
zoo: An S3 Class and Methods for Indexed

Totally Ordered Observations

Achim Zeileis
Wirtschaftsuniversität Wien

Gabor Grothendieck

Abstract

zoo is an R package providing an S3 class with methods for indexed totally ordered ob-
servations, such as irregular time series. Its key design goals are independence of a particular
index/time/date class and consistency with base R and the "ts" class for regular time series.
This paper describes how these are achieved within zoo and provides several illustrations of
the available methods for "zoo" objects which include plotting, merging and binding, several
mathematical operations, extracting and replacing data and index, coercion and NA handling.

Keywords: totally ordered observations, irregular time series, S3, R.

1. Introduction

The R system for statistical computing (R Development Core Team 2004, http://www.R-project.
org/) ships with a a class for regularly spaced time series, "ts" in package stats, but has no native
class for irregularly spaced time series. With the increased interest in computational finance with
R over the last years several implementations of classes for irregular time series emerged which are
aimed particularly at finance applications. These include the S3 classes "timeSeries" in package
fBasics from the Rmetrics bundle (Wuertz 2004) and "irts" in package tseries (Trapletti 2004)
and the S4 class "its" in package its (Heywood 2004). With these packages available, why would
anybody want yet another package providing infrastructure for irregular time series? The above
mentioned implementations have in common that they are restricted to a particular class for the
time scale: the former implementation comes with its own time class "timeDate" built on top
of the "POSIXt" classes available in base R whereas the latter two use "POSIXct" directly. And
this was the starting point for the zoo project: the first author of the present paper needed more
general support for ordered observations, independent of a particular index class, for the package
strucchange (Zeileis, Leisch, Hornik, and Kleiber 2002). Hence the package was called zoo which
stands for Z’s ordered observations. Since the first release, a major part of the additions to zoo
were provided by the second author of this paper, so that the name of the package does not really
reflect the authorship anymore. Nevertheless, independence of a particular index class remained
the most important design goal. While the package evolved to its current status, a second key
design goal became more and more clear: to provide methods to standard generic functions for
the "zoo" class that are similar to those for the "ts" class (and base R in general) such that the
usage of zoo is rather intuitive because few additional commands have to be learned. This paper
describes how these design goals are implemented in zoo. The resulting package provides the "zoo"
class which offers an extensive (and still growing) set of standard and new methods for working
on indexed observations and ‘talks’ to the classes "ts", "its", "irts" and "timeSeries".

The remainder of the paper is organized as follows: Section 2 explains how "zoo" objects are
created and illustrates how the corresponding methods for plotting, merging and binding, several
mathematical operations, extracting and replacing data and index, coercion and NA handling can
be used. Section 3 outlines how other packages can build on this basic infrastructure. Section 4
gives a few summarizing remarks and an outlook on future developments. Finally, an appendix
provides a reference card that gives an overview of the functionality contained in zoo.

http://www.R-project.org/
http://www.R-project.org/

2 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

2. The class "zoo" and its methods

2.1. Creation of "zoo" objects

The simple idea for the creation of "zoo" objects is to have some vector or matrix of observations
x which are totally ordered by some index vector. In time series applications, this index is a
measure of time but every other numeric, character or even more abstract vector that provides
a total ordering of the observations is also suitable. Objects of class "zoo" are created by the
function

zoo(x, order.by)

where x is the vector or matrix of observations1 and order.by is the index by which the ob-
servations should be ordered. It has to be of the same length as NROW(x), i.e., either the same
length as x for vectors or the same number of rows for matrices. (This constraint is not imposed
for zero length vectors.) The "zoo" object created is essentially the vector/matrix as before but
has an additional "index" attribute in which the index is stored.2 Both the observations in the
vector/matrix x and the index order.by can, in principle, be of arbitrary classes. However, most
of the following methods (plotting, aggregating, mathematical operations) for "zoo" objects are
typically only useful for numeric observations x. Special effort in the design was put into inde-
pendence from a particular class for the index vector. In zoo, it is assumed that combination c(),
querying the length(), value matching MATCH(), subsetting [,, and, of course, ordering ORDER()
work when applied to the index. This is the case, e.g., for standard numeric and character vectors
and for vectors of classes "Date", "POSIXct" or "times" from package chron, but not for the class
"dateTime" in fBasics. In the last case, the solution is to provide methods for the above men-
tioned functions so that indexing "zoo" objects with "dateTime" vectors works (see Section 3.3
for an example). To achieve this independence of the index class, new generic functions for order-
ing (ORDER()) and value matching (MATCH()) are introduced as the corresponding base functions
order() and match() are non-generic. The default methods simply call the corresponding base
functions, i.e., no new method needs to be introduced for a particular index class if the non-generic
functions order() and match() work for this class.
To illustrate the usage of zoo, we first load the package and set the random seed to make the
examples in this paper exactly reproducible.

