by the sign ’%’ followed by the name of a variable. During compilation
each label is processed in order to replace the variable parts by the value of
the variable. For example par(i,8,hslider("Voice %i", 0.9, 0, 1, 0.01)

) creates 8 different sliders in parallel :

hslider("Voice 0", 0.9, 0, 1, 0.01),

hslider("Voice 1", 0.9, 0, 1, 0.01),

...

hslider("Voice 7", 0.9, 0, 1, 0.01).

while par(i,8,hslider("Voice", 0.9, 0, 1, 0.01)) would have created only
one slider and duplicated its output 8 times.

An escape mechanism is provided. If the sign % is followed by itself, it will be
included in the resulting string. For example "feedback (%%)" will result in
"feedback (%)".

28 CHAPTER 3. FAUST SYNTAX

Pathnames. Thanks to horizontal, vertical and tabs groups, user interfaces
have a hierarchical structure analog to a hierarchical file system. Each wid-
get has an associated pathname obtained by concatenating the labels of all its
surrounding groups with its own label.

In the following example :

hgroup("Foo",

...

vgroup("Faa",

...

hslider("volume" ,...)

...

)

...

)

the volume slider has pathname /h:Foo/v:Faa/volume.

In order to give more flexibility to the design of user interfaces, it is possible to
explicitly specify the absolute or relative pathname of a widget directly in its
label.

In our previous example the pathname of :

hslider("../ volume" ,...)

would have been /h:Foo/volume, while the pathname of :

hslider("t:Fii/volume" ,...)

would have been : /h:Foo/v:Faa/t:Fii/volume.

The grammar for labels with pathnames is the following:

〈label〉 ::=-- 〈path〉 〈name〉 -�

〈path〉 ::=-- �� / ���
� � �� 〈folder〉 / � �

� -�

〈folder〉 ::=-- � ..� � h:� v: �� t: �
� 〈name〉 �� -�

Metadata Widget labels can contain metadata enclosed in square brackets.
These metadata associate a key with a value and are used to provide additional
information to the architecture file. They are tipically used to improve the look
and feel of the user interface. The Faust code :

process = *(hslider("foo [key1: val 1][key2: val 2]",

0, 0, 1, 0.1));

3.5. PRIMITIVES 29

will produce and the corresponding C++ code :

class mydsp : public dsp {

...

virtual void buildUserInterface(UI* interface) {

interface ->openVerticalBox("m");

interface ->declare (&fslider0 , "key1", "val 1")

;

interface ->declare (&fslider0 , "key2", "val 2")

;

interface ->addHorizontalSlider("foo", &

fslider0 ,

0.0f, 0.0f, 1.0f, 0.1f

);

interface ->closeBox ();

}

...

};

All the metadata are removed from the label by the compiler and transformed in
calls to the UI::declare() method. All these UI::declare() calls will always
take place before the UI::AddSomething() call that creates the User Interface
element. This allows the UI::AddSomething() method to make full use of the
available metadata.

It is the role of the architecture file to decide what to do with these metadata.
The jack-qt.cpp architecture file for example implements the following :

1. "...[type:knob]..." creates a rotative knob instead of a regular slider
or nentry.

2. "...[type:led]..." in a bargraph’s label creates a small LED instead
of a full bargraph

3. "...[unit:dB]..." in a bargraph’s label creates a more realistic bargraph
with colors ranging from green to red depending of the level of the value

4. "...[unit:xx]..." in a widget postfix the value displayed with xx

5. "...[tooltip:bla bla]..." add a tooltip to the widget

Moreover starting a label with a number option like in "[1]..." provide a
convenient mean to control the alphabetical order of the widgets

30 CHAPTER 3. FAUST SYNTAX

Chapter 4

Invoking the Faust compiler

The Faust compiler is invoked using the faust command. It translate Faust
programs into C++ code. The generated code can be wrapped into an optional
architecture file allowing to directly produce a fully operational program.

-- compiler: faust (options)(file+) -�

For example faust noise.dsp will compile noise.dsp and output the corre-
sponding C++ code on the standard output. The option -o allows to choose
the output file : faust noise.dsp -o noise.cpp. The option -a allows to
choose the architecture file : faust -a alsa-gtk.cpp noise.dsp.

To compile a Faust program into an ALSA application on Linux you can use
the following commands:

faust -a alsa -gtk.cpp noise.dsp -o noise.cpp

g++ -lpthread -lasound

‘pkg -config --cflags --libs gtk+-2.0‘

noise.cpp -o noise

Compilation options are listed in the following table :

Short Long Description

-h --help print the help message
-v --version print version information
-d --details print compilation details
-ps --postscript generate block-diagram postscript

file
-svg --svg generate block-diagram svg files
-blur --shadow-blur add a blur to boxes shadows
-sd --simplify-diagrams simplify block-diagram before

drawing them
-f n --fold n max complexity of svg diagrams be-

fore splitting into several files (de-
fault 25 boxes)

continued on next page

31

32 CHAPTER 4. INVOKING THE FAUST COMPILER

Short Long Description

-mns n --max-name-size n max character size used in svg dia-
gram labels

-sn --simple-names use simple names (without argu-
ments) for block-diagram (default
max size : 40 chars)

