RX Reference Manual
Release 0.7.1

Jorg Lehmann
André Wobst

2004/12/15

http://pyx.sourceforge.net/

Abstract

R/X is a Python package to create encapsulated PostScript figures. It provides classes and methods to access basic
PostScript functionality at an abstract level. At the same time the emerging structures are very convenient to produce
all kinds of drawings in a non-interactive way. In combination with the Python language itself the user can just code
any complexity of the figure wanted. Additionally apXVIATEX interface enables one to use the famous high quality
typesetting within the figures.

A major part of X on top of the already described basis is the provision of high level functionality for complex tasks
like 2d plots in publication-ready quality.

CONTENTS

Introduction 1
1.1 Organisation of the/R package. 1
Basic graphics 3
2.1 Introduction L e e 3
2.2 Pathoperations e e 5
2.3 Attributes: Styles and Decorations e e 7
2.4 Modulepath . . . L 8
25 Modulecanvas e e e 13
Module text : TeX/LaTeX interface 15
3.1 Basicfunctionality. 15
3.2 TheteXrunner e 15
3.3 TeX/LaTeXattributes. e e 17
3.4 Usingthe graphics-bundlewithLaTeX i 18
3.5 TeX/LaTeX MeSSage ParSErS . . . v v v v v i v e e e e e e e e e e e e e 18
3.6 Thedefaulttexrunnerinstance. e 19
Graphs 21
4.1 IntroduCtion e e 21
4.2 Componentarchitecture e 23
4.3 Module graph.graph: X-Y-Graphs. 23
4.4 Module graph.data: Data. 25
4.5 Module graph.style: Styles. e 27
4.6 Module graph.key: Keys e e 30
Axes 31
5.1 0 AXES . . o e e 31
5.2 TiCKS . . . e 34
5.3 Partitioners. e e e e e e e 34
5.4 Texter. e e e e e 36
5.5 Painter e e 37
5.6 Rater. e e 39
Module box: convex box handling 41
6.1 Polygon. e e 41
6.2 Functionsworkingonaboxlist 42
6.3 Rectangularboxes L e 42
Module connector 43

10

11

12

13

D

E

7.1 Clasdine e
7.2 Clasarc e
7.3 Clasgurve e
7.4 Clasdwolines e

Module epsfile: EPS file inclusion

Bitmaps

9.1 Introduction
9.2 Bitmapmodule

Module bbox

10.1 bboxconstructor.
10.2 bboxmethods.,

Module color

11.1 Colormodels
11.2 Example
11.3 Colorpalettes

Module unit

121 Classlength.
12.2 Subclassesoflength
12.3 Conversionfunctions.

Module trafo: linear transformations

13.1 Classtrafo. e
13.2 Subclassesoftrafo.

Mathematical expressions
Named colors

Named palettes

Module style

Arrows in deco module

Index

57

59

61

63

65

67

CHAPTER
ONE

Introduction

RX is a Python package for the creation of vector graphics. As such it readily allows one to generate encapsulated
PostScript files by providing an abstraction of the PostScript graphics model. Based on this layer and in combination
with the full power of the Python language itself, the user can just code any complexity of the figure waited. P
distinguishes itself from other similar solutions by itsXTIATEX interface that enables one to make direct use of the
famous high quality typesetting of these programs.

A major part of X on top of the already described basis is the provision of high level functionality for complex tasks
like 2d plots in publication-ready quality.

1.1 Organisation of the RXX package

The RX package is split in several modules, which can be categorised in the following groups

Functionality Modules

basic graphics functionality canvas , path , deco, style ,color ,andconnector

text output via EX/IATEX text andbox

linear transformations and unitstrafo andunit

graph plotting functionality graph (including submodules) argraph.axis (including submodules)
EPS file inclusion epsfile

These modules (and some other less import ones) are imported into the module namespace by using
from pyx import *

at the beginning of the Python program. However, in order to prevent namespace pollution, you may also simply use
‘import pyx . Throughout this manual, we shall always assume the presence of the above given import line.a

CHAPTER
TWO

Basic graphics

2.1 Introduction

The path module allows one to construct PostScriptikéhs which are one of the main building blocks for the
generation of drawings. A PostScript path is an arbitrary shape consisting of straight lines, arc segments and cubic
Bézier curves. Such a path does not have to be connected but may also comprise several disconnected segments, which
will be calledsubpathsn the following.

XXX example for paths and subpaths

Usually, a path is constructed by passing a list of the path primitweseto , lineto , curveto , etc., to the
constructor of th@ath class. The following code snippet, for instance, defines ajptthat consists of a straight line
from the point(0, 0) to the point(1,1)

from pyx import *
p = path.path(path.moveto(0, 0), path.lineto(1, 1))

Equivalently, one can also use the predefipath subclasdine and write

p = path.line(0, 0, 1, 1)

While already some geometrical operations can be performed with this path (see next section), ¥XathgrcPis
needed in order to actually being able to draw the path, namely an instancecafthees class. By convention, we
use the name for this instance:

c = canvas.canvas()
In order to draw the path on the canvas, we usestteke() method of thecanvas class, i.e.,

c.stroke(p)
c.writeEPSfile("line™)

To complete the example, we have addesriieEP Sfile() call, which writes the contents of the canvas to the
file ‘line.eps’. Note that an extensionéps’ is added automatically, if not already present in the given filename.

As a second example, let us define a path which consists of more than one subpath:

(a) (b) (c) (d)

Figure 2.1: Rectangle consisting of (a) four separate lines, (b) one open path, and (c) one closed path. (d) Filling a
path always closes it automatically.

cross = path.path(path.moveto(0, 0), path.rlineto(1, 1),
path.moveto(1, 0), path.rlineto(-1, 1))

The first subpath is again a straight line frgi 0) to (1,1), with the only difference that we now have used the
rineto class, whose arguments count relative from the last point in the path. The saoceatb instance opens

a new subpath starting at the poifit 0) and ending at0, 1). Note that although both lines intersect at the point
(1/2,1/2), they count as disconnected subpaths. The general rule is that each occuremee/efa instance opens

a new subpath. This means that if one wants to draw a rectangle, one should not use

rectl = path.path(path.moveto(0, 0), path.lineto(0, 1),
path.moveto(0, 1), path.lineto(1, 1),
path.moveto(1, 1), path.lineto(1, 0),
path.moveto(1, 0), path.lineto(0, 0))

which would construct a rectangle out of four disconnected subpaths (see Fig. 2.1a). In a better solution (see Fig. 2.1b),
the pen is not lifted between the first and the last point:

rect2 = path.path(path.moveto(0, 0), path.lineto(0, 1),
path.lineto(1, 1), path.lineto(1, 0))

However, as one can see in the lower left corner of Fig. 2.1b, the rectangle is still incomplete. It needs to be closed,
which can be done explicitly by using for the last straight line of the rectangle (from the(pointback to the origin
at(0,0)) theclosepath directive:

rect3 = path.path(path.moveto(0, 0), path.lineto(0, 1),
path.lineto(1, 1), path.lineto(1, 0),
path.closepath())

The closepath directive adds a straight line from the current point to the first point of the current subpath and
furthermorecloseshe sub path, i.e., it joins the beginning and the end of the line segment. This results in the intended
rectangle shown in Fig. 2.1c. Note that filling the path implicitly closes every open subpath, as is shown for a single
subpath in Fig. 2.1d), which results from

c.stroke(rect2, [deco.filled([color.grey(0.95)])])

More details on the available path elements can be found in Sect. 2.4.2.
XXX more on styles and attributes and reference to corresponding section

Of course, rectangles are also predefined/¥ Bo above we could have as well written

4 Chapter 2. Basic graphics

Figure 2.2: Example: Intersection of circle with line yielding two radii.

rect2 = path.rect(0, 0, 1, 1)

Here, the first two arguments specify the origin of the rectangle while the second two arguments define its width and
height, respectively. For more details on the predefined paths, we refer the reader to Sect. 2.4.5.

2.2 Path operations

Often, one wants to perform geometrical operations with a path before placing it on a canvas by stroking or filling it.
For instance, one might want to intersect one path with another one, split the paths at the intersection points, and then
join the segments together in a new wayX Bupports such tasks by means of a number of path methods, which we
will introduce in the following.

Suppose you want to draw the radii to the intersection points of a circle with a straight line. This task can be done
using the following code which results in Fig. 2.2

from pyx import *
¢ = canvas.canvas()

circle = path.circle(0, 0, 2)

line = path.line(-3, 1, 3, 2)
c.stroke(circle, [style.linewidth.Thick])
c.stroke(line, [style.linewidth.Thick])

isects_circle, isects_line = circle.intersect(line)
for isect in isects_circle:
isectx, isecty = circle.at(isect)
c.stroke(path.line(0, 0, isectx, isecty))

c.writeEPSfile("radii")

Here, the basic elements, a circle around the pdint) with radius2 and a straight line, are defined. Then, passing
theline, to theintersect() method ofcircle, we obtain a tuple of parameter values of the intersection points. The

first element of the tuple is a list of parameter values for the path wimbsesect() method has been called,

the second element is the corresponding list for the path passed as argument to this method. In the present example,
we only need one list of parameter values, nanig#ets_circle Using theat() path method to obtain the point
corresponding to the parameter value, we draw the radii for the different intersection points.

Another powerful feature of/X is its ability to split paths at a given set of parameters. For instance, in order to fill in
the previous example the segment of the circle delimited by the straight line (cf. Fig. 2.3), one first has to construct a
path corresponding to the outline of this segment. The following code snippet yieldegment

2.2. Path operations 5

Figure 2.3: Example: Intersection of circle with line yielding radii and circle segment.

arcl, arc2 = circle.split(isects_circle)
if arcl.arclen() < arc2.arclen():

arc = arcl
else:

arc = arc2

isects_line.sort()
linel, line2, line3 = line.split(isects_line)

segment = line2 << arc

Here, we first split the circle using treplit() method passing the list of parameters obtained above. Since the
circle is closed, this yields two arc segments. We then usartien() , which returns the arc length of the path,

to find the shorter of the two arcs. Before splitting the line, we have to take into account tisatithe method

only accepts a sorted list of parameters. Finally, we join the straight line and the arc segment. For this, we make use of
the << operator, which not only adds the paths (which could be done ukm&®‘ + arc), but also joins the last
subpath ofine2 and the first one adirc. Thus,segmentonsists of only a single subpath and filling works as expected.

An important issue when operating on paths is the parametrisation used. Intespalige® a parametrisation which
uses an interval of length for each path element of a path. For instance, for a simple straight line, the possible
parameter values range frointo 1, corresponding to the first and last point, respectively, of the line. Appending
another straight line, would extend this range to a maximal val@e ¥bu can always query this maximal value using
therange() method of thepath class.

However, the situation becomes more complicated if more complex objects like a circle are involved. Then, one could
be tempted to assume that again the parameter value rang® twin because the predefined circle consists just of
onearc together with a&losepath element. However, as a simplgdth.circle(0, 0, 1).range() " will

tell, this is not the case: the actual range is much larger. The reason for this behaviour lies in the internal path handling
of RX: Before performing any non-trivial geometrical operation with a path, it will automatically be converted into

an instance of theormpath class (see also Sect. 2.4.3). These so generated paths are already separated in their
subpaths and only contain straight lines and Bézier curve segments. Thus, as is easily imaginable, they are much
simpler to deal with.

A unique way of accessing a point on the path is to use the arc length of the path segment from the first point of the
path to the given point. Thus, alf® path methods that accept a parameter value also allow the user to pass an arc
length. For instance,

6 Chapter 2. Basic graphics

from math import pi

ptl
pt2

path.circle(0, 0, 1).at(arclen=pi)
path.circle(0, 0, 1).at(arclen=3*pi/2)

c.stroke(path.path(path.moveto(*ptl), path.lineto(*pt2)))
will draw a straight line from a point at angl80 degrees (in radians) to another point at angl270 degrees (in

radians3=/2) on the unit circle.

More information on the available path methods can be found in Sect. 2.4.1.

2.3 Attributes: Styles and Decorations

XXX to be done

2.3. Attributes: Styles and Decorations 7

2.4 Module path

Thepath module defines several important classes which are documented in the present section.

2.4.1 Class path — PostScript-like paths

classpath (*pathitemg
This class represents a PostScript like path consisting of the path elgraénitems

All possible path items are described in Sect. 2.4.2. Note that there are restrictions on the first path element and
likewise on each path element afteclasepath directive. In both cases, no current point is defined and the
path element has to be an instance of one of the following class®egeto , arc , andarcn .

Instances of the clagmth provide the following methods (in alphabetic order):

append (pathiterm)
Appends gathitemto the end of the path.

arclen ()
Returns the total arc length of the pdth.

arclentoparam (length3
Returns the parameter values corresponding to the arc |eiegigths’

at (param=None, arclen=None
Returns the coordinates (as 2-tuple) of the path point corresponding to the parametgravatuer, alterna-
tively, the arc lengtfarclen® At discontinuities in the path, the limit from below is returried.

bbox ()
Returns the bounding box of the path. Note that this returned bounding box may be too large, if the path contains
anycurveto elements, since for these the control box, i.e., the bounding box enclosing the control points of
the Bézier curve is returned.

begin ()
Returns the coordinates (as 2-tuple) of the first point of the path.

curvradius (param=None, arclen=None
Returns the curvature radius (or None if infinite) at parameter param or, alternatively, arcdesigttt This is
the inverse of the curvature at this parameter. Note that this radius can be negative or positive, depending on the
sign of the curvaturé.

end()
Returns the coordinates (as 2-tuple) of the end point of thefpath.

extend (pathitem$
Appends the lispathitemdo the end of the path.

intersect (opath
Returns a tuple consisting of two lists of parameter values corresponding to the intersection points of the path
with the other pattopath respectively. For intersection points which are not farther apart tapsilonpoints,
only one is returned.

joined (opath
Appendsopathto the end of the path, thereby merging the last subpath (which must not be closed) of the path
with the first sub path adpathand returns the resulting new pdth.

normpath (epsilon=Nonég
Returns the equivalemtormpath . For the conversion and for later calculations with theempath and
accuracy ofpsilonpoints is used. I&psilonis None the globalepsilonof thepath module is used.

range ()

8 Chapter 2. Basic graphics

Returns the maximal parameter vapsramthat is allowed in the path methods.

reversed ()
Returns the reversed paih.

split (paramg
Splits the path at the parameteerams which have to be sorted in ascending order, and returns a corresponding
list of normpath instances.

tangent (param=None, arclen=None, length=None
Return dine instance corresponding to the tangent vector to the path at the parametepara@oeor, alter-
natively, the arc lengtarclen® At discontinuities in the path, the limit from below is returnedlelfigthis not
None, the tangent vector will be scaled correspondirigly.

trafo (param=None, arclen=None
Returns a trafo which maps a poifit, 1) to the tangent vector to the path at the parameter vadwam or,
alternatively, the arc lengtirclen® At discontinuities in the path, the limit from below is returried.

transformed (trafo)
Returns the path transformed according to the linear transformiaéifm Here,trafo must be an instance of
thetrafo.trafo classt

Some notes on the above:

e Thet denotes methods which require a prior conversion of the path intbwrapath instance. This is done
automatically (using the precisi@psilonset globally usingpath.set), but if you need to call such methods
often or if you need to change the precision used for this conversion, it is a good idea to perform the conversion
manually.

e Instead of using thpined() = method, you can also join two paths together with help oftheperator, for
instancep = pl « p2'.

e In the methods accepting both a parameter valaemand an arc lengtlarclen, exactly one of these ar-
guments has to provided. Each argument can either be a number/length or a tuple. In the former case, the
parameter valup@aram (arclen) refers to the whole path and has to be smaller or equaéliorange()

(self.arclen()), otherwise an exception is raised. In the latter case, the first element has to be an integer
specifying the subpath and the second element specifies the parameter value or the arc length inside of this
subpath.