> library(zoo)

> set.seed(1071)

Then, we create two vectors z1 and z2 with "POSIXct" indexes, one with random observations

> z1.index <- ISOdatetime(2004, rep(1:2, 5), sample(28, 10), 0,

+ 0, 0)

> z1.data <- rnorm(10)

> z1 <- zoo(z1.data, z1.index)

and one with a sine wave

> z2.index <- as.POSIXct(paste(2004, rep(1:2, 5), sample(1:28,

+ 10), sep = "-"))

> z2.data <- sin(2 * 1:10/pi)

> z2 <- zoo(z2.data, z2.index)

1In principle, more general objects can be indexed, but currently zoo does not support this. Development plans
are that zoo should eventually support indexed factors, data frames and lists.

2There is some limited support for indexed factors available in which case the "zoo" object also has an attribute
"oclass" with the original class of x. This feature is still under development and might change in future versions.

Achim Zeileis, Gabor Grothendieck 3

Furthermore, we create a matrix Z with random observations and a "Date" index

> Z.index <- as.Date(sample(12450:12500, 10))

> Z.data <- matrix(rnorm(30), ncol = 3)

> colnames(Z.data) <- c("Aa", "Bb", "Cc")

> Z <- zoo(Z.data, Z.index)

In the examples above, the generation of indexes looks a bit awkward due to the fact the indexes
need to be randomly generated (and there are no special functions for random indexes because
these is rarely needed in practice). In “real world” applications, the indexes are typically part of
the raw data set read into R so the code would be even simpler. See Section 3 for such examples.3

Methods to several standard generic functions are available for "zoo" objects, such as print,
summary, str, head, tail and [(subsetting), a few of which are illustrated in the following.
There are three printing code styles for "zoo" objects: vectors are by default printed in "hori-
zontal" style

> z1

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07
0.74675994 0.02107873 -0.29823529 0.68625772 1.94078850 1.27384445
2004-02-12 2004-02-16 2004-02-20 2004-02-24
0.22170438 -2.07607585 -1.78439244 -0.19533304

> z1[3:7]

2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12
-0.2982353 0.6862577 1.9407885 1.2738445 0.2217044

and matrices in "vertical" style

> Z

Aa Bb Cc
2004-02-02 1.25543390 0.68157316 -0.63292049
2004-02-08 -1.49458326 1.32341223 -1.49442269
2004-02-09 -1.87462247 -0.87329289 0.62733971
2004-02-21 -0.14538608 0.45234903 -0.14597401
2004-02-22 0.22542418 0.53838938 0.23136133
2004-02-29 1.20695518 0.31814222 -0.01129202
2004-03-05 -1.20861025 1.42379785 -0.81614483
2004-03-10 -0.11039563 1.34774254 0.95522468
2004-03-14 0.84202385 -2.73842019 0.23150695
2004-03-20 -0.19019104 0.12308872 -1.51862157

> Z[1:3, 2:3]

Bb Cc
2004-02-02 0.6815732 -0.6329205
2004-02-08 1.3234122 -1.4944227
2004-02-09 -0.8732929 0.6273397

3Note, that in the code above a new as.Date method, provided in zoo, is used to convert days since 1970-01-01
to class "Date". See the respective help page for more details.

4 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

Additionally, there is a "plain" style which simply first prints the data and then the index.
Summaries and most other methods for "zoo" objects are carried out column wise, reflecting the
rectangular structure. In addition, a summary of the index is provided.

> summary(z1)

Index z1
Min. :2004-01-05 00:00:00 Min. :-2.07608
1st Qu.:2004-01-20 12:00:00 1st Qu.:-0.27251
Median :2004-02-01 12:00:00 Median : 0.12139
Mean :2004-02-01 09:36:00 Mean : 0.05364
3rd Qu.:2004-02-15 00:00:00 3rd Qu.: 0.73163
Max. :2004-02-24 00:00:00 Max. : 1.94079

> summary(Z)