-xml --xml generate an additional description
file in xml format

-uim --user-interface-macros add user interface macro definitions
to the C++ code

-flist --file-list list all the source files and libraries
implied in a compilation

-lb --left-balanced generate left-balanced expressions
-mb --mid-balanced generate mid-balanced expressions

(default)
-rb --right-balanced generate right-balanced expressions
-lt --less-temporaries generate less temporaries in compil-

ing delays
-mcd n --max-copy-delay n threshold between copy and ring

buffer delays (default 16 samples)

-vec --vectorize generate easier to vectorize code
-vs n --vec-size n size of the vector (default 32 sam-

ples) when -vec
-lv n --loop-variant n loop variant [0:fastest (default),

1:simple] when -vec
-dfs --deepFirstScheduling schedule vector loops in deep first

order when -vec

-omp --openMP generate parallel code using
OpenMP (implies -vec)

-sch --scheduler generate parallel code using threads
directly (implies -vec)

-g --groupTasks group sequential tasks together
when -omp or -sch is used

-single --single-precision-floats use floats for internal computations
(default)

-double --double-precision-floats use doubles for internal computa-
tions

-quad --quad-precision-floats use extended for internal computa-
tions

-mdoc --mathdoc generates the full mathematical de-
scription of a Faust program

-mdlang l --mathdoc-lang l choose the language of the mathe-
matical description (l = en, fr, ...)

-stripmdoc --strip-mdoc-tags remove documentation tags when
printing Faust listings

-a file architecture file to use
-o file C++ output file

The main available architecture files are :

33

File name Description
alchemy-as.cpp Flash - ActionScript plugin
ca-qt.cpp CoreAudio QT4 standalone application
jack-gtk.cpp Jack GTK standalone application
jack-qt.cpp Jack QT4 standalone application
jack-console.cpp Jack command line application
jack-internal.cpp Jack serve plugin
alsa-gtk.cpp ALSA GTK standalone application
alsa-qt.cpp ALSA QT4 standalone application
oss-gtk.cpp OSS GTK standalone application
pa-gtk.cpp PortAudio GTK standalone application
pa-qt.cpp PortAudio QT4 standalone application
max-msp.cpp Max/MSP external
vst.cpp VST plugin
vst2p4.cpp VST 2.4 plugin
vsti-mono.cpp VSTi mono instrument
ladspa.cpp LADSPA plugin
q.cpp Q language plugin
supercollider.cpp SuperCollider Unit Generator
snd-rt-gtk.cpp Snd-RT music programming language
csound.cpp CSOUND opcode
puredata.cpp PD external
sndfile.cpp sound file transformation command
bench.cpp speed benchmark
octave.cpp Octave plugin
plot.cpp Command line application
sndfile.cpp Command line application

Here is an example of compilation command that generates the C++ source
code of a Jack application using the GTK graphic toolkit:

faust -a jack-gtk.cpp -o freeverb.cpp freeverb.dsp.

34 CHAPTER 4. INVOKING THE FAUST COMPILER

Chapter 5

Controlling the code
generation

Several options of the Faust compiler allow to control how the C++ code
generated. By default the computations are done sample by sample in a single
loop. But the compiler can also generate vector and parallel code.

5.1 Vector Code generation

Modern C++ compilers are able to do autovectorization, that is to use SIMD
instructions to speedup the code. These instructions can typically operate in
parallel on short vectors of 4 simple precision floating point numbers thus lead-
ing to a theoretical speedup of ×4. Autovectorization of C/C++ programs is
a difficult task. Current compilers are very sensitive to the way the code is
arranged. In particular too complex loops can prevent autovectorization. The
goal of the vector code generation is to rearrange the C++ code in a way that
facilitates the autovectorization job of the C++ compiler. Instead of generating
a single sample computation loop, it splits the computation into several simpler
loops that communicates by vectors.

The vector code generation is activated by passing the --vectorize (or -vec)
option to the Faust compiler. Two additional options are available: --vec-

size <n> controls the size of the vector (by default 32 samples) and --loop-

variant 0/1 gives some additional control on the loops.

To illustrate the difference between scalar code and vector code, let’s take the
computation of the RMS (Root Mean Square) value of a signal. Here is the
Faust code that computes the Root Mean Square of a sliding window of 1000
samples:

// Root Mean Square of n consecutive samples

RMS(n) = square : mean(n) : sqrt ;

// Square of a signal

square(x) = x * x ;

35

36 CHAPTER 5. CONTROLLING THE CODE GENERATION

// Mean of n consecutive samples of a signal

// (uses fixpoint to avoid the accumulation of

// rounding errors)

mean(n) = float2fix : integrate(n) :

fix2float : /(n);

// Sliding sum of n consecutive samples

integrate(n,x) = x - x@n : +~_ ;

// Convertion between float and fix point

float2fix(x) = int(x*(1<<20));

fix2float(x) = float(x)/(1<<20);

// Root Mean Square of 1000 consecutive samples

process = RMS (1000) ;

The compute() method generated in scalar mode is the following:

virtual void compute (int count ,

float** input ,

float** output)