2.4.2 Path elements
The clasgathitem is the superclass of all PostScript path construction primitives. It is never used directly, but only
by instantiating its subclasses, which correspond one by one to the PostScript primitives.

Except for the path elements ending ipt , all coordinates passed to the path elements can be given as number (in
which case they are interpreted as user units with the currently set default typeyxrnémgths.

The following operation move the current point and open a new subpath:

classmoveto (X, y)
Path element which sets the current point to the absolute coordimaysThis operation opens a new subpath.

classrmoveto (dx, dy
Path element which moves the current point &y, €ly). This operation opens a new subpath.

Drawing a straight line can be accomplished using:

classlineto (x,y)
Path element which appends a straight line from the current point to the point with absolute coordingtes (
which becomes the new current point.

2.4. Module path 9

classrlineto (dx, dy)
Path element which appends a straight line from the current point to the a point with relative coordirates (
dy), which becomes the new current point.

For the construction of arc segments, the following three operations are available:

classarc (x,Y,r, anglel, anglep
Path element which appends an arc segment in counterclockwise direction with absolute coondigates (
the center and radiusfrom anglelto angle2(in degrees). If before the operation, the current point is defined,
a straight line is from the current point to the beginning of the arc segment is prepended. Otherwise, a subpath,
which thus is the first one in the path, is opened. After the operation, the current point is at the end of the arc
segment.

classarcn (X, vy, r, anglel, angleR
Path element which appends an arc segment in clockwise direction with absolute coordinatefstiie center
and radiug from anglelto angle2(in degrees). If before the operation, the current point is defined, a straight
line is from the current point to the beginning of the arc segment is prepended. Otherwise, a subpath, which thus
is the first one in the path, is opened. After the operation, the current point is at the end of the arc segment.

classarct (x1,y1,x2,y2,Y
Path element which appends an arc segment of radioanecting betweerxg, y1) and 2, y2).

Bézier curves can be constructed using:

classcurveto (x1,y1, x2,y2, X3,)3
Path element which appends a Bézier curve with the current point as first control point and the other control
points &1, y1), (x2, y2), and &3, y3).

classrcurveto (dx1, dyl, dx2, dy2, dx3, dy3
Path element which appends a Bézier curve with the current point as first control point and the other control
points defined relative to the current point by the coordinate$ @y1), (dx2 dy2), and @x3 dy3.

Note that when calculating the bounding box (see Sect. 10) of Bézier cupesases for performance reasons the
so-called control box, i.e., the smallest rectangle enclosing the four control points of the Bézier curve. In general, this
is not the smallest rectangle enclosing the Bézier curve.

Finally, an open subpath can be closed using:

classclosepath ()
Path element which closes the current subpath.

For performance reasons, two non-PostScript path elements are defined, which perform multiple identical operations:

classmultilineto_pt (points_pj
Path element which appends straight line segments starting from the current point and going through the list of
points given in thgoints_ptargument. All coordinates have to be given in PostScript points.

classmulticurveto_pt (points_pj
Path element which appends Bézier curve segments starting from the current point and going through the list of
each three control points given in theints_ptargument.

2.4.3 Class normpath

Thenormpath class is used internally for all non-trivial path operations, i.e. the ones marketlibytlee description
of thepath above. It represents a path as a list of subpaths, which are instances of thoatasgbpath . These
normsubpath s themselves consist of a list obrmsubpathitems which are either straight lineagrmline)
or Bézier curvesriormcurve).

A given path can easily be converted to the correspondargipath using the method with this name:

10 Chapter 2. Basic graphics

np = p.normpath()

Additionally, you can specify the accuracy (in points) which is used imatmpath calculations by means of the
argumentepsilon which defaults to ta0~° points. This default value can be changed using the module function
path.set

To construct anormpath from a list ofnormsubpath instances, you pass them to thermpath constructor:

classnormpath (normsubpaths=[]
Construct anormpath consisting osubnormpathswhich is a list ofsubnormpath instances.

Instances ohormpath offers all methods of regulgrath s, which also have the same semantics. An exception are

the methodsippend andextend . While they allow for adding of instances sfibnormpath to thenormpath

instance, they also keep the functionality of a regular path and allow for regular path elements to be appended. The
later are converted to the proper normpath representation during addition.

In addition to thepath methods, anormpath instance also offers the following methods, which operate on the
instance itself, i.e., modify it in place.

join (other
Joinother, which has to be path instance, to th@ormpath instance.

reverse ()
Reverses thaormpath instance.

transform (trafo)
Transforms th@ormpath instance according to the linear transformatii@o.

Finally, we remark that the sum ofrormpath and apath always yields anormpath .

2.4.4 Class normsubpath

classnormsubpath (normsubpathitems=[], closed=0, epsilon=18-5
Construct amormsubpath consisting ohormsubpathitemsvhich is a list olnormsubpathitem instances.
If closedis set, thenormsubpath will be closed, thereby appending a straight line segment from the first to the
last point, if it is not already present. All calculations with termsubpath are performed with an accuracy
of epsilon

Mostnormsubpath methods behave like the ones gbath .
Exceptions are:

append (anormsubpathitein
Append theanormsubpathitenio the end of thenormsubpath instance. This is only possible if the
normsubpath is not closed, otherwise an exception is raised.

extend (normsubpathiten)s
Extend thenormsubpath instances bynormsubpathitemswhich has to be a list ofiormsubpathitem
instances. This is only possible if thermsubpath is not closed, otherwise an exception is raised.

close ()
Close thenormsubpath instance, thereby appending a straight line segment from the first to the last point, if
it is not already present.

2.4.5 Predefined paths

For convenience, some oft-used paths are already predefined. All of them are subclasspatbf ttlass.

2.4. Module path 11

classline (x0,y0, x1,y}
A straight line from the pointxQ, y0) to the point k1, y1).

classcurve (x0,y0, x1,yl1, x2,y2, x3,y3
A Bézier curve with control pointsQ, y0), .. ., (x3, y3).

classrect (x,y,w, b

A closed rectangle with lower left poink,(y), width w, and heighh.

classcircle (x,y,1
A closed circle with centerx(y) and radiug.

12

Chapter 2. Basic graphics

2.5 Module canvas

One of the central modules for the PostScript accesgdridhamedcanvas . Besides providing the clagsinvas ,
which presents a collection of visual elements like paths, other canvgdesr BTEX elements, it contains the class
canvas.clip which allows clipping of the output.

A canvas may also be embedded in another one usirigs&st method. This may be useful when you want to
apply a transformation on a whole set of operations..

2.5.1 Class canvas

This is the basic class of the canvas module, which serves to collect various graphical and text elements you want to
write eventually to an (E)PS file.

classcanvas (attrs=[], texrunner=Nong
Construct a new canvas, applying the gitrs, which can be instances trifo.trafo ,canvas.clip
style.strokestyle or stlye.fillstyle . Thetexrunnerargument can be used to specify the texrun-
ner instance used for thext() = method of the canvas. If not specified, it defaultsetxt.defaulttexrunner

Paths can be drawn on the canvas using one of the following methods:

draw (path, attr9
Drawspathon the canvas applying the givattrs.

fill (path, attrs=[])
Fills the givenpathon the canvas applying the givettrs.

stroke (path, attrs=[])
Strokes the givepathon the canvas applying the givettrs.

Arbitrary allowed elements like otheanvas instances can be inserted in the canvas using

insert (item, attrs=[])
Inserts an instance dfase.canvasitem into the canvas. Iattrs are presentitemis inserted into a new
canvas instance withattrs as arguments passed to its constructor is created. Thepaiigs instance is
inserted itself into the canvas. Retuitem

Text output on the canvas is possible using

text (x,y, text, attrs=[)
Inserts text at position & y) into the canvas applyingattrs. This is a shortcut for
insert(texrunner.text(x, y, text, attrs))).

Thecanvas class provides access to the total geometrical size of its element:

bbox ()
Returns the bounding box enclosing all elements of the canvas.

A canvas also allows one to set global options:

set (styleg
Sets the givestyles(instances otyle. fillstyle or style.strokestyle or subclasses thereof). for
the rest of the canvas.

settexrunner (texrunnej
Sets a newexrunnerfor the canvas.

The contents of the canvas can be written using:

writeEPSfile (filename, paperformat=None, rotated=0, fittosize=0, margin=1*unit.t_cm, bbox=None, bboxen-
large=1*unit.t_p1
Writes the canvas télename(the extensioneps is appended automatically). Optionallypaperformatcan

2.5. Module canvas 13

be specified, in which case the output will be centered with respect to the corresponding size using the given
margin Seecanvas._paperformatsr a list of known paper formats . Usetated if you want to center on 80°

rotated version of the respective paper formatitidsizeis set, the output is additionally scaled to the maximal
possible size. Normally, the bounding box of the canvas is calculated automatically from the bounding box of its
elements. Alternatively, you may specify thboxmanually. In any case, the bounding box becomes enlarged

on all side bybboxenlarge This may be used to compensate for the inabilityydf 8 take the linewidths into
account for the calculation of the bounding box.

2.5.2 Patterns

Thepattern class allows the definition of PostScript Tiling patterns (cf. Sect. 4.9 of the PostScript Language Refer-
ence Manual) which may then be used to fill paths. The clgssitsrn andcanvas differ only in their constructor

and in the absence ofvariteEP Sfile() method in the former. Thpattern constructor accepts the following
keyword arguments:

keyword description
painttype 1 (default) for coloured patterns @rfor uncoloured patterns
tilingtype 1 (default) for constant spacing tilings (patterns are spaced constantly by a multiple of a device

pixel), 2 for undistored pattern cell, whereby the spacing may vary by as much as one device
pixel, or3 for constant spacing and faster tiling which behaves as tiling typet with
additional distortion allowed to permit a more efficient implementation.

xstep desired horizontal spacing between pattern cellsNaee (default) for automatic calculation
from pattern bounding box.

ystep desired vertical spacing between pattern cells,Nizee (default) for automatic calculation
from pattern bounding box.

bbox bounding box of pattern. Us¢one for an automatical determination of the bounding box
(including an enlargement dypts on each side.)

trafo additional transformation applied to patternNwne (default). This may be used to rotate the

pattern or to shift its phase (by a translation).

After you have created a pattern instance, you define the pattern shape by drawing in it like in an ordinary canvas. To
use the pattern, you simply pass the pattern instancestmke() , fill() ,draw() orset() method of the
canvas, just like you would do with a colour, etc.

14 Chapter 2. Basic graphics

CHAPTER
THREE

Module text : TEX/IATEX interface

3.1 Basic functionality

Thetext module seamlessly integrates the famous typesetting techniqe#FTEX into RX. The basic procedure
is:

e start a EX/IATEX instance as soon as gJ/IATEX preamble setting or a text creation is requested
e create boxes containing the requested text and shipout those boxes to the dvi file

e immediately analyse thgeX/LATEX output for errors; the box extents are also contained in gXeLATEX output
and thus become available immediately

e when your TeX installation supports the mode andyX is configured to use it, the dvi output is also analysed
immediately; alternativelyiX quits the EX/IATEX instance to read the dvi output once PostScript needs to be
written or markers are accessed

e Typel fonts are used for the PostScript generation

Note that for using Typel fonts an appropriate font mapping file has to be provided. Whengfoms&llation is
configured to use Typel fonts by default, fefonts.map will contain entries for the standar¢gX fonts already.
Alternatively, you may either look for updmap used by map(ihstallations to create an appropriate font mapping
file or you may specify some alternative font mapping files fisfonts.cmz in the pyxrc or thefontmaps
keyword argument of thiexrunner constructor (or theet method).

3.2 The texrunner

Instances of the clagexrunner represent agX/IATeX instance. The keyword arguments of the constructor are
listed in the following table:

15

keyword

description

mode "tex" (default) or'latex"

Ifs Specifies a latex font size file to be used wigKTnot in IKTEX). Those
files (with the suffix.Ifs) can be created bgreatelfs.tex
Possible values are listed when a requested name could not be found.

docclass IATEX document class; default farticle"

docopt specifies options for the document class; defaultose

usefiles access to gX/IATeX jobname files; defaultNone; example:
['spam.aux”, "eggs.log"]

fontmaps whitespace separated names of font mapping files; default
"psfonts.map"

waitfortex wait this number of seconds for g/IATEX response; defauO

showwaitfortex show a message about waiting f@XTATEX response omstrerr
default5

texipc use theipc option of TEX/IATEX for immediate dvi-output access
(boolean); check the output tdx -help if this option is available in
your TeX/IATEX installation; defaulD

texdebug filename to storegX/IATEX commands; defaulllone

dvidebug dvi debug messages liklvitype (boolean); defaul®

errordebug verbose level of BX/IATEX error messages; valid values &gl
(default),2

pyxgraphics enables the usage of the graphics package without further configuration
(boolean); default 1

texmessagesstart parsers for the gxX/IATEX start message; default:

texmessagesdocclass
texmessagesbegindoc

texmessagesend

texmessagesdefaultpreamble

texmessagesdefaultrun

[texmessage.start]

parsers forAIpXs \documentclass statement; default:
[texmessage.load]

parsers forAIpXs \begin{document} statement; default:
[texmessage.load, texmessage.noaux]

parsers for gXs\end / IATeXs \end{document} statement; default:
[texmessage.texend]

default parsers for preamble statements; default:
[texmessage.load]

default parsers for text statements; defaftéixmessage.loadfd,
texmessage.graphicsload]

The default values of the parametéwatmaps , waitfortex , showwaitfortex , andtexipc can be modified

in thetext

The texrunner

section of gyxrc .

instance provides several methods to be called by the user. First there is a methodetalled

It takes the same kewword arguments as the constructor and its purpose is to provide an acceéssriotiesr
settings for a given instance. This is important for ttefaulttexrunner . The set method fails, when a
modification cannot be applied anymore (e.gX/TATEX was already started).

The preamble method can be called before ttext method only (see below). It takes gXVIATEX expression

and optionally a list of EX/IATEX message parsers. The preamble expressions should be used to perform global
settings, but should not create angXfIATEX dvi output. In BTEX, the preamble expressions are inserted before
the\begin{document} statement. Note, that you can ugdéBeginDocument{...} to postpone the direct
evaluation.