Index Aa Bb Cc
Min. :2004-02-02 Min. :-1.8746 Min. :-2.7384 Min. :-1.51862
1st Qu.:2004-02-12 1st Qu.:-0.9540 1st Qu.: 0.1719 1st Qu.:-0.77034
Median :2004-02-25 Median :-0.1279 Median : 0.4954 Median :-0.07863
Mean :2004-02-25 Mean :-0.1494 Mean : 0.2597 Mean :-0.25739
3rd Qu.:2004-03-08 3rd Qu.: 0.6879 3rd Qu.: 1.1630 3rd Qu.: 0.23147
Max. :2004-03-20 Max. : 1.2554 Max. : 1.4238 Max. : 0.95522

2.2. Plotting

The plot method for "zoo" objects, in particular for multivariate "zoo" series, is based on the
corresponding method for (multivariate) regular time series. It relies on plot and lines methods
being available for the index class which can plot the index against the observations.
By default the plot method creates a panel for each series

> plot(Z)

but can also display all series in a single panel

> plot(Z, plot.type = "single", col = 2:4)

In both cases additional graphical parameters like color col, plotting character pch and line type
lty can be expanded to the number of series. But the plot method for "zoo" objects offers some
more flexibility in specification of graphical parameters as in

> plot(Z, type = "b", lty = 1:3, pch = list(Aa = 1:5, Bb = 2, Cc = 4),

+ col = list(Bb = 2, 4))

The argument lty behaves as before and sets every series in another line type. The pch argument
is a named list that assigns to each series a different vector of plotting characters each of which
is expanded to the number of observations. Such a list does not necessarily have to include the
names of all series, but can also specify a subset. For the remaining series the default parameter
is then used which can again be changed: e.g., in the above example the col argument is set to
display the series "Bb" in red and all remaining series in blue. The results of the multiple panel
plots are depicted in Figure 2 and the single panel plot in 1.

2.3. Merging and binding

As for many rectangular data formats in R, there are both methods for combining the rows and
columns of "zoo" objects respectively. For the rbind method the number of columns of the
combined objects has to be identical and the indexes may not overlap.

Achim Zeileis, Gabor Grothendieck 5

−
2

−
1

0
1

Index

Z

Feb 02 Feb 12 Feb 22 Mar 03 Mar 13

Figure 1: Example of a single panel plot

> rbind(z1[5:10], z1[2:3])

2004-01-14 2004-01-19 2004-01-27 2004-02-07 2004-02-12 2004-02-16
0.02107873 -0.29823529 1.94078850 1.27384445 0.22170438 -2.07607585
2004-02-20 2004-02-24
-1.78439244 -0.19533304

The cbind method by default combines the columns by the union of the indexes and fills the
created gaps by NAs.4

> cbind(z1, z2)

z1 z2
2004-01-03 NA 0.94306673
2004-01-05 0.74675994 -0.04149429
2004-01-14 0.02107873 NA
2004-01-17 NA 0.59448077
2004-01-19 -0.29823529 -0.52575918
2004-01-24 NA -0.96739776
2004-01-25 0.68625772 NA
2004-01-27 1.94078850 NA
2004-02-07 1.27384445 NA
2004-02-08 NA 0.95605566
2004-02-12 0.22170438 -0.62733473
2004-02-13 NA -0.92845336
2004-02-16 -2.07607585 NA
2004-02-20 -1.78439244 NA
2004-02-24 -0.19533304 NA
2004-02-25 NA 0.56060280
2004-02-26 NA 0.08291711

4Note, that cbind currently is inferior to merge regarding the column naming of the resulting object.

6 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

A
a

−
1.

5
−

0.
5

0.
5

B
b

−
2

−
1

0
1

−
1.

5
−

0.
5

0.
5

C
c

Feb 02 Feb 12 Feb 22 Mar 03 Mar 13

Index

Z
A

a

−
1.

5
−

0.
5

0.
5

● ●

B
b

−
2

−
1

0
1

−
1.

5
−

0.
5

0.
5

C
c

Feb 02 Feb 12 Feb 22 Mar 03 Mar 13

Index

Z

Figure 2: Examples of multiple panel plots

Achim Zeileis, Gabor Grothendieck 7

In fact, the cbind method is synonymous with the merge method except that the latter provides
additional arguments which allow for combining the columns by the intersection of the indexes
using the argument all = FALSE

> merge(z1, z2, all = FALSE)

z1 z2
2004-01-05 0.74675994 -0.04149429
2004-01-19 -0.29823529 -0.52575918
2004-02-12 0.22170438 -0.62733473

Additionally, the filling pattern can be changed in merge, the naming of the columns can be
modified and the return class of the result can be specified. In the case of merging of objects with
different index classes, R gives a warning and tries to coerce the indexes. Merging objects with
different index classes is generally discouraged—if it is used nevertheless, it is the responsibility of
the user to ensure that the result is as intended.
Another function which performs operations along a subset of indexes is aggregate, which is
discussed in this section although it does not combine several objects. Using the aggregate
method, "zoo" objects are split into subsets along a coarser index grid, summary statistics are
computed for each and then the reduced object is returned. In the following example, first a
function is set up which returns for a given "Date" value the corresponding first of the month.
This function is then used to compute the coarser grid for the aggregate call: in the first example
the mean of the observations in the month is returned, in the second example the first observation.