{

float* input0 = input [0];

float* output0 = output [0];

for (int i=0; i<count; i++) {

float fTemp0 = input0[i];

int iTemp1 = int (1048576* fTemp0*fTemp0);

iVec0[IOTA &1023] = iTemp1;

iRec0 [0] = ((iVec0[IOTA &1023] + iRec0 [1])

- iVec0[(IOTA -1000) &1023]);

output0[i] = sqrtf (9.536744e-10f *

float(iRec0 [0]));

// post processing

iRec0 [1] = iRec0 [0];

IOTA = IOTA +1;

}

}

The -vec option leads to the following reorganization of the code:

virtual void compute (int fullcount ,

float** input ,

float** output)

{

int iRec0_tmp [32+4];

int* iRec0 = &iRec0_tmp [4];

for (int index =0; index <fullcount; index +=32)

{

int count = min (32, fullcount -index);

float* input0 = &input [0][index];

5.2. PARALLEL CODE GENERATION 37

float* output0 = &output [0][index];

for (int i=0; i<4; i++)

iRec0_tmp[i]= iRec0_perm[i];

// SECTION : 1

for (int i=0; i<count; i++) {

iYec0[(iYec0_idx+i)&2047] =

int (1048576* input0[i]* input0[i]);

}

// SECTION : 2

for (int i=0; i<count; i++) {

iRec0[i] = ((iYec0[i] + iRec0[i-1]) -

iYec0 [(iYec0_idx+i -1000) &2047]);

}

// SECTION : 3

for (int i=0; i<count; i++) {

output0[i] = sqrtf ((9.536744e-10f *

float(iRec0[i])));

}

// SECTION : 4

iYec0_idx = (iYec0_idx+count)&2047;

for (int i=0; i<4; i++)

iRec0_perm[i]= iRec0_tmp[count+i];

}

}

While the second version of the code is more complex, it turns out to be
much easier to vectorize efficiently by the C++ compiler. Using Intel icc
11.0, with the exact same compilation options: -O3 -xHost -ftz -fno-alias

-fp-model fast=2, the scalar version leads to a throughput performance of
129.144 MB/s, while the vector version achieves 359.548 MB/s, a speedup of
x2.8 !

The vector code generation is built on top of the scalar code generation (see
figure 5.1). Every time an expression needs to be compiled, the compiler checks
to see if it needs to be in a separate loop or not. It applies some simple rules
for that. Expressions that are shared (and are complex enough) are good can-
didates to be compiled in a separate loop, as well as recursive expressions and
expressions used in delay lines.

The result is a directed graph in which each node is a computation loop (see
Figure 5.2). This graph is stored in the klass object and a topological sort is
applied to it before printing the code.

5.2 Parallel Code generation

The parallel code generation is activated by passing either the --openMP (or
-omp) option or the --scheduler (or -sch) option. It implies the -vec options
as the parallel code generation is built on top of the vector code generation by
reorganizing the C++ code.

38 CHAPTER 5. CONTROLLING THE CODE GENERATION

scalar code generator

vector code generator
(loop separation)

parallel code generator
(OpenMP directives)

Figure 5.1: Faust’s stack of code generators

5.2.1 The OpenMP code generator

The --openMP (or -omp) option given to the Faust compiler will insert appropri-
ate OpenMP directives in the C++ code. OpenMP (http://wwww.openmp.org)
is a well established API that is used to explicitly define direct multi-threaded,
shared memory parallelism. It is based on a fork-join model of parallelism (see
figure 5.3). Parallel regions are delimited by using the #pragma omp parallel

construct. At the entrance of a parallel region a team of parallel threads is
activated. The code within a parallel region is executed by each thread of the
parallel team until the end of the region.

#pragma omp parallel

{

// the code here is executed simultaneously by

// every thread of the parallel team

...

}

In order not to have every thread doing redundantly the exact same work,
OpemMP provides specific work-sharing directives. For example #pragma omp

sections allows to break the work into separate, discrete sections. Each section
being executed by one thread:

#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section

{

5.2. PARALLEL CODE GENERATION 39

L1

L4

L7

L8

L6

L2

L9

L3

L5

Figure 5.2: The result of the -vec option is a directed acyclic graph (DAG) of
small computation loops

// job 1

}

#pragma omp section

{

// job 2

}

...

}

...

}

5.2.2 Adding OpenMP directives

As said before the parallel code generation is built on top of the vector code
generation. The graph of loops produced by the vector code generator is topo-
logically sorted in order to detect the loops that can be computed in parallel.
The first set S0 (loops L1, L2 and L3 in the DAG of Figure 5.2) contains the
loops that don’t depend on any other loops, the set S1 contains the loops that
only depend on loops of S0, (that is loops L4 and L5), etc..

As all the loops of a given set Sn can be computed in parallel, the compiler will
generate a sections construct with a section for each loop.

40 CHAPTER 5. CONTROLLING THE CODE GENERATION

#
p
rag

m
a

 o
m

p
 p

a
rallel

m
aster thread

fork

fork

join

join

#
p
rag

m
a

 o
m

p para
lle

l

Figure 5.3: OpenMP is based on a fork-join model

#pragma omp sections

{

#pragma omp section

for (...) {

// Loop 1

}

#pragma omp section

for (...) {

// Loop 2

}

...