Finally there is aext method. The first two parameters are thandy position of the output to be generated. The
third parameter is agX/IATEX expression. There are two further keyword arguments. Thetirdittrs |, is a list

of TEX/IATEX settings as described below)Pransformations, andyR fill styles (like colors). The second keyword
argumentexmessages takes a list of EX/IATEX message parsers as described below as well.t8%te method
returns a box (see chapter 6), which can be inserted into a canvas instanceggrits method to get the text.

16 Chapter 3. Module text : TeX/LaTeX interface

valign.top

— parbox.top

valign.middle —

— parbox.middle

parbox.bottom

valign.bottom

Figure 3.1: valign example

The box returned by theext method has an additional methothrker . You can place markers in thgUIATEX
expression by the comman®yXMarker{<string>} . When calling themarker method with the same
<string> you can get back the position of the marker later on. Only digits, letters an@slgenbol are allowed
within the string. Strings containing th@symbol are not considered for end users like it is done for commands
including the@symbol in ETEX.

Note that for the generation of the PostScript code tH¢/IFTEX instance must be terminated except witexipc

is turned on. However, agK/IATEX instance is started again when ttext method is called again. A call of the
preamble method will still fail, but you can explicitly call theeset method to allow for nevpreamble settings
as well. Thereset method takes a boolean parametgnit ~ which can be set to run the old preamble settings.

3.3 TpX/BTEX attributes

Horizontal alignment: halign.left (default),halign.center , halign.right , halign(x) (xisa
value betweel® and1 standing for left and right, respectively)

Vertical alignment: valign.top , valign.middle , valign.bottom , valign.baseline (default); see
the left hand side of figure 3.1

Vertical box: Usually, BEX/IATEX expressions are handled in horizontal mode (so-called LR-modeXAATEX;
everything goes into a single line). You may ymabox(x) , wherex is the width of the text, to switch to a
multiline mode (so-called vertical mode ig/IATEX). The additional keyword parameteaseline allows
the user to alter the position of the baseline. It can be ggttbox.top (default),parbox.middle
parbox.bottom (see the right hand side of figure 3.1). The baseline position is relevant when the vertical
alignment is set to baseline only.

Vertical shift: vshift(lowerratio, heightstr="0") (lowers the output bjowerratio of the height
of heightstr), vshift.bottomzero=vshift(0) (doesn’t have an effect),
vshift.middlezero=vshift(0.5) (shifts down by half of the height df),
vshift.topzero=vshift(1) (shifts down by the height d¥), vshift. mathaxis (shifts down by
the height of the mathematical axis)

Mathmode: mathmode switches to mathmode ofEX/IATEX in \displaystyle (nomathmode removes this
attribute)

Font size: size.tiny=size(-4) , Size.scriptsize=size(-3) , Size.footnotesize=size(-2) ,
size.small=size(-1) , Size.normalsize=size(0) , (default),size.large=size(1) ,
size.Large=size(2) , Size.LARGE=size(3) , Size.huge=size(4) , Size.Huge=size(5)

Phantom text: phantom creates an textbox with the proper extents but without the tegl{antom removes this
attribute)

3.3. TeX/LaTeX attributes 17

3.4 Using the graphics-bundle with IATEX

The packages in theATigX-graphics bundle (color.sty, graphics.sty, graphicx.sty, ...) make extensive use of
\special commands. Here are some notes on this topic. Please install the appropriate dnec.dief , which
defines all the specials, in youlTEX-tree and add the content of both fileslor.cfg andgraphics.cfg to your
personal configuration files.After you have installed thecfg files please use theext module always with the
pyxgraphics keyword set to 0, this switches off a hack that might be convenient for less experiéfédisers.

You can then import the packages of the graphics-bundle and related packages (e.g. rotating, ...) with the op-
tion pyx, e.g.\usepackage[pyx]J{color,graphicx} . Please note that the optigayx is only available

with pyxgraphics=0 and a properly installed driver file. Otherwise do not use this option, omit it completely or
say[dvips]

When defining colours ilA[EX as one of the colour modetgray , cmyk, rgb , RGB hsb then X will use the
corresponding values (one to four real numbers) for output. When you use onenaftieel colors in BTpX then X
will use the corresponding predefined colour (see modaler and the colour table at the end of the manual).

When importing eps-graphics iATEX then X will rotate, scale and clip your file like you expect it. Note theXP
cannot import other graphics files thaps at the moment.

For reference purpose, the following specials can be handled ligxhe module at the moment:

PyX:color_begin (model) (spec)
starts a colour. (model) is one ofifay , cmyk, rgb , hsb, texnamed }. (spec) depends on the model: a
name or some numbers.

PyX:color_end ends a colour.
PyX:epsinclude file= llx= lly= urx= ury= width= height= clip=0/1
includes an eps-file. The values of lIx to ury are in the files’ coordinate system and specify the part of the

graphics that should become the specified width and height in the outcome. The graphics may be clipped. The
last three parameters are optional.

PyX:scale_begin (x) (y)
begins scaling from the current point.
PyX:scale_end ends scaling.
PyX:rotate_begin (angle) begins rotation around the current point.
PyX:rotate_end ends rotation.

3.5 TEX/BTEX message parsers

Message parsers are used to scan the outpyPGfATEX. The output is analysed by a sequence of message parsers.
Each of them analyses the output and removes those parts of the output, it feels responsible for. If there is nothing left
in the end, the message got validated, otherwise an exception is raised reporting the problem.

parser name purpose
texmessage.load loading of files (accepffile ...))
texmessage.loadfd loading of files (accep(file.fd))
texmessage.graphicsload loading of graphic files (accegfile.eps>)
texmessage.ignore accept everything as a valid output

More specialised message parsers should become available as required. Please feel free to contribute (e.g. with
ideas/problems; code is desired as well, of course). There are further message parg¥sifaefal use, but we
skip them here as they are not interesting from the users point of view.

11f you do not know what | am talking about right now — just ignore this paragraph, but make sure not topgetgtaphics keyword to 0.

18 Chapter 3. Module text : TeX/LaTeX interface

3.6 The defaulttexrunner instance

The defaulttexrunner is an instance of the clagexrunner , which is automatically created by thext
module. Additionally, the method®xt , preamble , andset are available as module functions accessing the
defaulttexrunner . This singletexrunner instance is sufficient in most cases.

3.6. The defaulttexrunner instance 19

20

CHAPTER
FOUR

Graphs

4.1 Introduction

RX can be used for data and function plotting. At present only x-y-graphs are supported. However, the component
architecture of the graph system described in section 4.2 allows for additional graph geometries while reusing most of
the existing components.

Creating a graph splits into two basic steps. First you have to create a graph instance. The most simple form would
look like:

from pyx import *
g = graph.graphxy(width=8)

The graph instancg created in this example can then be used to actually plot something into the graph. Suppose you
have some data in a filgraph.dat’ you want to plot. The content of the file could look like:

2
3
8
13

18
21

OO WNER

To plot these data into the graghyou must perform:
g.plot(graph.data.file("graph.dat”", x=1, y=2))

The methodplot() takes the data to be plotted and optionally a list of graph styles to be used to plot the data. When
no styles are provided, a default style defined by the data instance is used. For data read from a file by an instance of
graph.data.file , the default are symbols. When instantiatgrgph.data.file , you not only specify the

file name, but also a mapping from columns to axis names and other information the styles might makesgse of (
data for error bars to be used by the errorbar style).

While the graph is already created by that, we still need to perform a write of the result into a file. Since the graph
instance is a canvas, we can just calltsteEPSfile() method.

g.writeEPSfile("graph")

The result graph.eps’ is shown in figure 4.1.

Instead of plotting data from a file, other data source are available as well. For example function data is created and

21

25 T T T T T T T T

20 | .
X
15 .
X
10 + .
X
5 L 4
. X
0 L 1 L 1 L 1 L 1
1 2 3 4 5 6

Figure 4.1: A minimalistic plot for the data from filgraph.dat’.

placed intoplot() by the following line:
g.plot(graph.data.function("y=x**2"))

You can plot different data in a single graph by callpigt() several times beforeriteEPSfile() . Note that

a callingplot() will fail once a graph was forced to “finish” itself. This happens automatically, when the graph is
written to a file. Thus it is not an option to callot() afterwriteEPSfile() . The topic of the finalization of a

graph is addressed in more detail in section 4.3. As you can see in figure 4.2, a function is plotted as a line by default.

40 T T T T T T T T

30

20

10

0 L 1 L 1 L 1 L 1 L
1 2 3 4 5 6

Figure 4.2: Plotting data from a file together with a function.

While the axes ranges got adjusted automatically in the previous example, they might be fixed by keyword options in
axes constructors. Plotting only a function will need such a setting at least in the variable coordinate. The following
code also shows how to set a logathmic axis in y-direction:

from pyx import *

g = graph.graphxy(width=8, x=graph.axis.linear(min=-5, max=5),
y=graph.axis.logarithmic())

g.plot(graph.data.function("y=exp(x)"))

g.writeEPSfile("graph3")

The result is shown in figure 4.3.

22 Chapter 4. Graphs

1000 F—r————————————————
100

10

0.1

0.01

0001 Lo v v L

Figure 4.3: Plotting a function for a given axis range and use a logarithmic y-axis.

4.2 Component architecture

Creating a graph involves a variety of tasks, which thus can be separated into components without significant additional
costs. This structure manifests itself also in th¥ Bource, where there are different modules for the different tasks.
They interact by some well-defined interfaces. They certainly have to be completed and stabilized in their details, but
the basic structure came up in the continuous development quite clearly. The basic parts of a graph are:

graph
Defines the geometry of the graph by means of graph coordinates with range [0:1]. Keeps lists of plotted data,
axesetc.

data
Produces or prepares data to be plotted in graphs.

style
Performs the plotting of the data into the graph. It gets data, converts them via the axes into graph coordinates
and uses the graph to finally plot the data with respect to the graph geometry methods.

key
Responsible for the graph keys.

axis
Creates axes for the graph, which take care of the mapping from data values to graph coordinates. Because axes
are also responsible for creating ticks and labels, showing up in the graph themselves and other things, this task
is splitted into several independent subtasks. Axes are discussed separately in chapter 5.

4.3 Module graph.graph: X-Y-Graphs

The classgraphxy is part of the modulgraph.graph . However, there is a shortcut to access this class via
graph.graphxy
classgraphxy (xpos=0, ypos=0, width=None, height=None, ratio=goldenmean, key=None, backgroundat-
) trs=None, axesdist=0.8*unit.v_cm, **axes)
This class provides an x-y-graph. A graph instance is also a fully functional canvas.
The position of the graph on its own canvas is specifiedfgmsandypos The size of the graph is specified by
width, height andratio. These parameters define the size of the graph area not taking into account the additional

4.2. Component architecture 23

space needed for the axes. Note that you have to specify atligtistor height ratio will be used as the ratio
betweernwidth andheightwhen only one of these is provided.

keycan be set to graph.key.key instance to create an automatic graph kégne omits the graph key.

backgroundattrsis a list of attributes for drawing the background of the graph. Allowed are decorators,
strokestyles, and fillstyle®None disables background drawing.

axisdistis the distance between axes drawn at the same side of a graph.

**axes receives axes instances. Allowed keywords (axes hames) ai& x3, etc. andy, y2, y3, etc. When

not providing arx ory axis, linear axes instances will be used automatically. When not provididgaa y2

axis, linked axes to the andy axes are created automatically. You may set those axdsre to disable the
automatic creation of axes. The even numbered axes are plotted at tieabogs] and righty(axes) while the
others are plotted at the bottom éxes) and lefty axes) in ascending order each. Axes instances should only
be used once.

Some instance attributes might be useful for outside read-access. Those are:

axes
A dictionary mapping axes names to ieds instances.

axespos
A dictionary mapping axes names to tedspos instances.

To actually plot something into the graph, the following instance meghatf) is provided:

plot (data, styles=None
Addsdatato the list of data to be plotted. Sedylesto be used for plotting the data. Whstylesis None, the
default styles for the data as provideddtais used.

datashould be an instance of any of the data described in section 4.4. This instance should only be used once.

When the same combination of style®(the same references) are used several times within the same graph
instance, the styles are kindly asked by the graph to iterate their appearence. Its up to the styles how this is
performed.

Instead of calling the plot method several times with differgaita but the same style, you can use a list (or
something iterateable) falata

While a graph instance only collects data initially, at a certain point it must create the whole plot. Once this is done,
further calls ofplot() will fail. Usually you do not need to take care about the finalization of the graph, because

it happens automatically once you write the plot into a file. However, sometimes position methods (described below)
are nice to be accessible. For that, at least the layout of the graph must have been finished. By calling the
methods yourself you can also alter the order in which the graph components are plotted. Multiple calls to any of the
do-methods have no effect (only the first call counts). The orginal order in whictidhmethods are called is:

dolayout ()
Fixes the layout of the graph. As part of this work, the ranges of the axes are fitted to the data when the axes

ranges are allowed to adjust themselves to the data ranges. Thelothegthods ensure, that this method is
always called first.

dobackground ()
Draws the background.

doaxes ()
Inserts the axes.

dodata ()
Plots the data.

dokey ()
Inserts the graph key.

24 Chapter 4. Graphs

finish ()
Finishes the graph by calling all pendidg-methods. This is done automatically, when the output is created.

The graph provides some methods to access its geometry:

pos (X, Yy, xaxis=None, yaxis=Nohe
Returns the given point atandy as a tuplgxpos, ypos) at the graph canvag.andy are axis data values
for the two axescaxisandyaxis Whenxaxisor yaxisareNone, the axes with names andy are used. This
method fails if called befordolayout()

vpos (VX, vy)
Returns the given point atx andvy as a tuple(xpos, ypos) at the graph canvasvx andvy are graph
coordinates with range [0:1].

vgeodesic (vx1, vyl, vx2, wy)2
Returns the geodesic between poimtd, vyl andvx2 vy2as a path. All parameters are in graph coordinates
with range [0:1]. Fographxy this is a straight line.

vgeodesic_el (vx1, vyl, vx2, w2
Like vgeodesic() but this method returns the path element to connect the two points.

Further geometry information is available by theespos instance variable. Shortcuts to thgispos methods
for the x- andy-axis become available aftelolayout() asgraphxy methodsXbasepath , Xvbasepath ,
Xgridpath , Xvgridpath , Xtickpoint , Xvtickpoint , Xtickdirection , and Xvtickdirection
where the prefiX stands fox andy.

4.4 Module graph.data: Data

The following classes provide data for thiet() method of a graph. The classes are implementgdiph.data

classfile (filename, commentpattern=defaultcommentpattern, columnpattern=defaultcolumnpattern, stringpat-
tern=defaultstringpattern, skiphead=0, skiptail=0, every=1, title=notitle, parser=dataparser(), con-

text={}, **columns)
This class reads data from a file and makes them available to the graph sfilsieamels the name of the file

to be read. The data should be organized in columns.

The argumentgommentpatterncolumnpattern and stringpatternare responsible for identifying the data in
each line of the file. Lines matchingpmmentpatterare ignored except for the column name search of the last
non-emtpy comment line before the data. By default a line starting with one of the char&tteds,‘or ‘! * as

well as an empty line is treated as a comment.