> firstofmonth <- function(x) as.Date(sub("..$", "01", format(x)))

> aggregate(Z, firstofmonth(Z.index), mean)

Aa Bb Cc
2004-02-01 0.53820841 0.04508597 -0.12412352
2004-03-01 -1.18080051 0.58156655 -0.45730045

> aggregate(Z, firstofmonth(Z.index), head, 1)

Aa Bb Cc
2004-02-01 1.2554339 0.6815732 -0.6329205
2004-03-01 -1.4945833 1.3234122 -1.4944227

2.4. Mathematical operations

To allow for standard mathematical operations among "zoo" objects, zoo extends group generic
functions Ops. These perform the operations only for the intersection of the indexes of the objects.
As an example, the summation and logical comparison with < of z1 and z2 yield

> z1 + z2

2004-01-05 2004-01-19 2004-02-12
0.7052657 -0.8239945 -0.4056304

> z1 < z2

2004-01-05 2004-01-19 2004-02-12
FALSE FALSE FALSE

8 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

Additionally, methods for transposing t of "zoo" objects—which coerces to a matrix before, see
below—and computing cumulative quantities such as cumsum, cumprod, cummin, cummax which are
all applied column wise.

> cumsum(Z)

Aa Bb Cc
2004-02-02 1.2554339 0.6815732 -0.6329205
2004-02-08 -0.2391494 2.0049854 -2.1273432
2004-02-09 -2.1137718 1.1316925 -1.5000035
2004-02-21 -2.2591579 1.5840415 -1.6459775
2004-02-22 -2.0337337 2.1224309 -1.4146162
2004-02-29 -0.8267785 2.4405731 -1.4259082
2004-03-05 -2.0353888 3.8643710 -2.2420530
2004-03-10 -2.1457844 5.2121135 -1.2868283
2004-03-14 -1.3037606 2.4736933 -1.0553214
2004-03-20 -1.4939516 2.5967820 -2.5739429

2.5. Extracting and replacing the data and the index

zoo provides several generic functions and methods to work on the data contained in a "zoo"
object, the index (or time) attribute associated to it, and on both data and index.
The data stored in "zoo" objects can be extracted by coredata which strips off all "zoo"-specific
attributes and it can be replaced using coredata<-. Both are new generic functions5 with methods
for "zoo" objects as illustrated in the following example.

> coredata(z1)

[1] 0.74675994 0.02107873 -0.29823529 0.68625772 1.94078850 1.27384445
[7] 0.22170438 -2.07607585 -1.78439244 -0.19533304

> coredata(z1) <- 1:10

> z1

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12
1 2 3 4 5 6 7

2004-02-16 2004-02-20 2004-02-24
8 9 10

The index associated with a "zoo" object can be extracted by index and modified by index<-.
As the interpretation of the index as “time” in time series applications is natural, there are also
synonymous methods time and time<-. Hence, the commands index(z2) and time(z2) return
equivalent results.

> index(z2)

[1] "2004-01-03 CET" "2004-01-05 CET" "2004-01-17 CET" "2004-01-19 CET"
[5] "2004-01-24 CET" "2004-02-08 CET" "2004-02-12 CET" "2004-02-13 CET"
[9] "2004-02-25 CET" "2004-02-26 CET"

5The coredata functionality is similar in spirit to the core function in its and value in tseries. However, the
focus of those functions is somewhat narrower and we try to provide more general purpose generic functions. See
the respective manual page for more details.

Achim Zeileis, Gabor Grothendieck 9

The index scale of z2 can be changed to that of z1 by

> index(z2) <- index(z1)

> z2

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07
0.94306673 -0.04149429 0.59448077 -0.52575918 -0.96739776 0.95605566
2004-02-12 2004-02-16 2004-02-20 2004-02-24
-0.62733473 -0.92845336 0.56060280 0.08291711

The start and the end of the index/time vector can be queried by start and end:

> start(z1)

[1] "2004-01-05 CET"

> end(z1)

[1] "2004-02-24 CET"

To work on both data and index/time, zoo provides window and window<- methods for "zoo"
objects. In both cases the window is specified by

window(x, index, start, end)

where x is the "zoo" object, index is a set of indexes to be selected (by default the full index of
x) and start and end can be used to restrict the index set.