}

If a given set contains only one loop, then the compiler checks to see if the loop
can be parallelized (no recursive dependencies) or not. If it can be parallelized,
it generates:

#pragma omp for

for (...) {

// Loop code

}

otherwise it generates a single construct so that only one thread will execute
the loop:

5.2. PARALLEL CODE GENERATION 41

#pragma omp single

for (...) {

// Loop code

}

5.2.3 Example of parallel OpenMP code

To illustrate how Faust uses the OpenMP directives, here is a very simple
example, two 1-pole filters in parallel connected to an adder (see figure 5.4 the
corresponding block-diagram):

filter(c) = *(1-c) : + ~ *(c);

process = filter (0.9), filter (0.9) : +;

1

0.9

-
*

+

0.9
*

filter(0.9)

1

0.9

-
*

+

0.9
*

filter(0.9)
+

process

Figure 5.4: two filters in parallel connected to an adder

The corresponding compute() method obtained using the -omp option is the
following:

virtual void compute (int fullcount ,

float ** input ,

float ** output)

{

float fRec0_tmp [32+4];

float fRec1_tmp [32+4];

float* fRec0 = &fRec0_tmp [4];

float* fRec1 = &fRec1_tmp [4];

#pragma omp parallel firstprivate(fRec0 ,fRec1)

{

for (int index = 0; index < fullcount;

index += 32)

{

int count = min (32, fullcount -index);

float* input0 = &input [0][index];

42 CHAPTER 5. CONTROLLING THE CODE GENERATION

float* input1 = &input [1][index];

float* output0 = &output [0][index];

#pragma omp single

{

for (int i=0; i<4; i++)

fRec0_tmp[i]= fRec0_perm[i];

for (int i=0; i<4; i++)

fRec1_tmp[i]= fRec1_perm[i];

}

// SECTION : 1

#pragma omp sections

{

#pragma omp section

for (int i=0; i<count; i++) {

fRec0[i] = ((0.1f * input1[i])

+ (0.9f * fRec0[i-1]));

}

#pragma omp section

for (int i=0; i<count; i++) {

fRec1[i] = ((0.1f * input0[i])

+ (0.9f * fRec1[i-1]));

}

}

// SECTION : 2

#pragma omp for

for (int i=0; i<count; i++) {

output0[i] = (fRec1[i] + fRec0[i]);

}

// SECTION : 3

#pragma omp single

{

for (int i=0; i<4; i++)

fRec0_perm[i]= fRec0_tmp[count+i];

for (int i=0; i<4; i++)

fRec1_perm[i]= fRec1_tmp[count+i];

}

}

}

}

This code appeals for some comments:

1. The parallel construct #pragma omp parallel is the fundamental con-
struct that starts parallel execution. The number of parallel threads is
generally the number of CPU cores but it can be controlled in several
ways.

2. Variables external to the parallel region are shared by default. The pragma
firstprivate(fRec0,fRec1) indicates that each thread should have its
private copy of fRec0 and fRec1. The reason is that accessing shared vari-

5.2. PARALLEL CODE GENERATION 43

ables requires an indirection and is quite inefficient compared to private
copies.

3. The top level loop for (int index = 0;...)... is executed by all threads
simultaneously. The subsequent work-sharing directives inside the loop
will indicate how the work must be shared between the threads.

4. Please note that an implied barrier exists at the end of each work-sharing
region. All threads must have executed the barrier before any of them can
continue.

5. The work-sharing directive #pragma omp single indicates that this first
section will be executed by only one thread (any of them).

6. The work-sharing directive #pragma omp sections indicates that each
corresponding #pragma omp section, here our two filters, will be exe-
cuted in parallel.

7. The loop construct #pragma omp for specifies that the iterations of the
associated loop will be executed in parallel. The iterations of the loop
are distributed across the parallel threads. For example, if we have two
threads, the first one can compute indices between 0 and count/2 and the
other between count/2 and count.

8. Finally #pragma omp single in section 3 indicates that this last section
will be executed by only one thread (any of them).

5.2.4 The scheduler code generator

With the --scheduler (or -sch) option given to the Faust compiler, the com-
putation graph is cut into separated computation loops (called ”tasks”), and a
”Work Stealing Scheduler” is used to activate and execute them following their
dependencies. A pool of worked threads is created and each thread uses it’s
own local WSQ (Work Stealing Queue) of tasks. A WSQ is a special queue
with a Push operation, a ”private” LIFO Pop operation and a ”public” FIFO
Pop operation.

Starting from a ready task, each thread follows the dependencies, possibly push-
ing ready sub-tasks into it’s own local WSQ. When not more tasks can be acti-
vated on a given computation path, the thread pops a task from it’s local WSQ.
If the WSQ is empty, then the thread is allowed to ”steal” tasks from other
threads WSQ.

The local LIFO Pop operation allows better cache locality and the FIFO steal
Pop ”larger chuck” of work to be done. The reason for this is that many work
stealing workloads are divide-and-conquer in nature, stealing one of the oldest
task implicitly also steals a (potentially) large subtree of computations that will
unfold once that piece of work is stolen and run.