A non-comment line is analysed by repeatedly matclsiniggpatternand, whenever the stringpattern does not
match, bycolumnpattern When thestringpatternmatches, the result is taken as the value for the next column
without further transformations. Whemlumnpatterrmatches, it is tried to convert the result to a float. When
this fails the result is taken as a string as well. By default, you can write strings with spaces surrountded by *
immediately surrounded by spaces or begin/end of line in the data file. Othefwisenbt taken to be special.

skipheadandskiptail are numbers of data lines to be ignored at the beginning and end of the fileevhilg
selects only evergveryline from the data.

title is the title of the data to be used in the graph key. A default title is constructed dilérdmeand
**columns You may setitle to None to disable the title.

parseris the parser for mathematical expressions provideddolumns When in doubt, this is probably un-
interesting for youcontextallows for accessing external variables and functions when evaluating mathematical
expressions for columns. As an example you mayaasgext=|locals() or something similar.

Finally, columnsdefines the data columns. To make it a bit more complicated, there are file column names and
new created data column names, namely the keys of the dictidt@lumns. Only the later, the data column
names, are valid identifiers for the data columns at later usage (by the graph styles).

4.4. Module graph.data: Data 25

File column names occur when the data file contains a comment line immediately in front of the data (except
for empty or empty comment lines). This line will be parsed skipping the matched comment identifier as if the
line would be regular data, but it will not be converted to floats even if it would be possible to convert the items.
The result is taken as file column namies, a string representation for the columns in the file.

The values of*columnscan refer to column numbers in the file startindlatThe column0 is also available

and contains the line number starting frdmot counting comment lines, but lines skipeddiypheadskiptail,
andevery Furthermore values offcolumns can be strings: file column names or complex mathematical
expressions. To refer to columns within mathematical expressions you can also use file column names when
they are valid variable names or by the synfaxaumber> or even$(<expression>) , Wwhere<number>

is @ non-negative integer artxpression> a valid mathematical expression itself. In those mathematical
expressions theontextis available, but data from other columns are not. Negative numbers count the columns
from the end. Example:

graph.data file("test.dat’, a=1, b="B", c="2*B+$3")

with ‘test.dat’ looking like:

#A BC
1234 1 2
5.678 3 4

The columns with namé&" ,"b" ,"c" will become"[1.234, 5.678]" ,"[1.0, 3.0]" ,and"[4.0,
10.0]" , respectively.

When creating several data instances accessing the same file, the file is read only once. There is an inherent
caching of the file contents.

For the sake of completeness we list the default patterns:

defaultcommentpattern

re.compile(r"(#+|!+|%+)\s*")

defaultcolumnpattern

re.compile(r'\"(.*?)\"(\s+|$)")

defaultstringpattern

re.compile(r'(:*?)(\s+|$)")

classfunction (.expression, title=notitle, min=None, max=None, points=100, parser=mathtree.parser(), con-

text={})
This class creates graph data from a functexpressions the mathematical expression of the function. It must

also contain the result variable name by assignment. Thus a typical example lodkskgx)"

title is the title of the data to be used in the graph key. By defaptessions used. You may sditle to None
to disable the title.

min and maxgive the range of the variable. If not set, the range spans the whole axis range. The axis range
might be set explicitly or implicitly by ranges of other dapmintsis the number of points for which the function
is calculated. The points are choosen linearly in terms of graph coordinates.

parseris the parser for the mathematical expression. When in doubt, this is probably uninteresting fmryou.
textallows for accessing external variables and functions. As an example you megnisgt=locals()
or something similar.

Note when accessing external variables: In principle, it is unclear, which of the variables should be used as the
dependent variable. The solution is, that there should be exactly one variable, which is a valid and used axis
name. Example:

26

Chapter 4. Graphs

[graph.data.function("y=x**i", context=locals()) for i in range(1, 5)]

The result of this expression could just be passed to a gpt(} method, since not only data instances but
also lists of data instances are allowed.

classparamfunction (varname, min, max, expression, title=notitle, points=100, parser=mathtree.parser(), con-

text={})
This class creates graph data from a parametric funct@mmameis the parameter of the functiominandmax

give the range for that variabl@ointsis the number of points for which the function is calculated. The points
are choosen lineary in terms of the parameter.

expressions the mathematical expression for the parametric function. It contains an assignment of a tuple of
functions to a tuple of variables.

title is the title of the data to be used in the graph key. By defxpressions used. You may seitle to None

to disable the title.
parseris the parser for mathematical expressions. When in doubt, this is probably uninteresting foorytet
allows for accessing external variables and functions. As an example you magnis&t=locals() or

something similar.

classlist (data, title="user provided list", addlinenumbers=1, **columns
This class creates graph data from externally provided ddtais a list of lines, where each line is a list of
data values for the columns.

title is the title of the data to be used in the graph key.

The keywords of*columnsbecome the data column names. The values are the column numbers starting from
one, wheraddlinenumbergs turned on (the zeroth column is added to contain a line number in that case), while
the column numbers starts from zero, whagtllinenumberss switched off.

classdata (data, title=notitle, parser=dataparser(), context=, **columns
This class provides graph data out of other graph dittais the source of the data. All other parameters work
like the equally called parameters gnaph.data.file . Indeed, the latter is built on top of this class by
reading the file and caching its contents igraph.data.list instance. The columns are then selected by
creating new data out of the existing data.

classconffile (filename, title=notitle, parser=dataparser(), context=, **columns
This class reads data from a config file with the file nditename The format of a config file is described
within the documentation of th€onfigParser = module of the Python Standard Library.

Each section of the config file becomes a data line. The options in a section are the columns. The name of the
options will be used as file column names. All other parameters work@gsph.data.fleandgraph.data.data
since they all use the same code.

4.5 Module graph.style: Styles

Please note that we are talking about graph styles here. Those are responsible for plotting symbols, lines, bars and
whatever else into a graph. Do not mix it up with path styles like the line width, the line style (solid, dashed, dotted
etc) and others.

The following classes provide styles to be used atlod() method of a graph. The plot method accepts a list of
styles. By that you can combine several styles at the very same time.

Some of the styles below are hidden styles. Those do not create any output, but they perform internal data handling
and thus help on modularization of the styles. Usually, a visible style will depend on data provided by one or more
hidden styles but most of the time it is not necessary to specify the hidden styles manually. The hidden styles register
themself to be the default for providing certain internal data.

4.5. Module graph.style: Styles 27

classpos (epsilon=1e-10
This class is a hidden style providing a position in the graph. It needs a data column for each graph dimension.
For that the column names need to be equal to an axis name. Data points are considered to be out of graph when
their position in graph coordinates exceeds the range [0:1] by morestisilion

classrange (usenames=, epsilon=1e-10
This class is a hidden style providing an errorbar range. It needs data column names constructed out of a axis
nameX for each dimension errorbar data should be provided as follows:

data name | description

Xmin minimal value

Xmax maximal value

dx minimal and maximal delta
dXmin minimal delta

dXmax maximal delta

When delta data are provided the style will also read column data for the axistsad. usenameallows to
insert a translation dictionary from axis names to the identiffers

epsilonis a comparison precision when checking for invalid errorbar ranges.

classsymbol (symbol=changecross, size=0.2*unit.v_cm, symbolattrs=[]
This class is a style for plotting symbols in a graptymbolrefers to a (changeable) symbol function with
the prototypesymbol(c, x_pt, y_pt, size pt, attrs) and draws the symbol into the canvas
at the position(x_pt, y_pt) with sizesize_pt and attributesattrs . Some predefined symbols are
available in member variables listed below. The symbol is drawn atssieeisingsymbolattrs symbolattrss
merged withdefaultsymbolattrs which is a list containing the decoratdeco.stroked . Aninstance
of symbol is the default style for all graph data classes described in section 4.4 excéphdtion and
paramfunction

The classymbol provides some symbol functions as member variables, namely:

cross
A cross. Should be used for stroking only.

plus

A plus. Should be used for stroking only.
square

A square. Might be stroked or filled or both.
triangle

A triangle. Might be stroked or filled or both.
circle

A circle. Might be stroked or filled or both.
diamond

A diamond. Might be stroked or filled or both.
symbol provides some changeable symbol functions as member variables, namely:

changecross
attr.changelist([cross, plus, square, triangle, circle, diamond])

changeplus
attr.changelist([plus, square, triangle, circle, diamond, cross])

changesquare
attr.changelist([square, triangle, circle, diamond, cross, plus])

changetriangle
attr.changelist([triangle, circle, diamond, cross, plus, square])

changecircle

28 Chapter 4. Graphs

attr.changelist([circle, diamond, cross, plus, square, triangle])

changediamond
attr.changelist([diamond, cross, plus, square, triangle, circle])

changesquaretwice
attr.changelist([square, square, triangle, triangle, circle, circle, diamond, diamond])

changetriangletwice
attr.changelist([triangle, triangle, circle, circle, diamond, diamond, square, square])

changecircletwice
attr.changelist([circle, circle, diamond, diamond, square, square, triangle, triangle])

changediamondtwice
attr.changelist([diamond, diamond, square, square, triangle, triangle, circle, circle])

The classymbol provides two changeable decorators for alternated filling and stroking. Those are especially useful
in combination with theehange -twice -symbol methods above. They are:

changestrokedfilled
attr.changelist([deco.stroked, deco.filled])

changefilledstroked
attr.changelist([deco.filled, deco.stroked])

classline (lineattrs=[])
This class is a style to stroke lines in a grafiheattrsis merged withdefaultlineattrs which is a list
containing the member variabdangelinestyle as described below. An instancelisfe is the default
style of the graph data clasdemction andparamfunction described in section 4.4.

The clasdine provides a changeable line style. Its definition is:

changelinestyle
attr.changelist([style.linestyle.solid, style.linestyle.dashed, style.linestyle.dotted, style.linestyle.dashdotted])

classerrorbar (' size=0.1*unit.v_cm, errorbarattrs=[], epsilon=1e-)0
This class is a style to stroke errorbars in a gragbeis the size of the caps of the errorbars anrbarattrs
are the stroke attributes. Errorbars and error caps are considered to be out of the graph when their position in
graph coordinates exceeds the range [0:1] by moresihsiton Out of graph caps are omitted and the errorbars
are cut to the valid graph range.

classtext (textname="text", textdx=0*unit.v_cm, textdy=0.3*unit.v_cm, textattr3=]]
This class is a style to stroke text in a graph. The text to be written has to be provided in the data column named
textname . textdxandtextdyare the position of the text with respect to the position in the gréptiattrsare
text attributes for the output of the text.

classarrow (linelength=0.25*unit.v_cm, arrowsize=0.15*unit.v_cm, lineattrs=[], arrowattrs=[], epsilon=1€}10
This class is a style to plot short lines with arrows into a two-dimensional graph to a given graph position. The
arrow parameters are defined by two additional data columns nsimeedandangle define the size and angle
for each arrow.size is taken as a factor tarrowsizeandlinelength the size of the arrow and the length of
the line the arrow is plotted atingle is the angle the arrow points to with respect to a horizontal line. The
angle istaken in degrees and used in mathematically positive sénsattrsandarrowattrsare styles for the
arrow line and arrow head, respectivedpsilonis used as a cutoff for short arrows in order to prevent numerical
instabilities.

classrect (palette=color.palette.Gray
This class is a style to plot colored rectangles into a two-dimensional graph. The size of the rectangles is taken
from the data provided by theinge style. The additional data column namealor specifies the color of
the rectangle defined lpalette The valid color range is [0:1].

Note: Although this style can be used for plotting colored surfaces, it will lead to a huge memory footprint of
R/X together with a long running time and large outputs. Improved support for colored surfaces is planned for

4.5. Module graph.style: Styles 29

the future.

classbarpos (fromvalue=None, frompathattrs=[], subnames=None, epsilon=1¢-10
This class is a hidden style providing position information in a bar graph. Those graphs need to contain a
specialized axis, namely a bar axis. The data column for this bar axis is né@maete whereXis an axis name.
In the other graph dimension the data column name must be equal to an axis name. When plotting several bars
in a single graph, those bars are placed side by side (at the same vXlnarné). The name axis, a bar axis,
must then be a nested bar axis. The names used for the subaxis can bswgmtdiyesWhen not set, integer
numbers starting from zero will be used.

The bars start &tomvaluewhen provided. Théromvalueis marked by a gridline stroked usifigmpathattrs
Thus this hidden style might actually create some output. The value of a bar axis is considered to be out of graph
when its position in graph coordinates exceeds the range [0:1] by morepisdan

classstackedbarpos (stackname, epsilon=1e-10
This class is a hidden style providing position information in a bar graph by stacking a new bar on top of another
bar. The value of the new bar is taken from the data column nataeiname

classbar (barattrs=[])
This class draws bars in a bar graph. The bars are filled udiagattrs barattrs is
merged with defaultbarattrs which is a list containing [color.palette.Rainbow,
deco.stroked([color.grey.black])]

4.6 Module graph.key: Keys

The following class provides a key, whose instances can be passed to the constructor keyword dagyinoérat
graph. The class is implementedgraph.key

classkey (dist=0.2*unit.v_cm, pos="tr", hpos=None, vpos=None, hinside=1, vinside=1, hdist=0.6*unit.v_cm,
vdist=0.4*unit.v_cm, symbolwidth=0.5*unit.v_cm, symbolheight=0.25*unit.v_cm, symbol-
space=0.2*unit.v_cm, textattrs=[], border=0.3*unit.v_cm, keyattrs=Npne
This class writes the title of the data in a plot together with a small illustration of the style. The style is

responsible for its illustration.

distis a visual length and a distance between the key entpiesis the position of the key with respect to the
graph. Allowed values are combinations"6f (top), "'m" (middle) and'b" (bottom) with"I" (left), "c"

(center) andr" (right). Alternatively, you may usposandvposto specify the relative position using the
range [0:1]. hdistand vdist are the distances from the specified corner of the grdysideandvinsideare
numbers to be set to 0 or 1 to define whether the key should be placed horizontally and vertically inside of the
graph or not.

symbolwidthandsymbolheightire passed to the style to control the size of the style illustragmbolspace
is the space between the illustration and the teettattrsare attributes for the text creation. They are merged
with [text.vshift. mathaxis]

Whenkeyattrsis set to contain some draw attributes, the graph key is enlargédioler and the key area is
drawn usingkeyattrs

30 Chapter 4. Graphs

CHAPTER
FIVE

AXes

Axes are a fundamental component of graphs although there might be applications outside of the graph system. Inter-
nally axes are constructed out of components, which handle different tasks axes need to fulfill:

axis
Basically a container for axis data and the components. It implements the conversion of a data value to a graph
coordinate of range [0:1]. It does also handle the proper usage of the components in complicatadetasks (
combine the partitioner, texter, painter and rater to find the best partitioning).

tick
Ticks are plotted along the axis. They might be labeled with text as well.

partitioner, in the code the short form “parter” is used
Creates one or several choises of tick lists suitable to a certain axis range.

texter
Creates labels for ticks when they are not set manually.

painter
Responsible for painting the axis.

rater
Calculate ratings, which can be used to select the best suitable partitioning.