> window(Z, start = as.Date("2004-03-01"))

Aa Bb Cc
2004-03-05 -1.2086102 1.4237978 -0.8161448
2004-03-10 -0.1103956 1.3477425 0.9552247
2004-03-14 0.8420238 -2.7384202 0.2315069
2004-03-20 -0.1901910 0.1230887 -1.5186216

> window(Z, index = index(Z)[5:8], end = as.Date("2004-03-01"))

Aa Bb Cc
2004-02-22 0.22542418 0.53838938 0.23136133
2004-02-29 1.20695518 0.31814222 -0.01129202

The first example selects all observations starting from 2004-03-01 whereas the second selects from
the from the 5th to 8th observation those up to 2004-03-01.
The same syntax can be used for the corresponding replacement function.

> window(z1, end = as.POSIXct("2004-02-01")) <- 9:5

> z1

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12
9 8 7 6 5 6 7

2004-02-16 2004-02-20 2004-02-24
8 9 10

10 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

Two methods that are standard in time series applications are lag and diff. These are available
with the same arguments as the "ts" methods.6

> lag(z1, k = -1)

2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12 2004-02-16
9 8 7 6 5 6 7

2004-02-20 2004-02-24
8 9

> merge(z1, lag(z1, k = 1))

z1 lag(z1, k = 1)
2004-01-05 9 8
2004-01-14 8 7
2004-01-19 7 6
2004-01-25 6 5
2004-01-27 5 6
2004-02-07 6 7
2004-02-12 7 8
2004-02-16 8 9
2004-02-20 9 10
2004-02-24 10 NA

> diff(z1)

2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12 2004-02-16
-1 -1 -1 -1 1 1 1

2004-02-20 2004-02-24
1 1

2.6. Coercion to and from "zoo"

Coercion to and from "zoo" objects is available for objects of various classes, in particular "ts",
"irts" and "its" objects can be coerced to "zoo" using the respective as.zoo method. The re-
verse coercion is available for "its" and for "irts" (the latter in package tseries). Furthermore,
"zoo" objects can be coerced to vectors, matrices, lists and data frames (the latter dropping the
index/time attribute). A simple example is

> as.data.frame(Z)

Aa Bb Cc
1 1.2554339 0.6815732 -0.63292049
2 -1.4945833 1.3234122 -1.49442269
3 -1.8746225 -0.8732929 0.62733971
4 -0.1453861 0.4523490 -0.14597401
5 0.2254242 0.5383894 0.23136133
6 1.2069552 0.3181422 -0.01129202
7 -1.2086102 1.4237978 -0.81614483
8 -0.1103956 1.3477425 0.95522468
9 0.8420238 -2.7384202 0.23150695
10 -0.1901910 0.1230887 -1.51862157

6diff also has an additional argument that also allows for geometric and not only allows arithmetic differences.
Furthermore, note the sign of the lag in lag: by default it is positive and shifts the observations forward, to obtain
the more standard backward shift the lag has to be negative.

Achim Zeileis, Gabor Grothendieck 11

2.7. NA handling

Four methods for dealing with NAs (missing observations) in the observations are applicable
to "zoo" objects: na.omit, na.contiguous, na.approx and na.locf. na.omit—or its de-
fault method to be more precise—returns a "zoo" object with incomplete observations removed.
na.contiguous extracts the longest consecutive stretch of non-missing values. This function is
currently made generic in zoo with a "zoo" method and the stats function as the default.7 Fur-
thermore, new generic functions na.approx and na.locf and corresponding default methods are
introduced in zoo. The former replaces NAs by linear interpolation (using the function approx)
and the name of the latter stands for last observation carried forward. It replaces missing obser-
vations by the most recent non-NA prior to it. Leading NAs, which cannot be replaced by precious
observations, are removed in both functions by default.

> z1[sample(1:10, 3)] <- NA

> z1

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12
9 NA 7 6 5 6 NA

2004-02-16 2004-02-20 2004-02-24
8 9 NA

> na.omit(z1)

2004-01-05 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-16 2004-02-20
9 7 6 5 6 8 9

> na.contiguous(z1)

2004-01-19 2004-01-25 2004-01-27 2004-02-07
7 6 5 6

> na.approx(z1)

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12
9.000000 7.714286 7.000000 6.000000 5.000000 6.000000 7.111111

2004-02-16 2004-02-20
8.000000 9.000000

> na.approx(z1, 1:NROW(z1))

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12
9 8 7 6 5 6 7

2004-02-16 2004-02-20
8 9

> na.locf(z1)

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12
9 9 7 6 5 6 6

2004-02-16 2004-02-20 2004-02-24
8 9 9

7na.contiguous will be generic in base R from version 2.1.0 on.