Compared to the OpenMP model (-omp) the new model is worse for simple
Faust programs and usually starts to behave comparable or sometimes better
for ”complex enough” Faust programs. In any case, since OpenMP does not
behave so well with GCC compilers (only quite recent versions like GCC 4.4 start

44 CHAPTER 5. CONTROLLING THE CODE GENERATION

to show some improvements), and is unusable on OSX in real-time contexts,
this new scheduler option has it’s own value. We plan to improve it adding a
”pipelining” idea in the future.

5.2.5 Example of parallel scheduler code

To illustrate how Faust generates the scheduler code, here is a very simple
example, two 1-pole filters in parallel connected to an adder (see figure 5.4 the
corresponding block-diagram):

filter(c) = *(1-c) : + ~ *(c);

process = filter (0.9), filter (0.9) : +;

When -sch option is used, the content of the additional architecture/scheduler.h
file is inserted in the generated code. It contains code to deal with WSQ and
thread management. The compute() and computeThread() methods are the
following:

virtual void compute (int fullcount ,

float** input ,

float** output)

{

GetRealTime ();

this ->input = input;

this ->output = output;

StartMeasure ();

for (fIndex = 0; fIndex < fullcount; fIndex += 32)

{

fFullCount = min (32, fullcount -fIndex);

TaskQueue ::Init();

// Initialize end task

fGraph.InitTask (1,1);

// Only initialize tasks with inputs

fGraph.InitTask (4,2);

fIsFinished = false;

fThreadPool.SignalAll(fDynamicNumThreads - 1);

computeThread (0);

while (! fThreadPool.IsFinished ()) {}

}

StopMeasure(fStaticNumThreads ,

fDynamicNumThreads);

}

void computeThread (int cur_thread) {

float* fRec0 = &fRec0_tmp [4];

float* fRec1 = &fRec1_tmp [4];

// Init graph state

{

TaskQueue taskqueue;

int tasknum = -1;

5.2. PARALLEL CODE GENERATION 45

int count = fFullCount;

// Init input and output

FAUSTFLOAT* input0 = &input [0][fIndex];

FAUSTFLOAT* input1 = &input [1][fIndex];

FAUSTFLOAT* output0 = &output [0][fIndex];

int task_list_size = 2;

int task_list [2] = {2,3};

taskqueue.InitTaskList(task_list_size ,

task_list , fDynamicNumThreads , cur_thread ,

tasknum);

while (! fIsFinished) {

switch (tasknum) {

case WORK_STEALING_INDEX: {

tasknum = TaskQueue :: GetNextTask(

cur_thread);

break;

}

case LAST_TASK_INDEX: {

fIsFinished = true;

break;

}

// SECTION : 1

case 2: {

// LOOP 0x101111680

// pre processing

for (int i=0; i<4; i++) fRec0_tmp[

i]= fRec0_perm[i];

// exec code

for (int i=0; i<count; i++) {

fRec0[i] = ((1.000000e-01f * (

float)input1[i]) + (0.9f *

fRec0[i-1]));

}

// post processing

for (int i=0; i<4; i++) fRec0_perm

[i]= fRec0_tmp[count+i];

fGraph.ActivateOneOutputTask(

taskqueue , 4, tasknum);

break;

}

case 3: {

// LOOP 0x1011125e0

// pre processing

for (int i=0; i<4; i++) fRec1_tmp[

i]= fRec1_perm[i];

// exec code

for (int i=0; i<count; i++) {

fRec1[i] = ((1.000000e-01f * (

float)input0[i]) + (0.9f *

46 CHAPTER 5. CONTROLLING THE CODE GENERATION

fRec1[i-1]));

}

// post processing

for (int i=0; i<4; i++) fRec1_perm

[i]= fRec1_tmp[count+i];

fGraph.ActivateOneOutputTask(

taskqueue , 4, tasknum);

break;

}

case 4: {

// LOOP 0x101111580

// exec code

for (int i=0; i<count; i++) {

output0[i] = (FAUSTFLOAT)(

fRec1[i] + fRec0[i]);

}

tasknum = LAST_TASK_INDEX;

break;

}

}

}

}

}

Chapter 6

Mathematical
Documentation

The Faust compiler provides a mechanism to produce a self-describing docu-
mentation of the mathematical semantic of a Faust program, essentially as a
pdf file. The corresponding options are -mdoc (short) or --mathdoc (long).

6.1 Goals of the mathdoc

There are three main goals, or uses, of this mathematical documentation:

1. to preserve signal processors, independently from any computer language
but only under a mathematical form;

2. to bring some help for debugging tasks, by showing the formulas as they
are really computed after the compilation stage;

3. to give a new teaching support, as a bridge between code and formulas for
signal processing.

6.2 Installation requirements

• faust, of course!

• svg2pdf (from the Cairo 2D graphics library), to convert block-diagrams,
as LATEX doesn’t eat Svg directly yet...

• breqn, a LATEX package to handle automatic breaking of long equations,

• pdflatex, to compile the LATEX output file.