The names above map directly to modules which are provided in the diregtaph/axis’. Sometimes it might be
convenient to import the axis directory directly rather than to access iit through the graph. This would look like:

from pyx import *
graph.axis.painter() # and the like

from pyx.graph import axis

axis.painter() # this is shorter ...

In most cases different implementations are available through different classes, which can be combined in various
ways. There are various axis examples distributed with Where you can see some of the features of the axis with a
few lines of code each. Hence we can here directly come to the reference of the available components.

5.1 Axes

The following classes are part of the modgieph.axis.axis . However, there is a shortcut to access those
classes vigraph.axis directly.

31

The position of an axis is defined by an instance of a class providing the following methods:

basepath (x1=None, x2=Nong
Returns a path instance for the base pairandx2 define the axis range, the base path should cover.

vbasepath (v1=None, v2=Nong
Like basepath but in graph coordinates.
gridpath (Xx)
Returns a path instance for the grid path at positioklight returnNone when no grid path is available.
vgridpath (V)
Like gridpath but in graph coordinates.
tickpoint (X)
Returns the position ofas a tuple(x, y) .
vtickpoint (v)
Like tickpoint but in graph coordinates.

tickdirection (X)

Returns the direction of a tick atas a tuple(dx, dy) '. The tick direction points inside of the graph.
vtickdirection (v)

Like tickdirection but in graph coordinates.

Instances of the following classes can be passed tt*#hes keyword arguments of a graph. Those instances should
only be used once.

classlinear (min=None, max=None, reverse=0, divisor=None, title=None, parter=parter.autolinear(),
manualticks=[], density=1, maxworse=2, rater=rater.linear(), texter=texter.mixed(),

painter=painter.regular()
This class provides a linear axisin andmaxdefine the axis range. When not set, they are adjusted automati-

cally by the data to be plotted in the graph. Note, that some data might want to access the range okamn axis (
thefunction class when no range was provided there) or you need to specify a range when using the axis
without plugging it into a graphe(g. when drawing an axis along a path).

reversecan be set to indicate a reversed axis starting with bigger values first. Alternatively you can fix the
axis range bymin andmaxaccordingly. When divisor is set, it is taken to divide all data range and position
informations while creating ticks. You can create ticks not taking into account a factor byitleais the title

of the axis.

parteris a partitioner instance, which creates suitable ticks for the axis range. Those ticks are merged with ticks
manually given bymanualticksbefore proceeding with rating, paintirgc. Manually placed ticks win against

those created by the partitioner. For automatic partitioners, which are able to calculate several possible tick lists
for a given axis range, thaensityis a (linear) factor to favour more or less ticks. It should not be stressed to
much (its likely, that the result would be unappropriate or not at all valid in terms of rating label distances). But
within a range of say 0.5 to 2 (even bigger for large graphs) it can help to get less or more ticks than the default
would lead to.maxworsés the number of trials with more and less ticks when a better rating was already found.
rater is a rater instance, which rates the ticks and the label distances for being best suitable. It also takes into
accountdensity The rater is only needed, when the partitioner creates several tick lists.

texteris a texter instance. It creates labels for those ticks, which claim to have a label, but do not have a label
string set already. Ticks created by partitioners typically receive their label strings by texterpainter is

finally used to construct the output. Note, that usually several output constructions are needed, since the rater is
also used to rate the distances between the label for an optimum.

classlin (...
This class is an abbreviation lifiear described above.
classlogarithmic ~ (min=None, max=None, reverse=0, divisor=None, titte=None,
parter=parter.autologarithmic(), manualticks=[], density=1, maxworse=2,

rater=rater.logarithmic(), texter=texter.mixed(), painter=painter.regulgr()

32 Chapter 5. Axes

This class provides a logarithmic axis. All parameters worklitkear . Only two parameters have a different
default: parter andrater. Furthermore and most importantly, the mapping between data and graph coordinates
is logarithmic.

classlog (...
This class is an abbreviation lafgarithmic described above.

classlinked (linkedaxis, painter=painter.linked)
This class provides an axis, which is linked to another axis instance. This means, it shares all its properties with
the axis it is linked to except for the painter. Thus a linked axis is painted differently.

A standard application are th€ andy2 axes in an x-y-graph. Linked axes to tkeandy axes are created
automatically when not disabled by setting those axdsdne. By that, ticks are stroked at both sides of an
x-y-graph. However, linked axes can be used in other cases as well. You can link axes within a graph or between
different graphs as long as the orgininal axis is finished first (it must fix its layout first).

classsplit (subaxes, splitlist=[0.5], splitdist=0.1, relsizesplitdist=1, titte=None, painter=painter.split()
This class provides an axis, splitting the input values to its subaxes depending on the range of the subaxes. Thus
the subaxes need to have fixed range, up to the minimum of the first axis and the maximum of the last axis.
subaxesactually takes the list of subaxesplitlist defines the positions of the splitting in graph coordinates.
Thus the length afubaxesnust be the length afplitlist plus one. If an entry isplitlist is None, the axes aside
define the split position taking into account the ratio of the axes ranges (measured by an netsizal
attribute of each axis).

splitdistis the space reserved for a splitting in graph coordinates, when the corresponding eplitjishis not
None. relsizesplitdisis the space reserved for the splitting in terms, when the corresponding espijtlist is
None compared to theelsize of the axes aside.

title is the title of the split axes anghinteris a specialized painter, which takes care of marking the axes breaks,
while the painting of the subaxes are performed by their painters themself.

classlinkedsplit (linkedaxis, painter=painter.linkedsplit(), subaxispainter=omitsubaxispa)nter
This class provides an axis, which is linked to an instancgpbf . The purpose of a linked axis is described
in classlinked above.painterreplaces the painter from thiekedaxisinstance.

While this class creates linked axes for the subaxdmkédsplitas well, the question arises what painters to
use there. Whesubaxispaintelis not set, no painter is given explicitly leaving this decision to the subaxes
themself. This will lead to omitting all labels and the title. However, you can use a changeable attribute of
painters insubaxispainteto replace the default.

classbar (subaxis=None, multisubaxis=None, dist=0.5, firstdist=None, lastdist=None, title=None,

painter=painter.bar()
This class provides an axis suitable for a bar style. It handles a discrete set of values and maps them to distinct

ranges in graph coordinates. For that, the axis gets a list as data values. The first entry is taken to be one of
the discrete values valid on this axis. All other parameters, lets call them others, are passed to a subaxis. When
others has only one entry, it is passed as a value, otherwise as a list. The result of the conversion done by the
subaxis is mapped into the graph coordinate range for this discrete value. Whensididoasnor multisubaxis

is set, others must be a single value in the range [0:1]. This value is used for the position at the subaxis without
conversion.

Whensubaxisis set, it is used for the conversion of others. Whaultisubaxidgs set, it must be an instance of

bar as well. It is then duplicated for each of the discrete values allowed for the axis. By that, you can create
nested bar axes with different discrete values for each discrete value of the axis. It is not allowed to set both,
subaxisandmultisubaxis

distis used as the spacing between the ranges for each distinct value. It is measured in the same units as the
subaxis results, thus the default valueDdd means half the width between the distinct values as the width for
each distinct valudirstdistandlastdistare used before the first and after the last value. When $&ine, half

of distis used.

title is the title of the split axes anghinteris a specialized painter for an bar axis. Whealtisubaxiss used,
their painters are called as well, otherwise they are not taken into account.

5.1. Axes 33

pathaxis (path, axis, direction=)
This function returns a (specialized) canvas containing the axispainted along the pathath direction
defines the direction of the ticks. Allowed values &r@eft) and-1 (right).

5.2 Ticks

The following classes are part of the modglaph.axis.tick

classrational (x, power=1, floatprecision=10
This class implements a rational number with infinite precision. For that it stores two integers, the numerator
num and a denominatodenom. Note that the implementation of rational number arithmetics is not at all
complete and designed for its special use case of axis parititioniggipreventing any roundoff errors.

x is the value of the rational created by a conversion from one of the following input values:

oA float. It is converted to a rational with finite precision determinedlbgtprecision

oA string, which is parsed to a rational number with full precision. It is also allowed to provide a fraction
like ‘1/3 "

oA sequence of two integers. Those integers are taken as numerator and denominator of the rational.

eAn instance defining instance variablasm anddenom like rational itself.

poweris an integer to calculate™* power. This is useful at certain places in partitioners.

classtick (x, ticklevel=0, labellevel=0, label=None, labelattrs=[], power=1, floatprecision310
This class implements ticks based on rational numbers. Instances of this class can be passed to the
manualticks parameter of a regular axis.

The parameters, power, andfloatprecisionshare its meaning withational

A tick has a tick leveli(e. markers at the axis path) and a label lael. (place text at the axis pathjcklevel
andlabellevel These are non-negative integers\dame A value ofO means a regular tick or labél,stands for
a subtick or sublabel for subsubtick or subsublabel and so &tone means omitting the tick or labelabel
is the text of the label. When not set, it can be created automatically by a texielattrsare the attributes for
the labels.

5.3 Partitioners

The following classes are part of the modglkaph.axis.parter . Instances of the classes can be passed to the
parter keyword argument of regular axes.

classlinear (tickdist=None, labeldist=None, extendtick=0, extendlabel=None, epsilon=}e-10
Instances of this class creates equally spaced tick lists. The distances between the ticks, subticks, subsubticks
etc. starting from a tick at zero are given as first, second, teicditem of the listtickdist For a tick position,
the lowest level wins,e. for [2, 1] even numbers will have ticks whereas subticks are placed at odd integer.
The items otickdistmight be strings, floats or tuples as described foptheparameter of clastick

labeldistworks equally for placing labels. Whdabeldistis keptNone, labels will be placed at each tick
position, but sublabelstc. will not be used. This copy behaviour is also availabiee versaand can be
disabled by an empty list.

extendtickcan be set to a tick level for including the next tick of that level when the data exceed the range
covered by the ticks by more thepsilon epsilonis taken relative to the axis rangextendticks disabled when
set toNone or for fixed range axe®extendlabelvorks similar toextendtickout for labels.

classlin (..)
This class is an abbreviation lifiear described above.

34 Chapter 5. Axes

classautolinear (variants=defaultvariants, extendtick=0, epsilon=1e}10
Instances of this class creates equally spaced tick lists, where the distance between the ticks is adjusted to the
range of the axis automatically. Variants are a list of possible choicd&kalistof linear . Further variants
are build out of these by multiplying or dividing all the values by multipled @f variantsshould be ordered
that way, that the number of ticks for a given range will decrease, hence the distances between the ticks should
increase within th@ariantslist. extendtickandepsilonhave the same meaning adimear

defaultvariants
[[tick.rational((1, 1)), tick.rational((1, 2))], [tick.rational((2, 1)),
tick.rational((1, 1))], [tick.rational((5, 2)), tick.rational((5, 4))],
[tick.rational((5, 1)), tick.rational((5, 2))]]

classautolin (..)
This class is an abbreviation atitolinear described above.

classpreexp (pres, exp
This is a storage class defining positions of ticks on a logarithmic scale. It containpeetisif positionspi
andexp a multiplicatorm. Valid tick positions are defined kyim™ for any integem.

classlogarithmic (tickpos=None, labelpos=None, extendtick=0, extendlabel=None, epsilon=1Le-10
Instances of this class creates tick lists suitable to logarithmic axes. The positions of the ticks, subticks, sub-
subticksetc. are defined by the first, second, thett. item of the listtickpos which are allpreexp instances.

labelposworks equally for placing labels. Whdabelposis keptNone, labels will be placed at each tick
position, but sublabelstc. will not be used. This copy behaviour is also availabiee versaand can be
disabled by an empty list.

extendtickextendlabeandepsilonhave the same meaning adiimear
Somepreexp instances for the use lngarithmic are available as instance variables (should be used read-only):

prelexps
preexp([tick.rational((1, 1))], 100000)

prelexp4
preexp([tick.rational((1, 1))], 10000)

prelexp3
preexp([tick.rational((1, 1))], 1000)

prelexp2
preexp([tick.rational((1, 1))], 100)

prelexp
preexp([tick.rational((1, 1))], 10)

prel25exp
preexp([tick.rational((1, 1)), tick.rational((2, 1)), tick.rational((5,
1)), 10)

prelto9exp
preexp([tick.rational((1, 1)) for x in range(1, 10)], 10)

classlog (...
This class is an abbreviation lafgarithmic described above.

classautologarithmic (variants=defaultvariants, extendtick=0, extendlabel=None, epsilon=2e-10
Instances of this class creates tick lists suitable to logarithmic axes, where the distance between the ticks is
adjusted to the range of the axis automatically. Variants are a list of tuples with possible chotegstmand
labelposof logarithmic . variantsshould be ordered that way, that the number of ticks for a given range
will decrease within theariantslist.

extendtickextendlabehndepsilonhave the same meaning adimear

5.3. Partitioners 35

defaultvariants
[([log.prelexp, log.prelto9exp], [log.prelexp, log.prel25exp]),
([log.prelexp, log.prelto9exp], None), ([log.prelexp2, log.prelexp],
None), ([log.prelexp3, log.prelexp], None), ([log.prelexp4, log.prelexp],
None), ([log.prelexp5, log.prelexp], None)]

classautolog (...

This class is an abbreviation afitologarithmic described above.
5.4 Texter
The following classes are part of the modglaph.axis.texter . Instances of the classes can be passed to the

texter keyword argument of regular axes. Texters are used to define the label text for ticks, which request to have a
label, but for which no label text has been specified so far. A typical case are ticks created by partitioners described
above.

classdecimal (prefix="", infix="", suffix="", equalprecision=0, decimalsep=".", thousandsep="", thousandthpart-

sep="", plus="", minus="-", period=r"\overline{%s}", labelattrs=[text.mathmodg]
Instances of this class create decimal formatted labels.

The stringgrefix infix, andsuffixare added to the label at the beginning, immediately after the plus or minus,
and at the end, respectivebjecimalsepthousandsepmndthousandthpartsegre strings used to separate integer
from fractional part and three-digit groups in the integer and fractional part. The spingand minusare
inserted in front of the unsigned value for non-negative and negative numbers, respectively.

The format stringperiodshould generate a period. It must contain one string insert operéésrot the period.

labelattrsis a list of attributes to be added to the label attributes given in the painter. It should be used to setup
TeX features liketext.mathmode . Text format options likeéext.size should instead be set at the painter.

classexponential (plus="", minus="-", mantissaexp=r"{{%s}\cdot10"{%s}}", skipexp0=r"{%s}", skip-
expl=None, nomantissaexp=r"{10M%s}}", minusnomantissaexp=r"{-10"{%s}}", man-
tissamin=tick.rational((1, 1)), mantissamax=tick.rational((10L, 1)), skipmantissal=0,

skipallmantissal=1, mantissatexter=decimal()
Instances of this class create decimal formatted labels with an exponential.

The stringgplusandminusare inserted in front of the unsigned value of the exponent.

The format stringnantissaexghould generate the exponent. It must contain two string insert opergésys *
the first for the mantissa and the second for the exponent. An alternative to the defaiyf{is}{\rm
e{%s}}" .