12 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

As the above example illustrates, na.approx uses by default the underlying time scale for inter-
polation. This can be changed, e.g., to an equidistant spacing, by setting the second argument of
na.approx.

3. Combining zoo with other packages

The main purpose of the package zoo is to provide basic infrastructure for working with indexed
totally ordered observations that can be either employed by users directly or can be a basic
ingredient on top of which other packages can build. The latter is illustrated with a few brief
examples involving the packages strucchange, tseries, fBasics and stats in this section.

3.1. strucchange: Empirical fluctuation processes

The package strucchange provides a collection of methods for testing, monitoring and dating
structural changes, in particular in linear regression models. Tests for structural change assess
whether the parameters of a model remain constant over an ordering with respect to a specified
variable, usually time. To adequatly store and visualize empirical fluctuation processes which
capture instabilities over this ordering, a data type for indexed ordered observations is required.
This was the motivation for starting the zoo project.
A simple example for the need of "zoo" objects in strucchange which is not (easily) be implemented
by other irregular time series classes available on CRAN is described in the following. We assess
the constancy of the electrical resistance over the apparent juice content of kiwi fruits.8 The data
set fruitohms is contained in the DAAG package (Maindonald and Braun 2004). The fitted ocus
object contains the OLS-based CUSUM process for the mean of the electrical resistance (variable
ohms) indexed by the juice content (variable juice).

> library(strucchange)

> library(DAAG)

Loading required package: leaps
Loading required package: oz

> data(fruitohms)

> ocus <- gefp(ohms ~ 1, order.by = ~juice, data = fruitohms)

This OLS-based CUSUM process can be visualized using the plot method for "gefp" objects
which builds on the "zoo" method and yields in this case the plot in Figure 3 showing the process
which crosses its 5% critical value and thus signals a significant decrease in the mean electrical
resistance over the juice content. for more information on the package strucchange and the function
gefp see Zeileis et al. (2002) and Zeileis (2004).

3.2. tseries: Historical financial data

A typical application for irregular time series which became increasingly important over the last
years in computational statistics and finance is daily (or higher frequent) financial data. The
package tseries provides the function get.hist.quote for obtaining historical financial data by
querying Yahoo! Finance at http://finance.yahoo.com/, an online portal quoting data provided
by Reuters. The following code queries the quotes of Lucent Technologies starting from 2001-01-01:

> library(tseries)

> LU <- get.hist.quote(instrument = "LU", start = "2001-01-01",

+ end = "2004-09-30", origin = "1970-01-01")

8A different approach would be to test whether the slope of a regression of electrical resistance on juice content
changes with increasing juice content, i.e., to test for instabilities in ohms juice instead of ohms 1. Both lead
to similar results.

http://finance.yahoo.com/

Achim Zeileis, Gabor Grothendieck 13

> plot(ocus)

10 20 30 40 50 60

0
1

2
3

4

juice

em
pi

ric
al

 fl
uc

tu
at

io
n

pr
oc

es
s

M−fluctuation test

Figure 3: Empirical M-fluctuation process for fruitohms data

time series starts 2001-01-02

In the returned LU object the irregular data is stored by extending it in a regular grid and filling
the gaps with NAs. The time is stored in days starting from an origin, in this case specified to
be 1970-01-01, the origin used by the Date class. This series can be transformed easily into an
irregular "zoo" series using a "Date" index. The log-difference returns for Lucent Technologies is
depicted in Figure 4.

> LU <- as.zoo(LU)

> index(LU) <- as.Date(index(LU))

> LU <- na.omit(LU)

3.3. fBasics: Indexes of class "timeDate"

Although the methods in zoo work out of the box for many index classes, it might be necessary
for some index classes to provide c, length, ORDER and MATCH methods such that the methods
in zoo work properly. An example for such an index class which requires a bit more attention is
"timeDate" from the fBasics package.

But after the necessary methods have been defined

> length.timeDate <- function(x) prod(x@Dim)

> ORDER.timeDate <- function(x, ...) order(as.POSIXct(x), ...)

> MATCH.timeDate <- function(x, table, nomatch = NA, ...) match(as.POSIXct(x),

+ as.POSIXct(table), nomatch = NA, ...)

the class "timeDate" can be used for indexing "zoo" objects. The following example illustrates
how z2 can be transformed to use the "timeDate" class.