47

48 CHAPTER 6. MATHEMATICAL DOCUMENTATION

6.3 Generating the mathdoc

The easiest way to generate the complete mathematical documentation is to
call the faust2mathdoc script on a Faust file, as the -mdoc option leave the
documentation production unfinished. For example:

faust2mathdoc noise.dsp

6.3.1 Invoking the -mdoc option

Calling directly faust -mdoc does only the first part of the work, generating:

• a top-level directory, suffixed with ”-mdoc”,

• 5 subdirectories (cpp/, pdf/, src/, svg/, tex/),

• a LATEX file containing the formulas,

• Svg files for block-diagrams.

At this stage:

• cpp/ remains empty,

• pdf/ remains empty,

• src/ contains all Faust sources used (even libraries),

• svg/ contains Svg block-diagram files,

• tex/ contains the generated LATEX file.

6.3.2 Invoking faust2mathdoc

The faust2mathdoc script calls faust --mathdoc first, then it finishes the
work:

• moving the output C++ file into cpp/,

• converting all Svg files into pdf files (you must have svg2pdf installed,
from the Cairo 2D graphics library),

• launching pdflatex on the LATEX file (you must have both pdflatex and
the breqn package installed),

• moving the resulting pdf file into pdf/.

6.4. AUTOMATIC DOCUMENTATION 49

6.3.3 Online examples

To have an idea of the results of this mathematical documentation, which cap-
tures the mathematical semantic of Faust programs, you can look at two pdf
files online:

• http://faust.grame.fr/pdf/karplus.pdf (automatic documentation),

• http://faust.grame.fr/pdf/noise.pdf (manual documentation).

You can also generate all mdoc pdfs at once, simply invoking the make mathdoc

command inside the examples/ directory:

• for each %.dsp file, a complete %-mdoc directory will be generated,

• a single allmathpdfs/ directory will gather all the generated pdf files.

6.4 Automatic documentation

By default, when no <mdoc> tag can be found in the input Faust file, the -mdoc
option automatically generates a LATEX file with four sections:

1. ”Equations of process”, gathering all formulas needed for process,

2. ”Block-diagram schema of process”, showing the top-level block-
diagram of process,

3. ”Notice of this documentation”, summing up generation and conven-
tions information,

4. ”Complete listing of the input code”, listing all needed input files
(including libraries).

6.5 Manual documentation

You can specify yourself the documentation instead of using the automatic
mode, with five xml-like tags. That permits you to modify the presentation
and to add your own comments, not only on process, but also about any ex-
pression you’d like to. Note that as soon as you declare an <mdoc> tag inside
your Faust file, the default structure of the automatic mode is ignored, and all
the LATEX stuff becomes up to you!

6.5.1 Six tags

Here are the six specific tags:

• <mdoc></mdoc>, to open a documentation field in the Faust code,

– <equation></equation>, to get equations of a Faust expression,

http://faust.grame.fr/pdf/karplus.pdf
http://faust.grame.fr/pdf/noise.pdf

50 CHAPTER 6. MATHEMATICAL DOCUMENTATION

– <diagram></diagram>, to get the top-level block-diagram of a Faust
expression,

– <metadata></metadata>, to reference Faust metadatas (cf. decla-
rations), calling the corresponding keyword,

– <notice />, to insert the ”adaptive” notice all formulas actually
printed,

– <listing [attributes] />, to insert the listing of Faust files called.

The <listing /> tag can have up to three boolean attributes (set to "true"

by default):

• mdoctags for <mdoc> tags;

• dependencies for other files dependencies;

• distributed for the distribution of interleaved Faust code between <

mdoc> sections.

6.5.2 The mdoc top-level tags

The <mdoc></mdoc> tags are the top-level delimiters for Faust mathematical
documentation sections. This means that the four other documentation tags
can’t be used outside these pairs (see section 3.2.3).

In addition of the four inner tags, <mdoc></mdoc> tags accept free LATEX text,
including its standard macros (like \section, \emph, etc.). This allows to man-
age the presentation of resulting tex file directly from within the input Faust
file.

The complete list of the LATEX packages included by Faust can be found in the
file architecture/latexheader.tex.

6.5.3 An example of manual mathdoc

<mdoc >

\title{<metadata >name </metadata >}

\author{<metadata >author </metadata >}

\date{\today}

\maketitle

\begin{tabular }{ll}

\hline

\textbf{name} & <metadata >name </metadata > \\

\textbf{version} & <metadata >version </metadata > \\

\textbf{author} & <metadata >author </metadata > \\

\textbf{license} & <metadata >license </metadata > \\

\textbf{copyright} & <metadata >copyright </metadata > \\

\hline

\end{tabular}

\bigskip

</mdoc >

// ---

// Noise generator and demo file for the Faust math documentation

// ---

6.5. MANUAL DOCUMENTATION 51

declare name "Noise";

declare version "1.1";

declare author "Grame";

declare author "Yghe";

declare license "BSD";

declare copyright "(c)GRAME 2009";

<mdoc >

\section{Presentation of the "noise.dsp" Faust program}

This program describes a white noise generator with an interactive

volume , using a random function.

\subsection{The random function}

</mdoc >

random = +(12345) ~*(1103515245);

<mdoc >

The \texttt{random} function describes a generator of random

numbers , which equation follows. You should notice hereby the

use of an integer arithmetic on 32 bits , relying on integer

wrapping for big numbers.