The format stringskipexp(s used to skip exponeBtand must contain one string insert operadds*for the
mantissaNone turns off the special handling of expondhtThe format stringskipexplis similar toskipexpQ
but for exponent.

The format stringhomantissaexjs used to skip the mantiséaand must contain one string insert operafos'
for the exponentNone turns off the special handling of mantiskaThe format stringninusnomantissaexg
similar tonomantissaexpbut for mantissal .

Thetick.rational instancesnantissamigmantissamasare minimum (including) and maximum (exclud-
ing) of the mantissa.

The boolearskipmantissatnables the skipping of any mantissa equaénd-1 , whenminusnomantissaexp
is set. When the booleakipallmantissals set, a mantissa equdlds skipped only, when all mantissa values
arel. Skipping of a mantissa is stronger than the skipping of an exponent.

mantissatexteis a texter instance for the mantissa.

classmixed (smallestdecimal=tick.rational((1, 1000)), biggestdecimal=tick.rational((9999, 1)), equaldecision=1,

decimal=decimal(), exponential=exponential()
Instances of this class create decimal formatted labels with an exponential, when the unsigned values are small

36 Chapter 5. Axes

or large compared td.

The rational instancesmallestdecimahndbiggestdecimahre the smallest and biggest decimal values, where

the decimal texter should be used. The sign of the value is ignored here. For a tick at zero the decimal texter
is considered best as wellequaldecisionis a boolean to indicate whether the decision for the decimal or
exponential texter should be done globally for all ticks.

decimalandexponentiahre a decimal and an exponential texter instance, respectively.

classrational (prefix="", infix="", suffix="", numprefix="", numinfix="", numsuffix="", denomprefix="", denom-
infix="", denomsuffix="", plus="", minus="-", minuspos=0, over=r"%s\over%s", equaldenom=0,
skip1=1, skipnum0=1, skipnum1=1, skipdenom1=1, labelattrs=[text. mathmode]
Instances of this class create labels formated as fractions.
The stringsprefix infix, andsuffixare added to the label at the beginning, immediately after the plus or minus,
and at the end, respectively. The strimysnprefix numinfix andnumsuffixare added to the labels numerator
accordingly whereadenomprefixdenominfixanddenomsuffixio the same for the denominator.

The stringsplus andminusare inserted in front of the unsigned value. The position of the sign is defined by
minusposwith valuesl (at the numerator)) (in front of the fraction), andl (at the denominator).

The format stringovershould generate the fraction. It must contain two string insert oper&fsisthe first for
the numerator and the second for the denominator. An alternative to the defaffids}/{%s}}" "

Usually, the numerator and denominator are canceled, while, adpesidenonis set, the least common multiple
of all denominators is used.

The boolearskiplindicates, that only the prefix, plus or minus, the infix and the suffix should be printed, when
the value isl or-1 and at least one gdrefix infix andsuffixis present.

The boolearskipnumd@ndicates, that only 8 is printed when the numerator is zero.
skipnumis like skip1but for the numerator.

skipdenomXkips the denominator, when it istaking into accountenomprefixdenominfixdenomsuffix mi-
nusposand the sign of the number.

labelattrshas the same meaning as écimal

5.5 Painter

The following classes are part of the modglaph.axis.painter . Instances of the painter classes can be passed
to the painter keyword argument of regular axes.

classrotatetext (direction, epsilon=1e-1p
This helper class is used in direction arguments of the painters below to prevent axis labels and titles being
written upside down. In those cases the text will be rotated by 180 degi@estionis an angle to be used
relative to the tick directionepsilonis the value by which 90 degrees can be exceeded before an 180 degree
rotation is performed.

The following two class variables are initialized for the most common applications:

parallel
rotatetext(90)

orthogonal
rotatetext(180)

classticklength (initial, factor)
This helper class provides changealyd Bngths starting from an initial valueitial multiplied byfactoragain
and again. The resulting lengths are thus a geometric series.

There are some class variables initialized with suitable values for tick stroking. They are named
ticklength.SHORT , ticklength.SHORt , ..., ticklength.short , ticklength.normal ,

5.5. Painter 37

ticklength.long , ..., ticklength.LONG . ticklength.normal is initialized with a length 0f0.12
and the reciprocal of the golden meanfastor whereas the others have a modified initial value obtained by
multiplication with or division by appropriate multiples ¢f2.

classregular (innerticklength=ticklength.normal, outerticklength=None, tickattrs=[], gridattrs=None, basepa-

thattrs=[], labeldist="0.3 cm", labelattrs=[], labeldirection=None, labelhequalize=0, labelve-
gualize=1, titledist="0.3 cm", titleattrs=[], titledirection=rotatetext.parallel, tittepos=0.5, texrun-
ner=text.defaulttexrunngr

Instances of this class are painters for regular axes like linear and logarithmic axes.

innerticklengthandouterticklengthare visual ¥X lengths of the ticks, subticks, subsubtias. plotted along

the axis inside and outside of the graph. Provide changeable attributes to modify the lengths of ticks compared

to subticksetc. None turns off the ticks inside and outside the graph, respectively.

tickattrs and gridattrs are changeable stroke attributes for the ticks and the grid, wiene turns off the
feature. basepathattrare stroke attributes for the axis Nione to turn it off. basepathattrds merged with
‘[style.linecap.square] '

labeldistis the distance of the labels from the axis base path as a vigddeRgth. labelattrsis a list of
text attributes for the labels. It is merged wiftext.halign.center, text.vshift.mathaxis] '
labeldirectionis an instance ofotatetextto rotate the labels relative to the axis tick directioriNamne.

The boolean valudabelhequalizeandlabelvequalizéorce an equal alignment of all labels for straight vertical
and horizontal axes, respectively.

titledistis the distance of the title from the rest of the axis as a vispéldhgth. titleattrsis a list of text attributes
for the title. It is merged with[text.halign.center, text.vshift. mathaxis] . titledirectionis
an instance ofotatetextto rotate the title relative to the axis tick directionMone. titleposis the position of
the title in graph coordinates.

texrunneris the texrunner instance to create axis text like the axis title or labels.

classlinked (innerticklength=ticklength.short, outerticklength=None, tickattrs=[], gridattrs=None, basepathat-
trs=[], labeldist="0.3 cm", labelattrs=None, labeldirection=None, labelhequalize=0, labelvequal-
ize=1, titledist="0.3 cm", titleattrs=None, titledirection=rotatetext.parallel, titlepos=0.5, texrun-

ner=text.defaulttexrunnér
This class is identical toegular ~ up to the default values débelattrs andtitleattrs. By turning off those

features, this painter is suitable for linked axes.

classsplit (breaklinesdist="0.05 cm", breaklineslength="0.5 cm", breaklinesangle=-60, titledist="0.3 cm", titleat-
trs=None, titledirection=rotatetext.parallel, tittlepos=0.5, texrunner=text.defaulttexrupner
Instances of this class are suitable painters for split axes.
breaklinesdisindbreaklineslengttare the distance between axes break markers in vigdeRgths. break-
linesangleis the angle of the axis break marker with respect to the base path of the axis. All other parameters
have the same meaning agé@gular

classlinkedsplit (breaklinesdist="0.05 cm", breaklineslength="0.5 c¢cm", breaklinesangle=-60, ti-
tledist="0.3 cm", titleattrs=None, titledirection=rotatetext.parallel, titlepos=0.5, texrun-

ner=text.defaulttexrunnér
This class is identical teplit up to the default value dftleattrs. By turning off this feature, this painter is

suitable for linked split axes.

classbar (innerticklength=None, outerticklength=None, tickattrs=[], basepathattrs=[], namedist="0.3 cm",
nameattrs=[], namedirection=None, namepos=0.5, namehequalize=0, namevequalize=1, titledist="0.3
cm", titleattrs=[], titledirection=rotatetext.parallel, tittepos=0.5, texrunner=text.defaulttexrupner
Instances of this class are suitable painters for bar axes.
innerticklengthandouterticklengthare visual¥X lengths to mark the different bar regions along the axis inside
and outside of the grapiNone turns off the ticks inside and outside the graph, respectitiekattrsare stroke
attributes for the ticks dlone to turn all ticks off.

The parameters with prefixameare identical to theifabel counterparts imegular . All other parameters
have the same meaning ag@gular

38 Chapter 5. Axes

classlinkedbar (innerticklength=None, outerticklength=None, tickattrs=[], basepathattrs=[], namedist="0.3
cm", nameattrs=None, namedirection=None, namepos=0.5, namehequalize=0, namevequal-
ize=1, titledist="0.3 cm", titleattrs=None, titledirection=rotatetext.parallel, tittepos=0.5, texrun-

ner=text.defaulttexrunngr
This class is identical tbar up to the default values afameattrsandtitleattrs. By turning off those features,

this painter is suitable for linked bar axes.

5.6 Rater

The rating of axes is implemented graph.axis.rater . When an axis partitioning scheme returns several
partitioning possibilities, the partitions need to be rated by a positive number. The axis partitioning rated lowest is
considered best.

The rating consists of two steps. The first takes into account only the number of ticks, subticks, labels and so on in
comparison to optimal numbers. Additionally, the extension of the axis range by ticks and labels is taken into account.

This rating leads to a preselection of possible partitions. In the second step, after the layout of preferred partitionings
has been calculated, the distance of the labels in a partition is taken into account as well at a smaller weight factor by
default. Thereby partitions with overlapping labels will be rejected completely. Exceptionally sparse or dense labels

will receive a bad rating as well.

classcube (opt, left=None, right=None, weight31
Instances of this class provide a number radgttis the optimal value. When not providdeft is set to0 and
right is set to3* opt Weight is a multiplicator to the result.

The rater calculatewidth*((x- opt)/(other- opf))**3 to rate the value, whereother s left (x<opt)
or right (x>opt).

classdistance (opt, weight=0.)
Instances of this class provide a rater for a list of numbers. The purpose is to rate the distance between label
boxes.optis the optimal value.

The rater calculates the sumweight(opt’x-1) (x<opt) or weight(x/ opt1l) (x>opt) for all elements
of the list. It returns this value divided by the number of elements in the list.

classrater (ticks, labels, range, distange
Instances of this class are raters for axes partitionings.

ticksandlabelsare both lists of number rater instances, where the first items are used for the number of ticks
and labels, the second items are used for the number of subticks (including the ticks) and sublabels (including
the labels) and so on until the end of the list is reached or no corresponding ticks are available.

rangeis a number rater instance which rates the range of the ticks relative to the range of the data.
distanceis an distance rater instance.

classlinear (ticks=[cube(4), cube(10, weight=0.5)], labels=[cube(4)], range=cube(l, weight=2), dis-

_ tance=distance("1 cm})) _ . . _
This class is suitable to rate partitionings of linear axes. Itis equaltes but defines predefined values for

the arguments.

classlin (..)
This class is an abbreviation triear described above.

classlogarithmic (‘ticks=[cube(5, right=20), cube(20, right=100, weight=0.5)], labels=[cube(5, right=20),
cube(5, right=20, weight=0.5)], range=cube(1, weight=2), distance=distance("1tm")
This class is suitable to rate partitionings of logarithmic axes. Itis equatéo but defines predefined values
for the arguments.

classlog (...
This class is an abbreviation lafgarithmic described above.

5.6. Rater 39

40

CHAPTER
SIX

Module box: convex box handling

This module has a quite internal character, but might still be useful from the users point of view. It might also get
further enhanced to cover a broader range of standard arranging problems.

In the context of this module a box is a convex polygon having optionally a center coordinate, which plays an important
role for the box alignment. The center might not at all be central, but it should be within the box. The convexity is
necessary in order to keep the problems to be solved by this module quite a bit easier and unambiguous.

Directions (for the alignment etc.) are usually provided as pairs (dx, dy) within this module. It is required, that at least
one of these two numbers is unequal to zero. No further assumptions are taken.

6.1 Polygon

A polygon is the most general case of a box. It is an instance of themidggon . The constructor takes a list of
points (which are (x, y) tuples) in the keyword argumeoitners and optionally another (x, y) tuple as the keyword
argumentcenter . The corners have to be ordered counterclockwise. In the following list some methods of this
polygon class are explained:

path(centerradius=None, bezierradius=None, beziersoftness=1) . returns a path of the box;
the center might be marked by a small circle of radiesterradius ; the corners might be rounded using
the parametersezierradius andbeziersoftness . For each corner of the box there may be one value

for beziersoftness and two bezierradii. For convenience, it is not necessary to specify the whole list (for
beziersoftness) and the whole list of lists (bezierradius) here. You may give a single value and/or a 2-tuple

instead.
transform(*trafos) . performs a list of transformations to the box
reltransform(*trafos) . performs a list of transformations to the box relative to the box center
circlealignvector(a, dx, dy) . returns a vector (a tuple (x, y)) to align the box at a circle with radiirs

the direction @x, dy); see figure 6.1

~line align

circle, align

Figure 6.1: circle and line alignment examples (equal direction and distance)

41

linealignvector(a, dx, dy) : as above, but align at a line with distarece

circlealign(a, dx, dy) . as circlealignvector, but perform the alignment instead of returning the vector
linealign(a, dx, dy) . as linealignvector, but perform the alignment instead of returning the vector
extent(dx, dy) : extent of the box in the directioml, dy)

pointdistance(x, Yy) . distance of the pointx(, y) to the box; the point must be outside of the box
boxdistance(other) . distance of the box to the bather ; when the boxes are overlapping,

BoxCrossError israised

bbox() : returns a bounding box instance appropriate to the box

6.2 Functions working on a box list

circlealignequal(boxes, a, dx, dy) : Performs a circle alignment of the boxdesxes using the
parameters, dx, anddy as in thecirclealign method. For the length of the alignment vector its largest
value is taken for all cases.

linealignequal(boxes, a, dx, dy) . as above, but performing a line alignment

tile(boxes, a, dx, dy) . tiles the boxedoxes with a distance between the boxes (in addition the
maximal box extent in the given directiodx, dy) is taken into account)

6.3 Rectangular boxes

For easier creation of rectangular boxes, the module provides the specializetkctasslts constructor first takes
four parameters, namely the X, y position and the box width and height. Additionally, for the definition of the position
of the center, two keyword arguments are available. The paramsdtenter takes a tuple containing a relative
X, y position of the center (they are relative to the box extent, thus values be@waerdl should be used). The
parameterlbscenter takes a tuple containing the x and y position of the center. This values are measured with
respect to the lower left corner of the box. By default, the center of the rectangular box is set to this lower left corner.

42 Chapter 6. Module box: convex box handling

CHAPTER
SEVEN

Module connector

This module provides classes for connecting tvax -instances with lines, arcs or curves. All constructors of the
following connector-classes take twox -instances as first arguments. They retumoempath -instance from the

first to the second box, starting/ending at the boxes’ outline. The behaviour of the path is determined by the boxes’
center and some angle- and distance-keywords. The resatimector will additionally be shortened by lengths

given in theboxdists -keyword (a list of two lengths, defay®,0]).

7.1 Class line

The constructor of théne class accepts only boxes and thexdists -keyword.