14 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

> plot(diff(log(LU)))

O
pe

n

−
0.

3
−

0.
1

0.
1

0.
2

0.
3

H
ig

h

−
0.

3
−

0.
1

0.
1

0.
2

0.
3

Lo
w

−
0.

2
0.

0
0.

2
0.

4
−

0.
2

0.
0

0.
1

0.
2

C
lo

se

2001 2002 2003 2004

Index

diff(log(LU))

Figure 4: Log-difference returns for Lucent Technologies

Achim Zeileis, Gabor Grothendieck 15

> library(fBasics)

> z2td <- zoo(coredata(z2), timeDate(index(z2), FinCenter = "GMT"))

> z2td

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07
0.94306673 -0.04149429 0.59448077 -0.52575918 -0.96739776 0.95605566
2004-02-12 2004-02-16 2004-02-20 2004-02-24
-0.62733473 -0.92845336 0.56060280 0.08291711

3.4. stats: (Dynamic) regression modelling

zoo provides a facility for extending regression functions such as lm to handle time series. One
simply encloses the formula argument in I(...) and ensures that all variables in the formula are
of class "zoo" or all are of class "ts".
Basic regression functions, like lm or glm, in which regression relationships are specified via a
formula only have limited support for time series regression. The reason is that lm(formula,
...) calls the generic function model.frame(formula, ...) to create a a data frame with the
variables required. This dispatches to model.frame.formula which does not deal specifically with
(various types of) time series data. Therefore, it would be desirable to dispatch to a specialized
model.frame method depending on the type of the dependent variable. As this is a non-standard
dispatch, zoo provides the following mechanism: In the call to the regression function, the formula
is insulated by I(), e.g., as in lm(I(formula), ...), leaving formula unaltered but returning
an object of class "AsIs". Then, model.frame.AsIs is called which examines the dependent
variable of the formula and then dispatches to model.frame.foo if this is of class "foo". In zoo,
the methods model.frame.zoo and model.frame.ts are provided which are able to create model
frames from formulas in which all variables are of class "zoo" or "ts", respectively. The advantage
of model.frame.zoo is that it aligns the variables along a common index, it allows the usage of
lag and diff in the model specification and works with the NA handling methods described in
Section 2.7. Therefore, dynamic linear regression models can be fit easily using the standard lm
function by just insulating I(formula) in the corresponding call9.
A simple example based on artificial data is given below: the lag of a dependent variable is
explained by the first differences of a numeric regressor and an explanatory factor. Note, that the
variables have different indexes. First, a linear regression model is fitted, then a quantile regression
is carried out for the same equation.

> yz <- zoo(1:20)^2

> xz <- zoo(1:18)^2

> fz <- zoo(gl(4, 5))

> lm(I(lag(yz) ~ diff(xz) + fz))

Call:
lm(formula = I(lag(yz) ~ diff(xz) + fz))

Coefficients:
(Intercept) diff(xz) fz

-68.275 10.092 8.922

> library(quantreg)

> rq(I(lag(yz) ~ diff(xz) + fz))

9In addition to lm and glm, this approach works for many other regression functions including randomForest

ensembles from randomForest, svm support vector machines from e1071, lqs resistant regression from MASS, nnet
neural networks from nnet, rq quantile regression from quantreg, and possibly many others.

16 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

Call:
rq(formula = I(lag(yz) ~ diff(xz) + fz))

Coefficients:
(Intercept) diff(xz) fz
-58.50000 11.64286 -10.28571

Degrees of freedom: 17 total; 14 residual

See the help page of model.frame.zoo for more examples and additional information. Further-
more, note that this feature is under development and might subject to changes in future versions.

4. Summary and outlook

The package zoo provides an S3 class and methods for indexed totally ordered observations, such
as irregular time series. Its key design goals are independence of a particular index class and
compatibility with standard generics similar to the behaviour of the corresponding "ts" methods.
This paper describes how these are implemented in zoo and illustrates the usage of the methods
for plotting, merging and binding, several mathematical operations, extracting and replacing data
and index, coercion and NA handling.
An indexed object of class "zoo" can be thought of as data plus index where the data are essentially
vectors or matrices and the index can be a vector of (in principle) arbitrary class. Therefore,
objects of classes "ts", "its", "irts" and "timeSeries" can easily be transformed into "zoo"
objects—the reverse transformation is also possible provided that the index fulfills the restrictions
of the respective class. Hence, the "zoo" class can also be used as the basis for other classes of
indexed and objects and more specific functionality can be built on top of it.
Whereas a lot of effort was put into achieving independence of a particular index class, the types
of data that can be indexed with "zoo" are currently limited to vectors and matrices, typically
containing numeric values. Although, there is some limited support available for indexed factors,
one important direction for future development of zoo is to add better support for other objects
that can also naturally be indexed including specifically factors, data frames and lists.