<equation >random </equation >

\subsection{The noise function}

</mdoc >

noise = random /2147483647.0;

<mdoc >

The white noise then corresponds to:

<equation >noise </equation >

\subsection{Just add a user interface element to play volume !}

</mdoc >

process = noise * vslider("Volume[style:knob]", 0, 0, 1, 0.1);

<mdoc >

Endly , the sound level of this program is controlled by a user

slider , which gives the following equation:

<equation >process </equation >

\section{Block -diagram schema of process}

This process is illustrated on figure 1.

<diagram >process </diagram >

\section{Notice of this documentation}

You might be careful of certain information and naming conventions

used in this documentation:

<notice />

\section{Listing of the input code}

The following listing shows the input Faust code , parsed to compile

this mathematical documentation.

<listing mdoctags ="false" dependencies ="false" distributed ="true"

/>

</mdoc >

The next page gather the four resulting pages of noise.pdf, in small size, to

52 CHAPTER 6. MATHEMATICAL DOCUMENTATION

give an idea.

6.5.4 The -stripmdoc option

As you can see on the resulting file noisemetadata.pdf on its pages 3 and
4, the listing of the input code (section 4) contains all the mathdoc text (here
colored in grey). As it may be unneeded for certain uses (see Goals, section 6.1),
we provide an option to strip mathdoc contents directly at compilation stage:
-stripmdoc (short) or --strip-mdoc-tags (long).

6.6 Localization of mathdoc files

By default, texts used by the documentator are in English, but you can specify
another language (French and Italian for the moment), using the -mdlang (or
--mathdoc-lang) option with a two-letters argument (en, fr, it, etc.).

The faust2mathdoc script also supports this option, plus a third short form
with -l:

faust2mathdoc -l fr myfaustfile.dsp

If you’d like to contribute to the localization effort, feel free to translate the
mathdoc texts from any of the mathdoctexts-*.txt files, that are in the
architecture directory (mathdoctexts-fr.txt, mathdoctexts-it.txt, etc.).
As these files are dynamically loaded, simply adding a new file with an appro-
priate name should work.

Noise

Grame, Yghe

March 9, 2010

name Noise
version 1.1
author Grame, Yghe
license BSD
copyright (c)GRAME 2009

//---

// Noise generator and demo file for the Faust math documentation

//---

declare name "Noise";

declare version "1.1";

declare author "Grame";

declare author "Yghe";

declare license "BSD";

declare copyright "(c)GRAME 2009";

1 Presentation of the ”noise.dsp” Faust program

This program describes a white noise generator with an interactive volume,
using a random function.

1.1 The random function

random = +(int(12345))~*(int(1103515245));

The random function describes a generator of random numbers, which equation
follows. You should notice hereby the use of an integer arithmetic on 32 bits,
relying on integer wrapping for big numbers.

1. Output signal y such that

y(t) = r1(t)

2. Input signal (none)

1

3. Intermediate signal r1 such that

r1(t) = 12345⊕ 1103515245� r1(t−1)

1.2 The noise function

noise = (int(random))/(int(random+1));

The white noise then corresponds to:
1. Output signal y such that

y(t) = s1(t)

2. Input signal (none)

3. Intermediate signal s1 such that

s1(t) = int (r1(t))� int (1⊕ r1(t))

1.3 Just add a user interface element to play volume!

process = noise * vslider("Volume[style:knob]", 0, 0, 1, 0.1);

Endly, the sound level of this program is controlled by a user slider, which gives
the following equation:

1. Output signal y such that

y(t) = us1(t) · s1(t)

2. Input signal (none)

3. User-interface input signal us1 such that

”Volume” us1(t) ∈ [0, 1] (default value = 0)

2 Block-diagram schema of process

This process is illustrated on figure 1.

2

12345 int
+

1103515245int
*

random

int

12345 int
+

1103515245int
*

random

1

+ int

/

noise

vslider(Volume[style:knob], 0, 0, 1, 0.1)

*

process

Figure 1: Block diagram of process

3 Notice of this documentation

You might be careful of certain information and naming conventions used in
this documentation:

• This document was generated using Faust version 0.9.13 on March 09,
2010.

• The value of a Faust program is the result of applying the signal trans-
former denoted by the expression to which the process identifier is bound
to input signals, running at the fS sampling frequency.

• Faust (Functional Audio Stream) is a functional programming language
designed for synchronous real-time signal processing and synthesis appli-
cations. A Faust program is a set of bindings of identifiers to expressions
that denote signal transformers. A signal s in S is a function mapping1

times t ∈ Z to values s(t) ∈ R, while a signal transformer is a function

1Faust assumes that ∀ s ∈ S,∀ t ∈ Z, s(t) = 0 when t < 0.

3

from Sn to Sm, where n,m ∈ N. See the Faust manual for additional
information (http://faust.grame.fr).

• Every mathematical formula derived from a Faust expression is assumed,
in this document, to having been normalized (in an implementation-depen-
dent manner) by the Faust compiler.