7.2 Class arc

The constructor also takes either ttedangle -keyword or a combination afelbulge andabsbulge . The
“bulge” is the meant to be a hint of the greatest distance between the connecting arc and the straight connecting line.
(Default: relangle=45 , relbulge=None , absbulge=None)

Note that the bulge-keywords override the angle-keyword. When taiithlge andabsbulge are given they
will be added.

7.3 Class curve

The constructor takes both angle- and bulge-keywords. Here, the bulges are used as distances between bezier-curve
control points:

absanglel orrelanglel
absangle2 or relangle2 , where the absolute angle overrides the relative if both are given. (Default:
relanglel=45 ,relangle2=45 , absanglel=None ,absangle2=None)

absbulge andrelbulge , where they will be added if both are given.
(Default: absbulge=None , relbulge=0.39 ; these default values produce output similar to the defauklisaof)

Note that relative angle-keywords are counted in the following walanglel is counted in negative direction,
starting at the straight connector line, arethngle2 is counted in positive direction. Therefore, the outcome with
two positive relative angles will always leave the straight connector at its left and will not cross it.

43

7.4 Class twolines

This class returns two connected straight lines. There is a vast variety of combinations for angle- and length-keywords.
The user has to make sure to provide a non-ambiguous set of keywords:

absanglel orrelanglel for the first angle,
relangleM for the middle angle and

absangle?2 orrelangle2 for the ending angle. Again, the absolute angle overrides the relative if both are given.
(Default: all five angles arslone)

lengthl andlength2 for the lengths of the connecting lines. (DefaiNibne)

44 Chapter 7. Module connector

CHAPTER
EIGHT

With the help of theepsfile.epsfile

Module epsfile: EPS file inclusion

class, you can easily embed another EPS file in your canvas, thereby

scaling, aligning the content at discretion. The most simple example looks like

from pyx import *

¢ = canvas.canvas()
c.insert(epsfile.epsfile(0, 0, "file.eps"))
c.writeEPSfile("output")

All relevant parameters are passed to ¢ipsfile.epsfile

table:

argument name

constructor. They are summarized in the following

description

X

y
filename

width=None
heigth=None
scale=None
align="bl"

clip=1
translatebbox=1

bbox=None
kpsearch=0

x-coordinate of position (measured in user units by default).

y-coordinate of position (measured in user units by default).

Name of the EPS file (including a possible extension).

Desired width of EPS graphics dione for original width. Cannot be combined with
scale specification.

Desired height of EPS graphics done for original height. Cannot be combined with
scale specification.

Scaling factor for EPS graphics bione for no scaling. Cannot be combined with width
or height specification.

Alignment of EPS graphics. The first character specifies the vertical aligninéot:
bottom,c for center, and for top. The second character fixes the horizontal alignment:
| for left, c for centemr for right.

Clip to bounding box of EPS file?

Use lower left corner of bounding box of EPS file? Sef twith care.

If given, usebbox instance instead of bounding box of EPS file.

Search for file using the kpathsea library.

45

46

CHAPTER
NINE

Bitmaps

9.1 Introduction

R/X focuses on the creation of scaleable vector graphics. HoweperlBo allows for the output of bitmap images.
Still, the support for creation and handling of bitmap images is quite limited. On the other hand the interfaces are build
that way, that its trivial to combine/R with the “Python Image Library”, also known as “PIL".

The creation of a bitmap can be performed out of some unpacked binary data by first creating image instances:

from pyx import *

image_bw = bitmap.image(2, 2, "L", "\0\377\377\0")

image_rgb = bitmap.image(3, 2, "RGB", "\77\77\77\L77\177\177\277\277\277"
"\377\0\0\0\377\0\0\0\377")

Nowimage_bw is a2 x 2 grayscale image. The bitmap data is provided by a string, which contains two Blaick (

== chr(0)) and two white \377" == chr(255)) pixels. Currently the values per (colour) channel is fixed to
8 bits. The coloured imagenage_rgb has3 x 2 pixels containing a row of 3 different gray values and a row of the
three colours red, green, and blue.

The images can then be wrapped ibtmap instances by:

bitmap_bw = bitmap.bitmap(0, 1, image_bw, height=0.8)
bitmap_rgb = bitmap.bitmap(0, 0, image_rgb, height=0.8)

When constructing &itmap instance you have to specify a certain position by the first two arguments fixing the
bitmaps lower left corner. Some optional arguments control further properties. Since in this example there is no
information about the dpi-value of the images, we have to specify at ledigtla or aheight of the bitmap.

The bitmaps are now to be inserted into a canvas:

¢ = canvas.canvas()
c.insert(bitmap_bw)
c.insert(bitmap_rgb)
c.writeEPSfile("bitmap")

Figure 9.1 shows the resulting output.

9.2 Bitmap module

47

"»
Bn

Figure 9.1: An introductory bitmap example.

classimage (width, height, mode, data, compressed=None

This class is a container for image dataidth and heightare the size of the image in pixeinodeis one of
“L" ,"RGB" or"CMYK" for grayscale, rgh, or cmyk colours, respectivalgtais the bitmap data as a string,
where each single character represents a colour value with ordinal @aieg#55. Each pixel is described by
the appropriate number of colour components accordimgdde The pixels are listed row by row one after the
other starting at the upper left corner of the image.

compressedight be set tdFlate" or"DCT" to provide already compressed data. Note that those data will
be passed to PostScript without further checlesthis option is for experts only.

classjpegimage (file)

This class is specialized to read data from a JPEG/JFIHifdas either a open file handle (it only has to provide
aread() method; the file should be opened in binary mode) or a string. In the latejpeggmage will try
to open a file named likéle for reading.

The contents of the file is checked for some JPEG/JFIF format markers in order to identify the size and dpi
resolution of the image for further usage. These checks will typically fail for invalid data. The data is not
uncompressed, but directly inserted into the output stream (for invalid data the result will be invalid PostScript).
Thus there is no quality loss by recompressing the data as it would occur when recompressing the uncompressed
stream with the lossy jpeg compression method.

classbitmap (xpos, ypos, image, width=None, height=None, ratio=None, storedata=0, maxstrlen=4093, compress-

mode="Flate", flatecompresslevel=6, dctquality=75, dctoptimize=1, dctprogressipn=0
xposand yposare the position of the lower left corner of the image. This position might be modified by

some additional transformations when inserting the bitmap into a canvagjeis an instance ofimage or
jpegimage but it can also be an image instance from the “Python Image Library”.

width, height andratio adjust the size of the image. At leasgidth or heightneeds to be given, when no dpi
information is available fronmage

storedatais a flag indicating, that the (still compressed) image data should be put into the printers memory

instead of writing it as a stream into the PostScript file. While this feature consumes memory of the PostScript
interpreter, it allows for multiple usage of the image without including the image data several times in the

PostScript file.

maxstrlendefines a maximal string length whestoredatais enabled. Since the data must be kept in the
PostScript interpreters memory, it is stored in strings. While most interpreters do not allow for an arbitrary
string length (a common limit is 65535 characters), a limit for the string length is set. When more data needs to
be stored, a list of strings will be used. Note that lists are also subject to some implemenation limits. Since a
typical value is 65535 enties, in combination a huge amount of memory can be used.

Valid values forcompressmodeurrently are"Flate” (zlib compression),'DCT" (jpeg compression), or
None (disabling the compression). The zlib compression makes use of the zlib module as it is part of the
standard Python distribution. The jpeg compression is available for thmeggeinstances only, which support

the creation of a jpeg-compressed streang, images from the “Python Image Library” with jpeg support
installed. The compression must be disabled when the image data is already compressed.

flatecompresslevés a parameter of the zlib compressiaictquality, dctoptimize anddctprogressiorare pa-
rameters of the jpeg compression. Note, that the progression feature of the jpeg compression should be turned
off in order to produce valid PostScript. Also the optimization feature is known to produce errors on certain
printers.

48

Chapter 9. Bitmaps

CHAPTER
TEN

Module bbox

Thebbox module contains the definition of thdox class representing bounding boxes of graphical elements like
paths, canvases, etc. usedyiX RJsually, you obtairbbox instances as return values of the corresponibax())
method, but you may also construct a bounding box by yourself.

10.1 bbox constructor

Thebbox constructor accepts the following keyword arguments

keyword description

[1x None (default) for—oo or z-position of the lower left corner of the bbox (in user units)
Iy None (default) for—oco or y-position of the lower left corner of the bbox (in user units)
urx None (default) foroo or z-position of the upper right corner of the bbox (in user units)
ury None (default) forco or y-position of the upper right corner of the bbox (in user units)

10.2 bbox methods

bbox method

function

intersects(other)

transformed(self, trafo)
enlarged(all=0, bottom=None,

left=None, top=None,

right=None)
path() orrect()
height()
width()
top()

bottom()
left()

right()

returnsl if the bbox instance anadther intersect with each
other.

returnsself transformed by transformatidrafo

return the bounding box enlarged by the given amount (in visual
units).all is the default for all other directions, which is used
whenevemNone is given for the corresponding direction.
return thepath corresponding to the bounding box rectangle.
returns the height of the bounding box (iXRengths).

returns the width of the bounding box (€lengths).

returns they-position of the top of the bounding box (i
lengths).

returns they-position of the bottom of the bounding box (WP
lengths).

returns thez-position of the left side of the bounding box (in
R/X lengths).

returns thec-position of the right side of the bounding box (in
RX lengths).

Furthermore, two bounding boxes can be added (giving the bounding box enclosing both) and multiplied (giving the
intersection of both bounding boxes).

49

50

CHAPTER
ELEVEN

Module color

11.1 Color models

PostScript provides different color models. They are availablgXobl different color classes, which just pass the
colors down to the PostScript level. This implies, that there are no conversion routines between different color models
available. However, some color model conversion routines are included in Python’s standard library in the module
colorsym . Furthermore also the comparison of colors within a color model is not supported, but might be added in
future versions at least for checking color identity and for ordering gray colors.

There is a class for each of the supported color models, nagnajy , rgb , cmyk, andhsb . The constructors take
variables appropriate for the color model. Additionally, a list of named colors is given in appendix B.

11.2 Example

from pyx import *
¢ = canvas.canvas()

c.fill(path.rect(0,

0, 7, 3), [color.gray(0.8)])
c.fill(path.rect(1, 1,
1,
1,

1, 1), [color.rgh.red])
1, 1), [color.rgb.green])
1, 1), [color.rgb.blue])

c fill(path.rect(3,
c.fill(path.rect(5,

c.writeEPSfile("color")

The filecolor.eps is created and looks like:

51

11.3 Color palettes

The color module provides a clapalette . The constructor of that class receives two colors from the same color
model and two named parametenén andmax, which are set t@® and1 by default. Between those colors a linear
interpolation takes place by the methgetcolor depending on a value betwertin andmax.

A list of named palettes is available in appendix C.

52

Chapter 11. Module color

CHAPTER
TWELVE

Module unit

With theunit module X makes available classes and functions for the specification and manipulation of lengths.
As usual, lengths consist of a number together with a measurement unit, e.g., 1 cm, 50 points, 0.42 inch. In addition,
lengths in ¥X are composed of the five types “true”, “user”, “visual”, “width”, andgX’, e.g., 1 user cm, 50 true

points, (0.42 visual + 0.2 width) inch. As their names indicate, they serve different purposes. True lengths are not
scalable and are mainly used for return valuesgffBnctions. The other length types can be rescaled by the user and
differ with respect to the type of object they are applied to:

user length: used for lengths of graphical objects like positions etc.

visual length: used for sizes of visual elements, like arrows, graph symbols, axis ticks, etc.
width length: used for line widths

TeX length: used for all X and BTEX output

For instance, if you only want thicker lines for a publication version of your figure, you can just rescale the width
lengths. How this all works, is described in the following sections.

12.1 Class length

The constructor of thiength class accepts as first argument either a number or a string:

¢ length(number) means a user length in units of the default unit, defined via
unit.set(defaultunit=defaultunit)

e Forlength(string) , thestring has to consist of a maximum of three parts separated by one or more
whitespaces:

quantifier: integer/float value. Optional, defaults1o
type: "t" (true),"u" (user),"v" (visual),"w" (width), or"x" (TeX). Optional, defaults tbu" .

unit: "m","cm" ,"mm", "inch" , or"pt" . Optional, defaults to the default unit.

The default for the first argument is chosen in such a way3Hanhgth()==length(5) . Note that the default
unit is initially set to"cm" , but can be changed at any time by the user. For instance, use

unit.set(defaultunit="inch")

53

if you want to specify per default every length in inches. Furthermore, the scaling of the user, visual and width types
can be changed with theet function, as well. To this endset accepts the named argumenscale , vscale |
andwscale . For example, if you like to change the thickness of all lines (with predefined linewidths) by a factor of

two, just insert

unit.set(wscale = 2)

at the beginning of your program.

To complete the discussion of thength

12.2 Subclasses of length

class, we mention, that as expectgd engths can be added, subtracted,
multiplied by a numerical factor, converted to a string and compared with each other.

A number of subclasses tdngth are already predefined. They only differ by their defaultstjgge andunit .
Note that again the default value for the quantifiet jsuch that, for instanc&*m(1)==m(5)

Subclass ofength Type Unit | Subclass ofength Type Unit
m(x) user m v_m(X) visual m
cm(x) user cm v_cm(x) visual cm
mm(X) user mm | v._mm(x) visual mm
inch(x) user inch | v_inch(x) visual inch
pt(x) user points| v_pt(x) visual points
t m(x) true m w_m(x) width m
t_cm(x) true cm w_cm(X) width cm
t_mm(x) true mm w_mm(x) width mm
t_inch(x) true inch | w_inch(x) width inch
t_pt(x) true points| w_pt(x) width points
u_m(x) user m X_m(x) TeX m
u_cm(x) user cm x_cm(x) TeX cm
u_mm(x) user mm | x_mm(x) TeX mm
u_inch(x) user inch | x_inch(x) TeX inch
u_pt(x) user points| x_pt(x) TeX points

Here,x is either a number or a string, which, as mentioned above, defadlts to

12.3 Conversion functions

If you want to know the value of a/R length in certain units, you may use the predefined conversion functions which

are given in the following table

If I is not yet alength

function result

tom(l) [inunits of m
tocm(l) | in units of cm
tomm(l) | in units of mm
toinch(l) | in units of inch
topt(l) I in units of points

you want to convert multiple lengths at once.

instance, it is converted first into one, as described above. You can also specify a tuple, if

54

Chapter 12. Module unit

CHAPTER
THIRTEEN

Module trafo: linear transformations

With thetrafo module X supports linear transformations, which can then be applied to canvases, Bézier paths and
other objects. It consists of the main clagfo representing a general linear transformation and subclasses thereof,
which provide special operations like translation, rotation, scaling, and mirroring.

13.1 Class trafo

Thetrafo class represents a general linear transformation, which is defined for a ¥exgor
F=AZ+0,

whereA is the transformation matrix aricthe translation vector. The transformation matrix must not be singidar,
we requiredet A # 0.

Multiple trafo instances can be multiplied, corresponding to a consecutive application of the respective transforma-
tion. Note thatrafol*trafo2 means thatrafol is applied aftetrafo2 |, i.e. the new transformation is given

by A = A1A2 andb = A1b2 + b1. Use thetrafo methods described below, if you prefer thinking the other way
round. The inverse of a transformation can be obtained vi&rélie methodinverse() , defined by the inverse

A~ of the transformation matrix and the translation vectdr—b.