Computational details

The results in this paper were obtained using R 2.0.0 with the packages zoo 0.9–1, strucchange
1.2–7, fBasics 200.10058, tseries 0.9–24, randomForest 4.5–1 and DAAG 0.37. R itself and all
packages used are available from CRAN at http://CRAN.R-project.org/.

References

Heywood G (2004). its: Irregular Time Series. Portfolio & Risk Advisory Group and Com-
merzbank Securities. R package version 1.0.3.

Maindonald J, Braun WJ (2004). DAAG: Data Analysis And Graphics. R package version 0.37,
URL http://www.stats.uwo.ca/DAAG/.

R Development Core Team (2004). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-00-3, URL http:
//www.R-project.org/.

Trapletti A (2004). tseries: Time Series Analysis and Computational Finance. R package version
0.9-23.

http://CRAN.R-project.org/
http://www.stats.uwo.ca/DAAG/
http://www.R-project.org/
http://www.R-project.org/

Achim Zeileis, Gabor Grothendieck 17

Wuertz D (2004). Rmetrics: An Environment and Software Collection for Teaching Financial
Engineering and Computational Finance. R package fBasics, version 200.10058, URL http:
//www.itp.phys.ethz.ch/econophysics/R/2.0.

Zeileis A (2004). “Implementing a Class of Structural Change Tests: An Econometric Computing
Approach.” Report 7, Department of Statistics and Mathematics, Wirtschaftsuniversität Wien,
Research Report Series. URL http://epub.wu-wien.ac.at/.

Zeileis A, Leisch F, Hornik K, Kleiber C (2002). “strucchange: An R Package for Testing for
Structural Change in Linear Regression Models.” Journal of Statistical Software, 7(2), 1–38.
URL http://www.jstatsoft.org/v07/i02/.

http://www.itp.phys.ethz.ch/econophysics/R/2.0
http://www.itp.phys.ethz.ch/econophysics/R/2.0
http://epub.wu-wien.ac.at/
http://www.jstatsoft.org/v07/i02/

18 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

A. Reference card

Creation
zoo(x, order.by) creation of a "zoo" object from the observations x (a vector or a ma-

trix) and an index order.by by which the observations are ordered.
For computations on arbitrary index classes, methods to the follow-
ing genric functions are assumed to work: combining c(), querying
length length(), subsetting [, ordering ORDER() and value matching
MATCH().

Standard methods
plot plotting
lines adding a "zoo" series to a plot
print printing

summary summarizing (column-wise)
str displaying structure of "zoo" objects

head, tail head and tail of "zoo" objects

Coercion
as.zoo coercion to "zoo" is available for objects of class "ts", "its", "irts"

(plus a default method).
as.class.zoo coercion from "zoo" to other classes. Currently available for class in

"matrix", "vector", "data.frame", "list", "irts" and "its".
is.zoo querying wether an object is of class "zoo"

Merging and binding
merge union, intersection, left join, right join along indexes
cbind column binding along the intersection of the index
rbind row binding (indexes may not overlap)

aggregate compute summary statistics along a coarser grid of indexes

Mathematical operations
Ops group generic functions performed along the intersection of indexes
t transposing (coerces to "matrix" before)

cumsum compute (columnwise) cumulative quantities: sums cumsum(), prod-
ucts cumprod(), maximum cummax(), minimum cummin().

Extracting and replacing data and index
index, time extract the index of a series

index<-, time<- replace the index of a series
coredata, coredata<- extract and replace the data associated with a "zoo" object

lag lagged observations
diff arithmetic and geometric differences

start, end querying start and end of a series
window, window<- subsetting of "zoo" objects using their index

NA handling
na.omit omit NAs

na.contiguous compute longest sequence of non-NA observations
na.locf impute NAs by carrying forward the last observation

na.approx impute NAs by interpolation

	Introduction
	The class "zoo" and its methods
	Creation of "zoo" objects
	Plotting
	Merging and binding
	Mathematical operations
	Extracting and replacing the data and the index
	Coercion to and from "zoo"
	NA handling

	Combining zoo with other packages
	strucchange: Empirical fluctuation processes
	tseries: Historical financial data
	fBasics: Indexes of class "timeDate"
	stats: (Dynamic) regression modelling

	Summary and outlook
	Reference card