• A block diagram is a graphical representation of the Faust binding of an
identifier I to an expression E; each graph is put in a box labeled by I.
Subexpressions of E are recursively displayed as long as the whole picture
fits in one page.

• ∀x ∈ R,

int(x) =

bxc if x > 0
dxe if x < 0
0 if x = 0

.

• This document uses the following integer operations:

operation name semantics
i⊕ j integer addition normalize(i + j), in Z
i� j integer multiplication normalize(i · j), in Z
i� j integer division normalize(int(i/j)), in Q

Integer operations in Faust are inspired by the semantics of operations
on the n-bit two’s complement representation of integer numbers; they
are internal composition laws on the subset [−2n−1, 2n−1−1] of Z, with
n = 32. For any integer binary operation × on Z, the ⊗ operation is
defined as: i⊗ j = normalize(i× j), with

normalize(i) = i−N · sign(i) ·
⌊ |i|+ N/2 + (sign(i)−1)/2

N

⌋
,

where N = 2n and sign(i) = 0 if i = 0 and i/|i| otherwise. Unary integer
operations are defined likewise.

• The noisemetadata-mdoc/ directory may also include the following sub-
directories:

– cpp/ for Faust compiled code;

– pdf/ which contains this document;

– src/ for all Faust sources used (even libraries);

– svg/ for block diagrams, encoded using the Scalable Vector Graphics
format (http://www.w3.org/Graphics/SVG/);

– tex/ for the LATEX source of this document.

4

4 Listing of the input code

The following listing shows the input Faust code, parsed to compile this math-
ematical documentation.

Listing 1: noisemetadata.dsp� �
1 //---
2 // Noise generator and demo file for the Faust math documentation
3 //---
4

5 declare name "Noise";
6 declare version "1.1";
7 declare author "Grame";
8 declare author "Yghe";
9 declare license "BSD";

10 declare copyright "(c)GRAME 2009";
11

12

13 random = +(int(12345))~*(int(1103515245));
14

15

16 noise = (int(random))/(int(random+1));
17

18

19 process = noise * vslider("Volume[style:knob]", 0, 0, 1, 0.1);� �

5

6.7. SUMMARY OF THE MATHDOC GENERATION STEPS 55

6.7 Summary of the mathdoc generation steps

1. First, to get the full mathematical documentation stuff done on your faust
file, call faust2mathdoc myfaustfile.dsp.

2. Then, open the pdf file myfaustfile-mdoc/pdf/myfaustfile.pdf.

3. That’s all !

56 CHAPTER 6. MATHEMATICAL DOCUMENTATION

Chapter 7

Acknowledgments

Many persons are contributing to the Faust project, by providing code for
the compiler, architecture files, libraries, examples, documentation, scripts, bug
reports, ideas, etc. I would like in particular to thank:

- Fons Adriaensen

- Tiziano Bole

- Thomas Charbonnel

- Damien Cramet

- Étienne Gaudrin

- Albert Gräf

- Stefan Kersten

- Victor Lazzarini

- Matthieu Leberre

- Mathieu Leroi

- Kjetil Matheussen

- Rémy Muller

- Nicolas Scaringella

- Stephen Sinclair

- Travis Skare

- Julius Smith

Many developments of the Faust project are now taking place within the As-
tree project (ANR 2008 CORD 003 02). I would like to thank my Astree’s
partners:

57

58 CHAPTER 7. ACKNOWLEDGMENTS

- Jérôme Barthélemy (Ircam)

- Alain Bonardi (Ircam)

- Raffaele Ciavarella (Ircam)

- Pierre Jouvelot (École des Mines/ParisTech)

- Laurent Pottier (U. Saint-Etienne)

as well as my colleagues at Grame, in particular : Dominique Fober, Stéphane
Letz and Karim Barkati.

I would like also to thank for their financial support:

- the French Ministry of Culture

- the Rhône-Alpes Region

- the City of Lyon

- the French National Research Agency (Anr)

	Introduction
	Design Principles
	Signal Processor Semantic

	Compiling and installing Faust
	Organization of the distribution
	Compilation
	Installation
	Compilation of the examples

	Faust syntax
	Faust program
	Statements
	Declarations
	Imports
	Documentation

	Definitions
	Simple Definitions
	Function Definitions
	Definitions with pattern matching

	Expressions
	Diagram Expressions
	Numerical Expressions
	Time expressions
	Environment expressions
	Foreign expressions
	Applications and Abstractions

	Primitives
	Numbers
	C-equivalent primitives
	math.h-equivalent primitives
	Delay, Table, Selector primitives
	User Interface Elements

	Invoking the Faust compiler
	Controlling the code generation
	Vector Code generation
	Parallel Code generation
	The OpenMP code generator
	Adding OpenMP directives
	Example of parallel OpenMP code
	The scheduler code generator
	Example of parallel scheduler code

	Mathematical Documentation
	Goals of the mathdoc
	Installation requirements
	Generating the mathdoc
	Invoking the -mdoc option
	Invoking faust2mathdoc
	Online examples

	Automatic documentation
	Manual documentation
	Six tags
	The mdoc top-level tags
	An example of manual mathdoc
	The -stripmdoc option

	Localization of mathdoc files
	Summary of the mathdoc generation steps

	Acknowledgments