The methods of theafo class are summarized in the following table.

trafo method function
__init__(matrix=((1,0),(0,1)), create nevirafo instance with transformatiomatrix and
vector=(0,0)): vector

apply(x, y) applytrafo to point vector(x, y).

inverse() returns inverse transformation wéfo

mirrored(angle) returnstrafo followed by mirroring at line througko, 0) with
directionangle in degrees.

rotated(angle, returnstrafo followed by rotation byangle degrees around

x=None, y=None) point(x,y), or (0,0), if not given.
scaled(sx, sy=None, returnstrafo followed by scaling with scaling fact@x in
x=None, y=None) z-direction,sy in y-direction gy = sx, if not given) with scaling

center(x,y), or (0, 0), if not given.

translated(x, y) returnstrafo followed by translation by vectdk, y).

slanted(a, angle=0, x=None, returnstrafo followed by XXX

y=None)

55

13.2 Subclasses of trafo

Thetrafo module provides a number of subclasses oftthfo class, each of which corresponds to drado
method. They are listed in the following table:

trafo subclass function

mirror(angle) mirroring at line through0, 0) with directionangle in degrees.

rotate(angle, rotation byangle degrees around poifi, y), or (0,0), if not given.

x=None, y=None)

scale(sx, sy=None, scaling with scaling factosx in z-direction,sy in y-direction
x=None, y=None) (sy = sx, if not given) with scaling centgx, y), or (0, 0), if not given.

translate(x,) translation by vectofx, y).

slant(a, angle=0, x=None, XXX

y=None)

56 Chapter 13. Module trafo: linear transformations

APPENDIX
A

Mathematical expressions

At several points withinyX mathematical expressions can be provided in form of string parameters. They are evalu-
ated by the modulenathtree . This module is not described further in this user manual, because it is considered to
be a technical detail. We just give a list of available operators, functions and predefined variable names here.

Operators: +;-;*;/;**

Functions: neg (negate)abs (absolute value)sgn (signum);sqrt (square root)exp ; log (natural logarithm);
sin , cos, tan , asin , acos, atan (trigonometric functions in radian unitsgind , cosd , tand , asind ,

acosd , atand (as before but in degree units)prm (v/a2 + b2 as an example for functions with multiple
arguments)

predefined variables: pi (7); e (e)

57

58

APPENDIX
B

X X X X X

grey.black

grey.white

rgb.red
rgb.green
rgb.blue
rgb.white
rgb.black
cmyk.GreenYellow
cmyk.Yellow
cmyk.Goldenrod
cmyk.Dandelion
cmyk.Apricot
cmyk.Peach
cmyk.Melon
cmyk.YellowOrange
cmyk.Orange
cmyk.BurntOrange
cmyk.Bittersweet
cmyk.RedOrange
cmyk.Mahogany
cmyk.Maroon
cmyk.BrickRed
cmyk.Red

cmyk. OrangeRed

< IS
xS
< IS
< IS
< IS
< IS
< IS
X
< IS
<

< IS
< IS
< I
< IS
X
< IS
< IS
xS
< IS
< I

< IS
< IS
X
< IS

cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.

cmyk.

RubineRed
WildStrawberry
Salmon
CarnationPink
Magenta
VioletRed
Rhodamine
Mulberry
RedViolet
Fuchsia
Lavender
Thistle
Orchid
DarkOrchid
Purple

Plum

Violet
RoyalPurple
BlueViolet
Periwinkle
CadetBlue
CornflowerBlue
MidnightBlue
NavyBlue
RoyalBlue

Blue

Named colors

X

X X X X X X X

< IS
< IS

< IS
< IS
< I

< I
< IS
< IS
< IS
< IS
X
< IS

cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.

cmyk.

Cerulean
Cyan
ProcessBlue
SkyBlue
Turquoise
TealBlue
Aquamarine
BlueGreen
Emerald
JungleGreen
SeaGreen
Green
ForestGreen
PineGreen
LimeGreen
YellowGreen
SpringGreen
OliveGreen
RawSienna
Sepia
Brown

Tan

Gray

Black

White

59

60

APPENDIX
C

jen)

“" =

Named palettes

|

|

F
i

1
N

palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.

palette.

Gray
ReverseGray
RedGreen
RedBlue
GreenRed
GreenBlue
BlueRed
BlueGreen
RedBlack
BlackRed
RedWhite
WhiteRed
GreenBlack
BlackGreen
GreenWhite
WhiteGreen
BlueBlack
BlackBlue
BlueWhite
WhiteBlue
Rainbow
ReverseRainbow
Hue

ReverseHue

61

62

APPENDIX
D

222)22

)

*
&
4

*
N

*
*
*

>

DI220000 000

linecap.butt

linecap.round

linecap.square

linejoin.miter

linejoin.round

linejoin.bevel

linestyle.
linestyle.
linestyle.

linestyle.

linewidth.
linewidth.
linewidth.
linewidth.

linewidth.

linewidth

linewidth.

linewidth.

linewidth.

linewidth.

linewidth.

linewidth.

solid

dashed

dotted

dashdotted

THIN

THIn

THin

Thin

thin

.normal

thick

Thick

THick

THIck

THICk

THICK

(default)

Module style

miterlimit.

miterlimit

miterlimit.

miterlimit

miterlimit.

dash((1, 1
dash((1, 1
dash((1, 2
dash((1, 2
dash((1, 2

dash((1, 2

lessthan180deg

.lessthan90deg

lessthan60deg

.lessthan4bdeg

lessthanildeg (default)

2, 2,3, 3, 0
2, 2,3,3), 1D
3), 2)
3), 3
3, 4

3), rellengths=1)

63

64

APPENDIX
E

22))) 2))))

earrow

earrow.

earrow.

earrow.

earrow.

barrow.

earrow

earrow

earrow.

earrow.

Arrows in deco module

.Small

small
normal
large

Large

normal

.Large([deco.filled([color.rgb.red]), style.linewidth.normal])

.normal (constriction=None)

Large([style.linejoin.round])

Large([deco.stroked.clear])

65

66

A

append()
normsubpath method, 11

path method, 8
arc (class in path), 10
arclen() (path method), 8
arclentoparam() (path method), 8
arcn (class in path), 10
arct (class in path), 10
arrow (class in graph.style), 29
at() (path method), 8
autolin (class in graph.axis.parter), 35
autolinear (class in graph.axis.parter), 35
autolog (class in graph.axis.parter), 36
autologarithmic (class in graph.axis.parter), 35
axes (graphxy attribute), 24
axespos (graphxy attribute), 24

B

bar
class in graph.axis.axis, 33
class in graph.axis.painter, 38
class in graph.style, 30
barpos (class in graph.style), 30
basepath() (axispos method), 32
bbox()
canvas method, 13
path method, 8
begin() (path method), 8
bitmap
class in bitmap, 48
module 47

C

canvas
class in canvas, 13
module,13
changecircle (symbol attribute), 28
changecircletwice (symbol attribute), 29
changecross (symbol attribute), 28
changediamond (symbol attribute), 29

INDEX

changediamondtwice
changefilledstroked (symbol attribute), 29
changelinestyle (line attribute), 29
changeplus (symbol attribute), 28
changesquare (symbol attribute), 28
changesquaretwice (symbol attribute), 29
changestrokedfilled (symbol attribute), 29
changetriangle (symbol attribute), 28
changetriangletwice (symbol attribute), 29
circle

class in path, 12

symbol attribute, 28

(symbol attribute), 29

close() (normsubpath method), 11
closepath (class in path), 10
conffile (class in graph.data), 27

cross (symbol attribute), 28

cube (class in graph.axis.rater), 39
curve (classin path), 12

curveto (class in path), 10
curvradius() (path method), 8

D

data (class in graph.data), 27
decimal (class in graph.axis.texter), 36
defaultcolumnpattern (file attribute), 26
defaultcommentpattern (file attribute), 26
defaultstringpattern (file attribute), 26
defaultvariants

autolinear attribute, 35

autologarithmic attribute, 36
diamond (symbol attribute), 28
distance (class in graph.axis.rater), 39
doaxes() (graphxy method), 24
dobackground() (graphxy method), 24
dodata() (graphxy method), 24
dokey() (graphxy method), 24
dolayout() (graphxy method), 24
draw() (canvas method), 13

E
end() (path method), 8

67

errorbar (class in graph.style), 29
exponential (class in graph.axis.texter), 36
extend()

normsubpath method, 11

path method, 8

F

file (classin graph.data), 25

fill() (canvas method), 13
finish() (graphxy method), 25
function (class in graph.data), 26

G

graph.axis.axis (module),31
graph.axis.painter (module),37
graph.axis.parter (module),34
graph.axis.rater (module),39
graph.axis.texter (module),36
graph.axis.tick (module),34

graph.data (module),25
graph.graph (module),23
graph.key (module),30
graph.style (module),27
graphxy (class in graph.graph), 23
gridpath() (axispos method), 32

image (class in bitmap), 48
insert() (canvas method), 13
intersect() (path method), 8

J

join() (normpath method), 11
joined() (path method), 8
jpegimage (class in bitmap), 48

K
key (class in graph.key), 30

L
lin
class in graph.axis.axis, 32
class in graph.axis.parter, 34
class in graph.axis.rater, 39
line
class in graph.style, 29
class in path, 12
linear
class in graph.axis.axis, 32
class in graph.axis.parter, 34
class in graph.axis.rater, 39
lineto (class in path), 9
linked

class in graph.axis.axis, 33
class in graph.axis.painter, 38
linkedbar (class in graph.axis.painter), 39
linkedsplit
class in graph.axis.axis, 33
class in graph.axis.painter, 38
list (class in graph.data), 27
log
class in graph.axis.axis, 33
class in graph.axis.parter, 35
class in graph.axis.rater, 39
logarithmic
class in graph.axis.axis, 32
class in graph.axis.parter, 35
class in graph.axis.rater, 39

M

mixed (class in graph.axis.texter), 36
moveto (class in path), 9
multicurveto_pt (class in path), 10
multilineto_pt (class in path), 10

N

normpath() (path method), 8
normpath (class in path), 11
normsubpath (class in path), 11

O

orthogonal (rotatetext attribute), 37

P

parallel (rotatetext attribute), 37
paramfunction (class in graph.data), 27
path

class in path, 8

module,8
pathaxis() (in module graph.axis.axis), 34
plot() (graphxy method), 24
plus (symbol attribute), 28
pos() (graphxy method), 25
pos (class in graph.style), 28
prel25exp (logarithmic attribute), 35
prelexp (logarithmic attribute), 35
prelexp2 (logarithmic attribute), 35
prelexp3 (logarithmic attribute), 35
prelexp4 (logarithmic attribute), 35
prelexp5 (logarithmic attribute), 35
prelto9exp (logarithmic attribute), 35
preexp (class in graph.axis.parter), 35

R

range() (path method), 8
range (class in graph.style), 28

68

Index

rater (class in graph.axis.rater), 39
rational
class in graph.axis.texter, 37
class in graph.axis.tick, 34
rcurveto (class in path), 10
rect
class in graph.style, 29
class in path, 12
regular (class in graph.axis.painter), 38
reverse() (normpath method), 11
reversed() (path method), 9
rlineto (class in path), 10
rmoveto (class in path), 9
rotatetext (class in graph.axis.painter), 37

S

set() (canvas method), 13
settexrunner() (canvas method), 13
split() (path method), 9
split

class in graph.axis.axis, 33

class in graph.axis.painter, 38
square (symbol attribute), 28
stackedbarpos (class in graph.style), 30
stroke() (canvas method), 13
symbol (class in graph.style), 28

T

tangent() (path method), 9

text() (canvas method), 13

text (classin graph.style), 29

tick (class in graph.axis.tick), 34
tickdirection() (axispos method), 32
ticklength (class in graph.axis.painter), 37
tickpoint() (axispos method), 32
trafo() (path method), 9

transform() (normpath method), 11
transformed() (path method), 9
triangle (symbol attribute), 28

V

vbasepath() (axispos method), 32
vgeodesic() (graphxy method), 25
vgeodesic_el() (graphxy method), 25
vgridpath() (axispos method), 32
vpos() (graphxy method), 25

vtickdirection() (axispos method), 32
vtickpoint() (axispos method), 32

W

writeEPSfile() (canvas method), 13

X

xbasepath() (graphxy method), 25

(graphxy method), 25
(graphxy method), 25
(graphxy method), 25
(graphxy method), 25
(graphxy method), 25
(graphxy method), 25
(graphxy method), 25

xtickdirection()

xvbasepath()
xvgridpath()
xvtickdirection()
xvtickpoint()

ybasepath() (graphxy method), 25
(graphxy method), 25
(graphxy method), 25
(graphxy method), 25
(graphxy method), 25
(graphxy method), 25
(graphxy method), 25

(graphxy method), 25

ytickdirection()

yvbasepath()
yvgridpath()
yvtickdirection()
yvtickpoint()

Index

	1 Introduction
	1.1 Organisation of the P-.3em.5exY-.18em X package

	2 Basic graphics
	2.1 Introduction
	2.2 Path operations
	2.3 Attributes: Styles and Decorations
	2.4 Module path
	2.4.1 Class path --- PostScript-like paths
	2.4.2 Path elements
	2.4.3 Class normpath
	2.4.4 Class normsubpath
	2.4.5 Predefined paths

	2.5 Module canvas
	2.5.1 Class canvas
	2.5.2 Patterns

	3 Module text: TeX/LaTeX interface
	3.1 Basic functionality
	3.2 The texrunner
	3.3 TeX/LaTeX attributes
	3.4 Using the graphics-bundle with LaTeX
	3.5 TeX/LaTeX message parsers
	3.6 The defaulttexrunner instance

	4 Graphs
	4.1 Introduction
	4.2 Component architecture
	4.3 Module graph.graph: X-Y-Graphs
	4.4 Module graph.data: Data
	4.5 Module graph.style: Styles
	4.6 Module graph.key: Keys

	5 Axes
	5.1 Axes
	5.2 Ticks
	5.3 Partitioners
	5.4 Texter
	5.5 Painter
	5.6 Rater

	6 Module box: convex box handling
	6.1 Polygon
	6.2 Functions working on a box list
	6.3 Rectangular boxes

	7 Module connector
	7.1 Class line
	7.2 Class arc
	7.3 Class curve
	7.4 Class twolines

	8 Module epsfile: EPS file inclusion
	9 Bitmaps
	9.1 Introduction
	9.2 Bitmap module

	10 Module bbox
	10.1 bbox constructor
	10.2 bbox methods

	11 Module color
	11.1 Color models
	11.2 Example
	11.3 Color palettes

	12 Module unit
	12.1 Class length
	12.2 Subclasses of length
	12.3 Conversion functions

	13 Module trafo: linear transformations
	13.1 Class trafo
	13.2 Subclasses of trafo

	A Mathematical expressions
	B Named colors
	C Named palettes
	D Module style
	E Arrows in deco module
	Index

